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Abstract. We present an iterative algorithm, called the symmetric tensor eigen-rank-one itera-
tive decomposition (STEROID), for decomposing a symmetric tensor into a real linear combination
of symmetric rank-1 unit-norm outer factors using only eigendecompositions and least-squares fitting.
Originally designed for a symmetric tensor with an order being a power of two, STEROID is shown to
be applicable to any order through an innovative tensor embedding technique. Numerical examples
demonstrate the high efficiency and accuracy of the proposed scheme even for large scale problems.
Furthermore, we show how STEROID readily solves a problem in nonlinear block-structured system
identification and nonlinear state-space identification.
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1. Introduction. Symmetric tensors arise naturally in various engineering prob-
lems. They are especially important in the problem of blind identification of under-
determined mixtures [6, 9, 7]. Applications of this problem are found in areas such as
speech, mobile communications, biomedical engineering and chemometrics.

The main contribution of this paper is an algorithm, called the Symmetric Tensor
Eigen-Rank-One Iterative Decomposition (STEROID), that decomposes a real sym-
metric tensor A into a linear combination of symmetric unit-norm rank-1 tensors

A = l1 x1 ◦ x1 ◦ . . . ◦ x1 + . . .+ lR xR ◦ xR ◦ . . . ◦ xR,
= l1 x

d
1 + . . .+ lR x

d
R,(1.1)

with l1, . . . , lR ∈ R and x1, . . . , xR ∈ Rn. The reality of the scalar coefficients l1, . . . , lR
is of particular importance in the nonlinear system identification algorithm presented
in Section 5. The ◦ operation refers to the outer product, which we define in Section
1.1. The notation xdi (i = 1, . . . , R) denotes the d-times repeated outer product. In
contrast to other iterative methods, STEROID does not require any initial guess and,
as shown in Section 4, can handle large symmetric tensors. The minimal R = Rmin

that satisfies (1.1) is called the symmetric rank of A. More information on the rank of
tensors can be found in [14, 18] and specifically for symmetric tensors in [5]. The main
idea of the algorithm is to first compute a set of vectors x1, . . . , xR (R ≥ Rmin) through
repeated eigendecompositions of symmetric matrices. The coefficients l1, . . . , lR are
then found from solving a least-squares problem. STEROID was originally developed
for symmetric tensors with an order that is a power of 2. It is however perfectly
possible to extend the applicability of the STEROID algorithm to symmetric tensors
of arbitrary order by means of an embedding procedure, which we explain in Section
2.2.

In [2] an algorithm is described that decomposes a symmetric tensor over C using
methods from algebraic geometry. This involves computing the eigenvalues of com-
muting matrices and as a consequence, the l coefficients obtained from this method
are generally complex numbers. Most attention in the literature is spent in solving the
low-rank (typically rank-1) approximation problem. This problem can be formulated
as follows.
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Problem 1. Given a dth-order symmetric tensor A ∈ Rn×···×n and a multilin-
ear rank r, find an orthogonal n × r matrix U and a core tensor S ∈ Rr×···×r that
minimizes the Frobenius norm

||A − S ×1 U ×2 U ×3 · · · ×d U ||F ,

where ×i denotes the ith-mode product.
Note that the Tucker form S ×1 U ×2 U ×3 · · · ×d U is intrinsically different

from (1.1), since it will also contain rank-1 terms that are not symmetric. This
implies that it is not very meaningful to compare the number of rank-1 terms from the
Tucker form with the number of terms computed by STEROID. Algorithms designed
specifically for finding rank-1 solutions to Problem 1 are the symmetric higher-order
power method (S-HOPM) [13, 23] and the shifted version of S-HOPM (SS-HOPM)
[16, 17]. General low-rank algorithms are the Quasi-Newton algorithm [25], the Jacobi
algorithm [12] and the monotonically convergent algorithm described in [22].

Another common decomposition is the canonical tensor decomposition/parallel
factors (CANDECOMP/PARAFAC) [3, 15]. This decomposition expresses a tensor
as the sum of a finite number of rank-1 tensors. The tensor rank can then be de-
fined as the minimum number of required rank-1 terms. Running a CANDECOMP
algorithm such as Alternating Least Squares (ALS) on a symmetric tensor does not
guarantee the symmetry of the rank-1 tensors. Other iterative methods [27], using
nonlinear optimization methods, are able to guarantee the symmetry of the rank-1
terms. These methods however require the need for an initial guess and the num-
ber of computed terms also needs to be decided by the user beforehand. This is the
main motivation for the development of the STEROID algorithm. STEROID is an
adaptation for symmetric tensors of our earlier developed Tensor Train rank-1 SVD
(TTr1SVD) algorithm [1], which in turn was inspired by Tensor Trains [19], and was
an independent derivation of PARATREE [24]. In contrast to the iterative methods
mentioned above, the STEROID algorithm does not require an initial guess and the
total number of terms in the decomposition follows readily from the execution of the
algorithm.

