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Abstract

An analytical model is presented for pressure-driven two-fluid flow between two parallel flat plates rotating
about an axis perpendicular to the plates. The aim is to determine the lubricating effects due to a near-wall
low-viscosity depletion layer on the axial as well as transverse flows in a rotating channel. It is found that
the primary and secondary flow fields may be affected differently by the system rotation, the thickness of
the depletion layer, and the viscosity ratio. For a very thin depletion layer, the wall lubrication reduces to
a Navier slip condition, where the slip length is found to be the same as the one for a non-rotating channel
at the leading order, while the higher-order slip length is a function of a complex rotation parameter. The
F̊ahræus–Lindqvist effect in a rotating environment is also examined.
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1. Introduction

In suspensions or polymer solutions, there usu-
ally exists a particle-depleted layer near a wall if the
wall is non-adsorbing [1]. The so-called depletion
layer owes its presence to the finite size of the sus-
pended particles, which causes the center of these
discrete entities in the solution to be excluded from
a region next to a non-adsorbing wall. Without
the inclusion, the fluid in the depletion layer, essen-
tially the solvent, is significantly less viscous than
the bulk fluid, and hence acts as a lubricant to the
flow. A good example is blood flow in the microvas-
culature. The presence of a cell-free layer near the
vessel wall contributes to the lowering of effective
viscosity in the blood flow through a microvessel, a
phenomenon known as the F̊ahræus–Lindqvist ef-
fect [2].

The notion of a depletion layer is also used to ac-
count for dewetting phenomena leading to slip on
a hydrophobic surface [3]. In modeling flow over
a hydrophobic surface, it is often postulated that
the bulk liquid is separated from the surface by a
gas layer (e.g., see Vinogradova [4]; de Gennes [5];
Busse et al. [6]). Given the high ratio of viscosity
between liquid and gas, even a very thin gas layer
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may result in appreciable slip. In most cases, the
slip is adequately described by the Navier slip con-
dition, which states that the slip on a boundary
is proportional to the near-boundary shear stress.
For Newtonian fluids, this slip condition amounts
to relating the velocity slip to the velocity gradi-
ent times a slip length. The slip length λ due to
a near-wall gas “cushion” layer has been found by
Vinogradova [4] to be the thickness of the gas layer
d multiplied by the ratio of the bulk-fluid viscosity
µc to the gas viscosity µd, or λ = d(µc/µd).

Vinogradova’s formula forms a simple yet useful
basis to estimate the extent of intrinsic slip achiev-
able on a surface. This formula, while valid in
steady flow, is yet to be tested for its applicabil-
ity to unsteady flow or flow in a non-inertial frame
of reference. The interaction of surface slip and
system rotation has been investigated by Wang [7],
who applied the Navier slip condition with the same
slip length to both the longitudinal and transverse
flows in a rotating channel. Since the primary and
secondary flows in a rotating system are interdepen-
dent, it remains to be confirmed whether the Navier
slip condition in its usual form is applicable in a ro-
tating frame of reference. This has motivated us to
formulate the present problem in order to address
this issue.

The present study is to look into two-fluid flow
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in a rotating environment (e.g., in a centrifuge).
The two-fluid model, which assumes a homogeneous
fluid core bounded by a fluid periphery of lower vis-
cosity, has been applied by many to blood flow or
flow of complex fluids. The same flow configura-
tion as was examined by Wang [7], namely pressure-
driven flow between two infinite parallel flat plates
that rotate as a system about an axis perpendicular
to the plates, is considered here. The specific ob-
jectives are as follows. First, based on the two-fluid
model, we shall deduce the Navier slip length in
the limit of a very thin depletion layer. We shall
show that the slip length at its leading order is
indeed equal to the one using Vinogradova’s for-
mula, irrespective of the channel rotation. At a
higher order, the slip length is, however, a func-
tion of a complex rotation parameter. A complex
slip length means that the velocity slip in one di-
rection depends not only on the velocity gradient in
the same direction but also on that in a normal di-
rection. The slip length thereby becomes direction
dependent. Second, we shall find out how lubrica-
tion due to a depletion layer is modulated by the
channel rotation. We shall show that the primary
and secondary flows may have disparate traits of
dependence on the thickness of the depletion layer
and the viscosity ratio. Third, we shall examine
the F̊ahræus–Lindqvist effect in a rotating environ-
ment. We shall show that this effect can be less-
ened, or even reversed, under the effect of system
rotation.

2. Problem and solution

Figure 1 shows pressure-driven flow through a
rotating parallel-plate channel of height 2h. The
channel cross section can be divided into a core re-
gion of thickness 2(h − d) and a low-viscosity de-
pletion layer of thickness d near each of the two
walls. Let (u, v, w) be the velocity components
in the Cartesian directions (x, y, z), respectively,
where the coordinate system rotates at a constant
angular velocity Ω about the z-axis. We assume
that the channel is so long and wide that the flow
does not vary in the x- and y-directions. It follows
that w = 0, and u and v are functions of z only. By
symmetry, it suffices for us to consider the upper
half of the channel: 0 ≤ z ≤ h.

The flow is primarily driven by a pressure gradi-
ent K = −dp/dx in the axial x-direction, while sec-
ondary flow is induced in the transverse y-direction
by the Coriolis force. The momentum equations

Ω
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d
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Depletion layer
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z
z = h

Figure 1: Definition sketch of the problem: Poiseuille flow
through a rotating parallel-plate channel of height 2h, with
a near-wall depletion layer of thickness d. The pressure gra-
dient is applied in the x-direction, which is pointing out of
the plane of the paper. The system rotates at a constant
angular velocity Ω about the z-axis.

are as follows, where the fluid density and dynamic
viscosity are denoted by ρ and µ, respectively.

In the core region (0 ≤ z < h − d):

− 2ρcΩvc = K + µc
d2uc

dz2
, (1)

2ρcΩuc = µc
d2vc

dz2
. (2)

In the depletion layer (h − d < z ≤ h):

− 2ρdΩvd = K + µd
d2ud

dz2
, (3)

2ρdΩud = µd
d2vd

dz2
. (4)

We use the suffixes “c” and “d” to distinguish be-
tween variables of the core region and the depletion
layer. The boundary and matching conditions are

u′

c = v′c = 0 at z = 0, (5)

uc = ud, vc = vd,
µcu

′

c = µdu
′

d, µcv
′

c = µdv
′

d

}

at z = h − d, (6)

ud = vd = 0 at z = h. (7)

Let us introduce the following normalized vari-
ables (distinguished by carets):

(û, v̂) = (u, v) /U,
(

ẑ, d̂
)

= (z, d)/h,

Ω̂c = ρch
2Ω/µc, Ω̂d = ρdh

2Ω/µd,

}

(8)

where the characteristic velocity scale U ≡ Kh2/µc.
In terms of these normalized variables, the momen-
tum equations can be written in the following non-
dimensional form.
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For 0 ≤ ẑ < 1 − d̂:

− 2Ω̂cv̂c = 1 +
d2ûc

dẑ2
, (9)

2Ω̂cûc =
d2v̂c

dẑ2
. (10)

For 1 − d̂ < ẑ ≤ 1:

− 2Ω̂dv̂d = κ +
d2ûd

dẑ2
, (11)

2Ω̂dûd =
d2v̂d

dẑ2
, (12)

where κ ≡ µc/µd is the ratio of the viscosities.
Further introducing

φc = ûc + iv̂c, φd = ûd + iv̂d, (13)

where i =
√
−1 is the complex unit, the equations

above can be consolidated into

φ′′

c − σ2
cφc = −1 (0 ≤ ẑ < 1 − d̂), (14)

φ′′

d − σ2
dφd = −κ (1 − d̂ < ẑ ≤ 1), (15)

where

(σc, σd) = (1 + i)

(
√

Ω̂c,

√

Ω̂d

)

. (16)

These functions are to satisfy φ′

c(0) = 0, φd(1) =

0, φc(1 − d̂) = φd(1 − d̂) and κφ′

c(1 − d̂) =

φ′

d(1 − d̂). The solutions that satisfy these bound-
ary/matching conditions are readily found as below.