The outline of this paper is as follows. First, we define some basic notations in
Section 1.1. In Section 2 we fully describe our algorithm by means of a running exam-
ple, together with the required embedding procedure. Two methods for the reduction
of the size of the least-squares problem in the STEROID algorithm are discussed in
Section 3. One method exploits the symmetry of the tensor, while the other method
exploits the structure of the matrix in the least-squares problem. The algorithm is
applied to several examples in Section 4 and compared with the Jacobi algorithm [12],
Regalia’s iterative method described in [22] and the CANDECOMP-algorithm from
the Tensorlab toolbox [27]. In Section 5 we show how STEROID readily solves a prob-
lem in nonlinear block-structured system identification [10] and nonlinear state-space
identification [20]. In this setting, it is often desired to recover the internal structure
of an identified static nonlinear mapping [26, 29, 31]. More specifically, it will be
shown how STEROID can decouple a set of multivariate polynomials f1, . . . , fl into
a collection of univariate polynomials g1, . . . , gn, through both an affine and linear
transformation.

1.1. Tensor Notations and Basics. We will adopt the following notational
conventions. A dth-order or d-way tensor, assumed real throughout this article, is a
multi-dimensional array A ∈ Rn1×n2×...×nd with elements Ai1i2...id that can be seen as
an extension of the matrix format to its general dth-order counterpart. Although the
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wordings ‘order’ and ‘dimension’ seem to be interchangeable in the tensor community,
we prefer to call the number of indices ik (k = 1, . . . , d) the order of the tensor, while
the maximal value nk (k = 1, . . . , d) associated with each index the dimension. A
cubical tensor is a tensor for which n1 = n2 = . . . = nd = n. The inner product
between two tensors A,B ∈ Rn1×...×nd is defined as

〈A,B〉 =
∑

i1,i2,...,id

Ai1i2...id Bi1i2...id .

The norm of a tensor is often taken to be the Frobenius norm ||A||F = 〈A,A〉1/2. A
3rd-order rank-1 tensor A can always be written as the outer product [15]

A = λ a ◦ b ◦ c with components Ai1i2i3 = λ ai1 bi2 ci3

with λ ∈ R whereas a, b and c are vectors of arbitrary lengths as demonstrated in
Figure 1.1. Similarly, any d-way tensor of rank 1 can be written as an outer product
of d vectors.

a

b

c

Fig. 1.1. The outer product of 3 vectors a, b, c of arbitrary lengths forming a rank-1 tensor.

We will only consider symmetric tensors in this article. A tensor A is symmetric
if Ai1...id = Aπ(i1...id), where π(i1 . . . id) is any permutation of the indices i1 . . . id. A
rank-1 symmetric d-way tensor A is then given by the d-times repeated outer product
A = λ a◦a◦ . . .◦a , λad. The vectorization of a tensor A, denoted vec (A) ∈ Rn1···nd ,
is the vector obtained from taking all indices together into one mode. This implies
that for a symmetrical rank-1 tensor A, its vectorization is

vec (A) = λ a⊗ a⊗ . . .⊗ a = λ a d©,

where we have introduced the shorthand notation a d© for the d-times repeated Kro-
necker product ⊗. Using the vectorization operation we can write (1.1) as

(1.2) vec (A) = λ1 x1
d© + . . .+ λR xR

d©,

or equivalently as

vec (A) = X l,

where X is the matrix that is formed by the concatenation of all the x1
d©, . . . , xR

d©

vectors and l ∈ RR. In other words, the vectorization of a symmetric tensor A lives in
the range of X, which is spanned by vectors xi

d©. This requirement puts the known
constraint [5] on the rank of X

rank(X) ≤ Rmax ,

(
d+ n− 1

n− 1

)
,
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for which we give a short proof in Lemma 2.1. The inverse vectorization operation
unvec reshapes a vectorized tensor back into a tensor A = unvec (vec (A)).

2. Symmetric Tensor Eigen-Rank-One Iterative Decomposition.

2.1. Main Algorithm. We now demonstrate the STEROID algorithm that de-
composes a symmetric tensor into a real finite sum of symmetric rank-one outer factors
by means of a 4-way tensor. Later on, we then show that STEROID is applicable
to any tensor order via an innovative tensor embedding technique. The first step in
the STEROID algorithm is to reshape the (4-way) symmetric A ∈ Rn×n×n×n into

a 2-way symmetric matrix A(n2×n2), where the bracketed superscript indicates the
dimensions. The symmetry of the reshaped A follows trivially from the symmetry of
A. Now the eigendecomposition of A can be computed, which allows us to write

(2.1) A =

n2∑
i=1

λi vi ◦ vi =

n2∑
i=1

λi vi v
T
i .

The symmetry of A implies that the eigenvalues λi are real and the eigenvectors vi will
be orthonormal. Both eigenvalues and eigenvectors can be computed by for example
the symmetric QR algorithm or the divide-and-conquer method [11]. Each of these

eigenvectors vi can now be reshaped into another 2-way symmetric matrix v̄
(n×n)
i . It

is readily shown that the v̄i vectors are also symmetric. Specifically, the symmetry of
A implies that we can write

(2.2) AP = A,

where P is any permutation matrix that permutes the indices i d
2+1 . . . id. Using the

eigendecomposition of A, we can rewrite (2.2) as

(2.3) (λ1 v1v
T
1 + . . .+ λn2 vn2vTn2)P = (λ1 v1v

T
1 + . . .+ λn2 vn2vTn2).

Left-multiplying (2.3) with the eigenvector vTi (i = 1, . . . , n2) of the ith term, assuming
λi 6= 0, we obtain

vTi (λ1 v1v
T
1 + . . .+ λn2 vn2vTn2)P = vTi (λ1 v1v

T
1 + . . .+ λn2 vn2vTn2),

⇔ λiv
T
i P = λiv

T
i ,

⇔ vTi P = vTi ,

which implies that any of the eigenvectors vi (i = 1, . . . , n2) and consequently their
reshaped v̄i inhibit the same symmetry as A. The eigendecomposition of each of the
symmetric v̄i’s can now also be computed. For example, v̄1 can then be written as

v̄1 =

n∑
i=1

λ1i v1i ◦ v1i,

where the v1i’s are again orthogonal due to the symmetry of v̄1. The whole procedure
of repeated eigendecompositions of the reshaped eigenvectors for a d = 4, n = 2
example is depicted in Figure 2.1.

Referring to Figure 2.1, we now take the kth term of (2.1) and vectorize it to
obtain

vec (λkvkv
T
k ) = λkvk

2©.
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Fig. 2.1. Successive decompositions of the reshaped A(n2×n2) for the specific case of n = 2.
Note that v̄i’s are always symmetric due to the 4-way symmetry.

Substitution of vk by its eigendecomposition allows us to write

λkvk
2© =λk

(
λk1vk1

2© + λk2vk2
2©)⊗ (λk1vk1 2© + λk2vk2

2©)
=λkλ

2
k1vk1

4© + λkλ
2
k2vk2

4©︸ ︷︷ ︸
hk

+λkλk1λk2
(
vk1

2© ⊗ vk2 2© + vk2
2© ⊗ vk1 2©)︸ ︷︷ ︸

tk

(2.4)

where hk denotes the “head” part containing the pure powers vk1
4©, vk2

4© of vk1
and vk2, respectively, whereas tk denotes the “tail” holding the sum of cross terms.
Defining the head tensor H = unvec (

∑
k hk) and the tail tensor T = unvec (

∑
k tk),

it can be deduced that T = A − H must also be 4-way symmetric since A and H
are so. As we will explain further on, the symmetry of the tail tensor T is crucial,
since it is possible that repeated eigendecompositions of the reshapings of T are also
necessary in order to compute additional pure power vectors of the STEROID. The
objective now is to write vec(A) as a linear combination

vec (A) = l1x1
4© + . . .+ lRxR

4©.

Good candidates for the xi
4© vectors are the pure powers that span the head part

in (2.4). No pure power vectors should be considered that come from an eigenvector
with corresponding zero eigenvalue λk. Since each of the xi’s is an eigenvector of a
symmetric matrix, it also follows that ||xi 4©||F = 1. Checking whether a decomposi-
tion as in (1.2) exists is done by computing the residual of the following least-squares
problem

(2.5) l̂ = argmin
l
|| vec (A)−X l ||F ,

where X is the matrix obtained from the concatenation of all the obtained pure power
vectors xi

4©. It is possible at this step to solve (2.5) with additional constraints. For
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example, if only positive li’s are required then one could use a reflective Newton
method as described in [4]. A sparse solution l̂ with as few nonzero li’s as possible
can be computed using L1-regularization [28]. The particular repeated Kronecker
product structure for each column of X results in the following upper bound on its
rank.