For flow in the core region (0 ≤ ẑ < 1 − d̂),

φc(ẑ) = c1 cosh (σcẑ) + σ−2
c , (17)

and for flow in the depletion layer (1 − d̂ ≤ ẑ ≤ 1),

φd(ẑ) = c2 sinh [σd(1 − ẑ)]

+ κσ−2
d {1 − cosh [σd(1 − ẑ)]} , (18)

where

c1 = c−1
3

{

−σdσ
−2
c cosh(σdd̂)

+ κσ−1
d

[

cosh(σdd̂) − 1
]}

, (19)

c2 = c−1
3

{

κσc sinh[σc(1 − d̂)]

×
[

σ−2
c + κσ−2

d [cosh(σdd̂) − 1]
]

+ κσ−1
d cosh[σc(1 − d̂)] sinh(σdd̂)

}

, (20)

and

c3 = σd cosh(σdd̂) cosh[σc(1 − d̂)]

+ κσc sinh(σdd̂) sinh[σc(1 − d̂)]. (21)

The volume flow rates in the core region and the
depletion layer are then given by

Qc = Qcx + iQcy

= 2

∫ 1−d̂

0

φcdẑ

= 2c1σ
−1
c sinh[σc(1 − d̂)]

+ 2σ−2
c (1 − d̂), (22)

Qd = Qdx + iQdy

= 2

∫ 1

1−d̂

φddẑ

= 2c2σ
−1
d

[

cosh(σdd̂) − 1
]

+ 2κσ−2
d

[

d̂ − σ−1
d sinh(σdd̂)

]

. (23)

3. Navier slip length as d̂ � 1

We here consider the limiting case of a very thin
depletion layer, the action of which on the core re-
gion thereby reduces to a Navier boundary slip con-
dition.

3.1. Non-rotating channel

Let us first consider the case of a non-rotating
channel: Ω = 0 or σc = σd = 0, by which the
solutions derived above will reduce to

ûc = 1
2

[

(1 − d̂)2 − ẑ2 + κ(2d̂ − d̂2)
]

,

v̂c = 0,

}

(24)

ûd =
κ

2

(

1 − ẑ2
)

, v̂d = 0. (25)

On the interface ẑ = 1 − d̂, the core fluid velocity
and velocity gradient are

ûc = κd̂
(

1 − d̂/2
)

, û′

c = −(1 − d̂), (26)

from which we may form a Navier slip condition

ûc = −λ0û
′

c on ẑ = 1 − d̂, (27)

where λ0 is the slip length is given by

λ0 =
κd̂

(

1 − d̂/2
)

1 − d̂
. (28)

3



For a very thin depletion layer d̂ � 1, the slip length
approximates to

λ0 ∼ κd̂(1 + d̂/2 + · · ·), d̂ � 1. (29)

At the leading order, the slip length is equal to
the thickness of the depletion layer multiplied by

the viscosity ratio: λ
(1)
0 = κd̂. This accords with

Vinogradova’s [4] formula.

3.2. Rotating channel

Assuming that |σd| = O(1) so that |σdd̂| � 1, we
may simplify the constant c1 in Eq. (19) to

c1 ≈ (−1 + κσ2
c d̂

2/2)sech[σc(1 − d̂)]

σ2
c{1 + σc tanh[σc(1 − d̂)]κd̂}

, (30)

where the error is O(σdd̂)3. Then, the velocity and
velocity gradient of the core fluid on the interface
ẑ = 1 − d̂ are

φc|1−d̂ ∼ κd̂{tanh[σc(1 − d̂)] + σcd̂/2}
σc{1 + σc tanh[σc(1 − d̂)]κd̂}

, (31)

φ′

c|1−d̂ ∼ (−1 + κσ2
c d̂2/2) tanh[σc(1 − d̂)]

σc{1 + σc tanh[σc(1 − d̂)]κd̂}
, (32)

from which a Navier slip condition is obtained as
follows:

φc = −λφ′

c on ẑ = 1 − d̂, (33)

where the slip length

λ ∼ κd̂[1 + σc coth(σc)d̂/2 + · · ·], d̂ � 1. (34)