Lemma 2.1. For the matrix X in the least-squares problem (2.5) we have that

rank (X) ≤ Rmax ,

(
d+ n− 1

n− 1

)
.

Proof. Each column of X corresponds with a vector xi
d©, with xi ∈ Rn. If we

label the entries of xi by xi1, . . . , xin then xi
d© contains all monomials of degree d in

n variables xi1, . . . , xin. For example, if d = 2 and n = 2, then

xi
2© =

(
xi1
xi2

)
⊗
(
xi1
xi2

)
=


x2i1

xi1xi2
xi2xi1
x2i2


contains all homogeneous monomials in 2 variables of degree 2. Then for i = 1, . . . , 4

X =


x211 x221 x231 x241

x11x12 x21x22 x31x32 x41x42
x12x11 x22x21 x32x31 x42x41
x212 x222 x232 x242


and has a rank of at most

(
2+2−1
2−1

)
= 3, since the second and the third row are

identical. For the general case there are
(
d+n−1
n−1

)
distinct homogeneous monomials of

degree d in n variables and hence the rank is upper bounded by Rmax.
Lemma 2.1 tells us that vec(A) of a symmetric tensorA lives in aRmax-dimensional

vector space. Therefore, instead of computing the STEROID, one could randomly
generate Rmax linearly independent vectors, construct their corresponding X matrix
and decompose vec(A) along this basis. However, a random basis will most likely
result in a decomposition with Rmax nonzero terms, while the STEROID results in a
more compact decomposition, as is illustrated in the following example.

Example 2.1. We construct the following symmetric tensor A = l1 a
4
1 + l2 a

4
2 +

l3 a
4
3 with l1, l2, l3 random real numbers and a1, a2, a3 real random 3×1 vectors. Since

d = 4, n = 3, vec(A) lives in a
(
4+3−1
3−1

)
= 15-dimensional vector space X . The

STEROID of A consists of 9 nonzero terms, while the decomposition with respect to a
random basis for X always generates 15 nonzero terms. Observe that the STEROID
is not a canonical symmetric rank-1 decomposition, since the symmetric rank is by
construction 3 while the STEROID consists of 9 terms.

From Lemma 2.1 we learn two things. First, it is possible that not enough pure
power vectors are computed to solve the least-squares problem (2.5). In this case the

residual || vec (A)−X l̂||F will not be satisfactory and the same procedure of reshap-
ings and eigendecompositions should be applied to the tail tensor T . This will produce
additional pure powers that can be used to extend X, upon which one can solve the
least-squares problem (2.5) again. Further iterations on the resulting tail tensor can
be applied until a satisfactory residual is obtained. The second thing we learn is
that it is also possible that X becomes singular as soon as it has more than

(
d+n−1
n−1

)
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columns. In this case it is recommended to regularize the least-squares problem such
that the obtained solution is not sensitive to perturbations of the tensor A. This can
be done by for example computing the minimum norm solution of (2.5). The whole
STEROID algorithm for tensors with d = 2k (k ∈ N) is summarized in pseudo-code
in Algorithm 2.1. Matlab/Octave implementations can be freely downloaded from
https://github.com/kbatseli/STEROID.

Algorithm 2.1. STEROID algorithm
Input: symmetric d-way tensor A with d = 2k, k ∈ N, tolerance τ
Output: pure power vectors xi, l̂

Ā ← reshape A into a nd/2 × nd/2 matrix
V1, D1 ← eig(Ā)
for all eigenvectors V1(:, i) with λi 6= 0 do

recursively reshape V1(:, i) and compute its eigendecomposition
end for
compute head tensor H from recursive eigendecompositions of A
T ← A
collect all pure powers into X
solve least-squares problem l̂ = argmin

l
|| vec (A)−X l||F

while || vec (A)−X l̂||2 > τ AND rank (X) < Rmax do
T ← T −H
add additional pure powers to X by recursive eigendecompositions of T
compute new head tensor H from recursive eigendecompositions of T
extend X with additional pure powers
solve least-squares problem l̂ = argmin

l
|| vec (A)−X l||F

end while

Every matrix from which an eigendecomposition is computed in Algorithm 2.1 is
symmetric. This implies that the computed eigenvalues are up to a sign equal to
the singular values. Hence the same kind of tolerance as for the singular values can
be used to determine whether any of the λi’s are numerically zero [11]. Note that a
user-defined tolerance τ is required to check whether additional iterations on the tail
tensor T are required.

The computational complexity of the method is dominated by the very first eigen-
decomposition of the nd/2 × nd/2 matrix A and by solving the least-squares problem
(2.5). The first eigendecomposition requires a tridiagonalization of A, which requires
8/3n3d/2 flops and dominates the cost. For the actual diagonalization, QR iterations
or the divide-and-conquer method can be used. The matrix X in the least-squares
problem also determines the computational cost. Its number of rows is nd and we can
assume its number of columns to be Rmax. Solving the least-squares problem with the
SVD of X then sets the maximal computational complexity to 2R2

max(nd −Rmax/3).
In Section 3 we discuss two ways in which the size of the least-squares problem can
be significantly reduced by exploiting the symmetry of A and the structure of X.

It is clear that the STEROID algorithm presented in Algorithm 2.1 only works
for symmetric tensors for which the order is a power of 2. Indeed, this is a necessary
requirement such that the recursive reshapings in the algorithm always lead to a
square symmetric matrix. Fortunately, by employing an embedding procedure one
can compute the STEROID of a symmetric tensor A of any order. We now discuss
this embedding procedure in the next section.

https://github.com/kbatseli/STEROID
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2.2. Tensor Embedding. The embedding procedure presented in this section
allows us to compute the STEROID for a symmetric tensor of an arbitrary order.
Algorithm 2.1 relies on the reshaping of the tensor into a square matrix and therefore
the order of the tensor should be divisible by two. If the order d is odd, then one can
embed the tensor into a symmetric tensor of order d+1, reshape it again into a square
matrix and continue Algorithm 2.1. We now illustrate the embedding procedure with
a 3-way symmetric tensor A of dimension 2 into a symmetric tensor B of order 4. Since
A is symmetric, it only has 4 distinct entries, viz. A111,A211(= A121 = A112),A221(=
A212 = A122),A222. The idea now is to consider A as the frontal “slice” of B in the
following straightforward manner

A111 ⇒ B1111,
A211 ⇒ B2111,
A221 ⇒ B2211,
A222 ⇒ B2221.

In order to make sure that B is symmetric, one needs to enforce the following equalities

B2111 = B1211 = B1121 = B1112,
B2211 = B2121 = B2112 = B1221 = B1212 = B1122,
B2221 = B2212 = B2122 = B1222.

All other entries of B, in this example B2222, can be set to zero. We now have a
symmetric B with Bi1i2i31 = Ai1i2i3 . The general embedding algorithm is presented
in pseudo-code in Algorithm 2.2.

Algorithm 2.2. symmetric tensor embedding algorithm
Input: symmetric d-way cubical tensor A with d an odd number
Output: symmetric d+ 1-way cubical tensor B with Bi1...id1 = Ai1...id .

initialize B with zeros
for all nonzero Ai1...id do
for all permutations π(i1 . . . id1) do
Bπ(i1...id1) ← Ai1...id

end for
end for

Using Algorithm 2.2, it now becomes possible to adjust the STEROID algorithm
such that it works for a symmetric tensor of any order. Indeed, if the order d is
odd, then application of Algorithm 2.2 guarantees that the new symmetric tensor
can be reshaped into a square matrix. Similarly, the obtained eigenvectors can be
embedded if necessary. The following example illustrates the STEROID algorithm
with embedding.

Example 2.2. Suppose we have a symmetric tensor A ∈ Rn×···×n of order d = 5.
Since d is odd, it is not possible to reshape A into a square matrix. Application of Al-
gorithm 2.2 returns a symmetric tensor B of order 6 such that Bi1...id1 = Ai1...id . The
tensor B is then reshaped into a symmetric n3 × n3 matrix and its eigendecomposi-
tion is computed. Each obtained eigenvector corresponding with a nonzero eigenvalue
can only be reshaped into a tensor of order 3, hence the embedding has to be ap-
plied again. One can then reshape each eigenvector into a symmetric n2 × n2 matrix
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and compute its eigendecomposition. Finally, the obtained eigenvectors corresponding
with a nonzero eigenvalue are reshaped into a symmetric n × n matrix and the final
eigendecomposition is computed, from which we obtain the pure power vectors.