Remarkably, the slip length at the leading order is
the same as that when the channel is non-rotating:

λ(1) = λ
(1)
0 = κd̂, (35)

which is a real quantity, implying that the velocity
slip in one direction is related only to the velocity
gradient in the same direction. At the next order,
the slip length is

λ(2) = σc coth(σc)κd̂2/2, (36)

which is a function of the complex rotation param-
eter σc. A complex slip length means that the ve-
locity slip in one direction is correlated not only to
the velocity gradient in the same direction but also

to that in the normal direction. This can be man-
ifested by writing Eqs. (33) and (34) in a matrix
form:

(

ûc

v̂c

)

= −
(

λr −λi

λi λr

)(

û′

c

v̂′c

)

on ẑ = 1 − d̂, (37)

where λr and λi are the real and imaginary parts
of λ given by

λr = κd̂

{

1

+
d̂
√

Ω̂c

[

sinh(2
√

Ω̂c) + sin(2
√

Ω̂c)
]

2
[

cosh(2
√

Ω̂c) − cos(2
√

Ω̂c)
]

}

, (38)

λi =
κd̂2

√

Ω̂c

[

sinh(2
√

Ω̂c) − sin(2
√

Ω̂c)
]

2
[

cosh(2
√

Ω̂c) − cos(2
√

Ω̂c)
] .(39)

4. Lubricated rotating flow

We next look into how the core fluid flow is lubri-
cated by the depletion layer in a rotating channel.
The lubricating effect is expected to be appreciable
only when κd̂ ≥ O(1). Hence, for a very thin deple-

tion layer d̂ � 1, the effect is significant only when
the viscosity ratio κ ∼ d̂−1 � 1.

In Fig. 2, we show how the flow rates of the core
fluid may change with the rotation parameter Ω̂c

under the lubricating effect of a thin depletion layer
d̂ � 1, where κ = 100 and Ω̂d = Ω̂c. Figure 2(a)
shows that the longitudinal flow rate Qcx will de-
crease monotonically with the rotation rate. The
lubrication is to increase Qcx at low rotation, but
is to decrease Qcx at high rotation. Figure 2(b)
shows that the induced transverse flow rate Qcy will
change non-monotonically with the rotation rate;
the flow rate is the maximum in magnitude at an
optimum rotation rate, the value of which decreases
as d̂ increases. The lubrication is always to increase
the magnitude of Qcy, where the effect is the most

pronounced for Ω̂c < 0.5. The trends shown in Figs.
2(a, b) are qualitatively the same as those shown in
Figs. 4(a, b) of Wang [7], who studied effect of slip
in rotating channel flow.

We further show in Figs. 2(c, d) the magnitude
and direction of the resultant flow rate: |Qc| =
(Q2

cx + Q2
cy)1/2 and θ = tan−1(Qcy/Qcx), as func-

tions of Ω̂c and d̂. The lubrication is always to
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Figure 2: Flow rates: (a) Qcx; (b) Qcy; (c) |Qc|; and resul-

tant flow direction: (d) θ, as functions of Ω̂c and d̂, where

κ = 100 and Ω̂d = Ω̂c .

enhance the resultant volume transport through
the channel, but the enhancing effect is appreciable
only at low rotation rates. The lubrication loses
much of its effect as Ω̂c exceeds 1. Also, as the ro-
tation rate increases, the resultant flow is shifted
toward the negative transverse direction. Such a
tendency of the flow to turn from the axial to the
transverse directions is intensified under the lubri-
cation effect.