3. Reducing the size of the least-squares problem. The scalar factors l in
the linear combination (1.1) are found as the solution of the least-squares problem

l̂ = argmin
l
|| vec (A)−X l||F .

Since each column of X is a xi
d© vector, the total number of rows is nd. The number

of columns of X is determined by the total number of nonzero eigenvalues in the
STEROID but is in practice much less than the number of rows. The feasibility
of solving the least-squares problem will therefore be largely determined by the nd

number of rows of the X matrix, requiring large amounts of memory. In this section
we discuss two effective methods to reduce the size of X and thus alleviate the memory
requirement. The first method exploits the symmetry ofA directly, the second method
exploits the structure of the X matrix to efficiently compute XT X.

3.1. Exploiting the symmetry of A. The symmetry of A implies that many
rows of X will be identical. In fact, only

(
d+n−1
n−1

)
rows are unique due to Lemma 2.1.

If S is the row selection matrix that selects the
(
d+n−1
n−1

)
unique rows from X then

(2.5) can be rewritten as the mathematically equivalent problem

(3.1) l̂ = argmin
l
||S vec (A)− S X l||F .

The number of rows of X are then reduced with a factor of

γ ,
nd(

d+n−1
n−1

) =
nd (n− 1)!

(d+ n− 1) · · · (d+ 1)
,

which grows exponential in d. Figure 3.1 demonstrates the reduction factor γ as a
function of n for different orders d. It can be seen that the reduction in number of
rows first increases exponentially for small n and then quickly ‘saturates’ to an almost
constant factor.

Although massive savings can be achieved by exploiting the symmetry of A, S X
still has

(
d+n−1
n−1

)
= dn−1/(n−1)!+O(dn−2) rows, which grows exponential in n. This

implies that even for moderate d, (2.5) will quickly become infeasible for increasing
n. In the next section we discuss how the size of the least-squares problem can be
further reduced by exploiting the particular structure of X. This will come, however,
at the cost of a squared condition number when solving (2.5).

3.2. Exploiting the structure of X. The matrix X is typically very thin, with
much more rows than columns. We assume in this section that X is of full column
rank. One straightforward way then to reduce the size of the matrix is to left-multiply
with XT to obtain

XT X l = XT vec(A).

Since X is of full column rank, l will be unique and XT X will be symmetric and
positive definite. This means that in addition to getting rid of the nd rows, only
half of the entries of XT X need to be stored. This comes at the cost of a squared
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Fig. 3.1. The reduction in number of rows of X as a function of n for different values of d.

condition number κ(XT X) = κ(X)2, where κ(X) denotes the condition number of
the matrix X.

The matrix XT X can also be constructed without explicitly constructing X,
what is to be avoided in the first place. Indeed, each column of X is a repeated
Kronecker product of a pure power vector xi

d©. Each element of XT X is therefore
an inner product xi

d© xj
d©, which can be rewritten as

xTi xj ⊗ xTi xj ⊗ . . .⊗ xTi xj = (xTi xj)
d.

This allows us to construct XT X without the explicit construction of X as described
in the following lemma.

Lemma 3.1. If V is the matrix that consists of the pure power vectors obtained
from the STEROID, then XT X is constructed from (V T V ).d, where .d denotes the
entrywise operation of raising to the power d.

4. Numerical examples. In this section we demonstrate the STEROID algo-
rithm on different examples. All examples were run in Matlab [21] on a 64-bit desktop
computer with 4 cores @ 3.30 GHZ and 16 GB of memory. The first example illus-
trates the different steps of the STEROID algorithm on a small symmetric tensor.
The second example illustrates the case where more than one STEROID iteration is
required to obtain the full decomposition. In Example 3, we demonstrate the impact
of the two methods to reduce the size of the least-squares problem on the residuals
and run times of the STEROID algorithm. Finally, we compare the STEROID al-
gorithm with the output of the Jacobi algorithm [12], Regalia’s iterative symmetric
tensor approximation algorithm [22] and the CANDECOMP algorithm from the Ten-
sorlab toolbox [27]. It is important to realize that in contrast to other methods, the
STEROID algorithm does not require any initial guess and, as illustrated in Example
3, can handle large problems.

4.1. Example 1: STEROID algorithm illustration on a 2 × 2 × 2 sym-
metric tensor. We first demonstrate the STEROID on a simple symmetric 3rd-order
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tensor

A111 = 24,A211 = 18,A221 = 12,A222 = 6,

which we first need to extend to a 4th-order symmetrical cubical tensor B using
Algorithm 2.2. The next step of the STEROID algorithm is to reshape B into the
following 4× 4 symmetric matrix

B =


24 18 18 12
18 12 12 6
18 12 12 6
12 6 6 0


and compute its eigendecomposition

B = V


−5.3939 0 0 0

0 −6.29× 10−15 0 0
0 0 2.64× 10−15 0
0 0 0 53.3939

 V T .

Since B has 2 eigenvalues that are numerically zero, we only need to proceed with
the eigenvectors V (:, 1) and V (:, 4), where we used MATLAB notation to denote the
first and fourth columns of V . Reshaping both V (:, 1) and V (:, 4) into a symmetric
2× 2 matrix and computing their eigendecomposition results in the following 4 pure
power vectors

x1 =

(
−0.9939
0.1103

)
, x2 =

(
−0.1103
−0.9939

)
, x3 =

(
−0.8396
−0.5431

)
, x4 =

(
0.5431
−0.8396

)
.

Solving the least-squares problem

l̂ = argmin
l
|| vec (A)−

(
x1

3© x2
3© x3

3© x4
3©) l||F ,

results in

l̂ =


3.9934
0.6922
−46.79
1.3916

 ,

with a residual of 1.8546 × 10−14. Observe that the total number of terms in the
computed decomposition equals the upper bound

(
3+2−1
2−1

)
= 4. The total run time to

compute the decomposition was 7.5× 10−4 seconds.
Another interesting example, that can be found in [5], is the symmetric tensor

defined by

A111 = −1,A221 = 1.

The STEROID algorithm computes the following decomposition

A = −2

(
1
0

) 3©

− 1.4142

(
−0.7071
0.7071

) 3©

+ 1.4142

(
0.7071
0.7071

) 3©

in 0.0012 seconds. This is the same decomposition as given in [5].
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4.2. Example 2: Second STEROID iteration on tail tensor T . Consider a
random symmetric tensorA ∈ R7×7×7×7 with integer entries between 24 and 100. The
STEROID algorithm returns 196 pure power vectors. The rank of X is upper bounded
by
(
4+7−1
7−1

)
= 210 and not surprisingly we have a residual of 70.2320, which indicates

that additional pure power vectors are required. Running Algorithm 2.1 on the tail
tensor T returns an additional 189 pure power vectors. Solving the least-squares
problem (2.5) with all 385 pure power vectors results in a residual of 1.49×10−11 and
167 nonzero entries in l. The upper bound of 210 on the rank of X, together with
the set of 385 pure power vectors implies that there is distinct non-uniqueness in the
decomposition.

4.3. Example 3: Comparison between original STEROID algorithm,
exploitation of symmetry and using XTX. For this numerical experiment six
random symmetric tensors with dimension n = 5 and orders d = 3 up to d = 8 were
generated. Columns two and three of Table 4.1 list the total number of computed
eigendecompositions and the total number of required embeddings for each value of
d in the STEROID computation. Columns four and five list the total run times in
seconds for computing all eigendecompositions and doing the tensor embeddings. The
rightmost column lists the total time required to compute the pure power xi vectors of
the STEROID and is the sum of the entries in the fourth and fifth column. From Table
4.1 it can be seen that, unless the order is a power of two, the main contribution in
the total time required to compute the pure power vectors comes from the embedding
procedure. The 35 embeddings for d = 6 take about half the amount of time as the 31
embedding for d = 5. This is explained by the fact that d = 5 requires 1 embedding
from order 5 to 6 and 30 embeddings from order 3 to 4, while for d = 6 there are 35
embeddings from order 3 to 4. Embedding a symmetric tensor from order 5 to order
6 is a much more time-consuming process than from order 3 to 4. The largest run
time is observed for d = 7, which requires only 1 embedding from order 7 to order 8.

Table 4.1
Number of eigendecompositions and embeddings and their respective total run times.

total number total number total time total time total time
of eigs of embeddings eigs embedding xi vectors

d [seconds] [seconds] [seconds]

3 11 1 0.0008 0.4091 0.4099

4 16 0 0.0012 0 0.0012

5 181 31 0.0392 19.5757 19.6149

6 386 35 0.0449 9.5274 9.5714

7 606 1 1.0092 458.3181 459.3273

8 1184 0 0.9643 0 0.9643

Once all xi vectors are computed, we solve the least-squares problem (2.5) in
three different ways: original (no reduction of the X matrix), symmetry (exploiting
the symmetry of A), XTX (computes XTX using Lemma 3.1). Table 4.2 lists the

residuals ||A−Xl̂||F and total run times in seconds for each of the three methods. The
residuals for the XTX method are only slightly worse than the other two methods
due to the squared condition number. This implies that the condition numbers of
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X were relatively small. The difference in run time is more pronounced for higher
orders. Most apparent is the saving with a factor of 6942 in run time between the
original and symmetry exploiting methods when d = 8. Exploiting the symmetry
reduces the total number of rows of X from 58 = 390625 down to

(
8+5−1
5−1

)
= 495.