Increasing the depletion layer thickness d̂ leads
to two opposite effects on the flow rate. One is to
increase the lubricating effect, while another is to
decrease the sectional area of the core region. This
explains why there always exists an optimum thick-
ness of the depletion layer d̂optm at which the flow
rate is the maximum [6]. We show in Fig. 3 how the

flow rates may change with d̂, for various values of
κ, and Ω̂c = Ω̂d = 1. Indeed, for any viscosity ratio
κ > 1, the flow rates, Qcx, Qcy or |Qc|, will first
increase in magnitude, reaching a maximum, and
then decrease in magnitude, as d̂ increases. The op-
timum d̂ for Qcx is smaller than that for Qcy. Also,
for κ � 1, Qcx may decrease very sharply from the
peak when the optimum d̂ is exceeded. We show in
the inset of Fig. 3(c) the optimum depletion layer

thickness d̂optm, which gives rise to the maximum
|Qc|, as a function of the viscosity ratio κ. It is seen
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Figure 3: Flow rates: (a) Qcx; (b) Qcy; (c) |Qc|; and re-

sultant flow direction: (d) θ, as functions of d̂ and κ, where

Ω̂c = Ω̂d = 1. Inset of (c): optimum thickness of the deple-

tion layer d̂optm as a function of κ.

that d̂optm has a peak value of approximately 0.2 at

κ = 2.7. For κ > 20, d̂optm diminishes to 0.1 or
smaller. Therefore, if the viscosity ratio is high, a
thin depletion layer is desirable. From Figs. 3(c, d),
we see that for κ = 100 the resultant flow rate |Qc|
increases abruptly toward the peak, while the flow
direction θ changes sharply toward −90◦, when d̂ is
slightly increased from zero.

5. F̊ahræus–Lindqvist effect in a rotating

channel

The F̊ahræus–Lindqvist effect [2] refers to the
phenomenon of a decreasing effective viscosity of
blood traveling through a capillary tube as the
tube’s diameter decreases. This is essentially due
to the fact that the red blood cells move mainly in
the core part of the vessel, leaving a cell-free plasma
layer near the wall of the vessel. The decrease of the
effective viscosity was found to be most pronounced
for a tube diameter less than 0.3 mm.

Let us now examine this effect in a rotating chan-
nel by considering whole blood occupying the core
region and plasma occupying the depletion layer.
We shall adopt the following commonly used values
(e.g., see Ethier and Simmons [8]) for the properties
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of blood: viscosity of whole blood = 3.5 cP, viscos-
ity of plasma = 1.3 cP, density of whole blood =
1060 kg/m3, and density of plasma = 1025 kg/m3.
Based on these values, we get Ω̂d = 2.6Ω̂c and
κ = 2.7.

Since flow rate in Poiseuille flow is inversely pro-
portional to viscosity, we may define an effective
viscosity, which has different components (ηx, ηy)
in the two directions, according to a ratio of the
flow rates as follows:

ηx =
Qx

Qcx + Qdx
, ηy =

Qy

Qcy + Qdy
, (40)

where

Q = Qx + iQy =
2

σ2
c

[

1 − tanh(σc)

σc

]

(41)

is the flow rate if the channel were entirely occupied
by the core fluid. As expected, the plasma, which is
less viscous than whole blood, will act as a lubricant
to the blood flow, and hence the effective viscosity is
less than unity and should decrease as the fraction
of the sectional area occupied by the plasma layer
increases. This is the main reason for the F̊ahræus–
Lindqvist effect. In a rotating channel, the same
cause may not result in the same effect, however.
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Figure 4: Effective viscosities: (a) ηx; (b) ηy , as functions of

d̂ and Ω̂c, and (c) the critical plasma layer thickness d̂crit as

a function of Ω̂c, where κ = 2.7 and Ω̂d = 2.6Ω̂c.

We show in Figs. 4(a, b) the effective viscosi-

ties (ηx, ηy) as functions of d̂ and Ω̂c. When the

channel is static (Ω̂c = 0), ηx is always less than
unity and decreases monotonically as the plasma
layer thickness increases, which is consistent with
the observed F̊ahræus–Lindqvist effect. When the
channel is rotating, the effective viscosity may ex-
hibit disparate traits of dependence on the plasma
layer thickness, depending on the rotation rate and
the flow direction. For small Ω̂c and d̂, the ef-
fect is still seen, in either direction. At Ω̂c = 1,
ηx is less than unity until the plasma layer thick-
ness reaches a critical value d̂crit = 0.2854, be-
yond which ηx becomes larger than unity. Here,
d̂crit > 0 is the critical plasma layer thickness at
which ηx = 1. The F̊ahræus–Lindqvist effect is ob-
served/reversed when d̂ is smaller/larger than d̂crit,
respectively. In Fig. 4(c), the critical plasma layer

thickness d̂crit is shown as a function of Ω̂c. We have
found that d̂crit diminishes to zero at Ω̂c = 2.4675.
This means that, for Ω̂c > 2.4675 and d̂ > 0, the
effective viscosity in the longitudinal direction ηx

is always larger than unity and can get larger as
d̂ increases. The F̊ahræus–Lindqvist effect will be
completely reversed at high rotation rates in the di-
rection where the pressure gradient is applied. In
the transverse direction, while the effective viscos-
ity ηy remains less than unity for any d̂ and Ω̂c, its
magnitude decreases as the rotation rate increases.
We may infer from these results that the F̊ahræus–
Lindqvist effect is lessened or may even be reversed
in a rotating channel.

Let us gain some further insights into the prob-
lem by examining how the velocity profiles may
change in character under the effect of rotation.
Figures 5(a, b) show that, under a low rotation
rate Ω̂c = 0.3, the core fluid flow in either direc-
tion, which keeps a nearly parabolic profile, will in-
crease in magnitude as d̂ increases. In this case, the
viscous force dominates across the core layer, and
hence the lubricating effect due to the depletion
layer remains influential. To the contrary, when
under a higher rotation rate Ω̂c = 3, the longitu-
dinal velocity in the core region will decrease as
d̂ increases. An explanation for this opposite ef-
fect is as follows. At high rotation, the viscous ef-
fect is limited to a thin layer, the so-called Ekman
layer, near the wall. If the depletion layer is thick
enough, much of the viscous effect will be confined
to this layer, leaving the core region nearly invis-
cid. Such an inviscid core in rotating flow is known
as a geostrophic core, which can be formally shown
to have a uniform velocity profile (e.g., see Ped-
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Figure 5: Velocity profiles for a low rotation rate Ω̂c = 0.3:
(a) û(ẑ); (b) v̂(ẑ), as functions of d̂, where κ = 2.7 and

Ω̂d = 2.6Ω̂c. Velocity profiles for a high rotation rate Ω̂c = 3:
(c) û(ẑ); (d) v̂(ẑ), as functions of d̂, where κ = 2.7 and

Ω̂d = 2.6Ω̂c.

losky [9]). Such a tendency to attain a uniform
core flow will inevitably result in a diminished ax-
ial velocity in the core, owing to a weakened viscous
force in this region, as can be inferred from Eqs. (9)
and (10). This also explains why lubrication due to
a depletion layer will increasingly lose its effect as
the rotational speed of the channel increases.

6. Concluding remarks

We have found that when the depletion layer is
much thinner than the channel height, its lubricat-
ing action on fluid flow in a rotating channel is
describable at the leading order by the same slip
length as if the channel were non-rotating. When
the depletion layer is finite in thickness, the slip
length becomes a complex function of the system
rotation, the thickness of the depletion layer, and
the viscosity ratio. A complex slip length implies
that the velocity slip depends not only on the ve-
locity shear in the same direction but also on that
in the perpendicular direction. This is a manifes-
tation of the interdependence of the primary and
secondary flows in a rotating channel. We have also
found that as the rotation rate increases, the resul-
tant flow will be more directed toward the trans-

verse direction, while the lubricating effect due to
the depletion layer diminishes. At a fixed rotation
rate, the optimum depletion layer thickness corre-
sponding to the maximum resultant flow rate has
been found as a function of the viscosity ratio. Fi-
nally, we have explained, in terms of a geostrophic
inviscid core in the limit of high rotation, why the
F̊ahræus–Lindqvist effect is lessened or may even
be reversed in a fast rotating channel. There ex-
ists a limiting frequency above which the F̊ahræus–
Lindqvist effect is always reversed in the axial direc-
tion for any d̂ > 0. Below this limiting frequency,
the F̊ahræus–Lindqvist effect is reversed in the ax-
ial direction only when d̂ is larger than a critical
value.
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