This reduces X to a 495 × 5550 matrix of rank 495. Using the XT X method when
d = 8 reduces the run time with a factor 1174 but is clearly not as good as exploiting
the symmetry. The reason for this difference lies in the fact that 5550 pure power
vectors are computed and therefore XT X is a 5550× 5550 matrix, compared to the
495× 5550 matrix when symmetry is exploited.

Table 4.2
Residuals and run times for solving the least-squares problem (2.5).

d original symmetry XTX

||A −Xl̂||F run time ||A −Xl̂||F run time ||A −Xl̂||F run time
[seconds] [seconds] [seconds]

3 6.38e−15 0.0003 6.45e−15 0.0002 3.71e−14 0.0337
4 7.25e−14 0.0024 7.82e−15 0.0003 5.65e−13 0.0256
5 5.20e−13 0.3866 1.06e−14 0.0189 1.91e−12 0.0555
6 1.86e−12 8.5901 1.81e−14 0.0685 2.17e−11 0.2721
7 2.46e−11 186.5544 3.30e−14 0.6224 8.36e−12 1.9014
8 1.42e−10 13312.67 2.97e−14 1.9176 2.16e−10 11.338

4.4. Experiment 4: Comparison with other iterative methods. In this
numerical experiment, we apply the Jacobi [12], Regalia’s iterative symmetric ten-
sor approximation algorithm [22] and the CANDECOMP-algorithm of the Tensorlab
toolbox [27] to the symmetric tensors of Experiment 3. The Matlab implementation
of the Jacobi algorithm was provided by Dr. Mariya Ishteva. This Jacobi method
implementation only works for 3rd-order tensors. We implemented Regalia’s iterative
algorithm and confirmed its results with the numerical experiments described in [22].
The Tensorlab toolbox is freely available. For a given multilinear rank r, the Jacobi
and Regalia’s method return an orthogonal n×r matrix U and symmetric tensor core
S ∈ Rn×...×n that minimize ||A − S ×1 U ×2 · · · ×d U ||F . The maximal number of
columns of U is therefore limited to n. This implies that for a fully dense 3rd-order
core tensor S one will have 1, 4, 10, 20, 35 respective number of terms in the decompo-
sition for r = 1, 2, 3, 4, 5. Table 4.3 lists the total number of required iterations, the
residual and total run time for the Jacobi method applied for all possible values of r.
The initial orthogonal matrices to start the iterations were obtained from applying
a QR orthogonalization on a random n × r matrix. The full Tucker decomposition
is obtained for r = 5 and consists of 32 nonsymmetric and 3 symmetric terms. In
contrast, the STEROID consists of 50 symmetric terms and is obtained more than 3
times faster when symmetry is exploited.

Regalia’s iterative method is not limited to 3rd-order tensors and is therefore
applied to all symmetric tensors of Experiment 3. Since we are interested in a full
decomposition we set r = 5 and therefore obtain

(
3+5−1
5−1

)
, . . . ,

(
8+5−1
5−1

)
terms for every

respective decomposition. The initial orthogonal matrices to start the iterations were
obtained from applying a QR orthogonalization on a random n × 5 matrix. Table
4.4 lists the total number of required iterations, the residual and total run time for
each symmetric tensor from Experiment 3. Iterations were stopped when the differ-
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Table 4.3
Number of iterations, residuals and run times for the Jacobi method.

total number total runtime
r of iterations ||A − S ×1 U ×2 · · · ×d U ||F [seconds]

1 38 5.28 1.38
2 118 4.63 2.02
3 111 3.47 2.46
4 55 1.83 1.16
5 1 7.22e−15 0.01

ence in consecutive orthogonal vectors over 2 iterations was smaller than 1e−10. An
additional parameter γ to ensure monotonic convergence was set to 20. For d = 8,
the algorithm failed to finish due to a lack of sufficient memory. Compared to the
symmetry exploiting STEROID algorithm, the total run time of Regalia’s iterative
method is up to 35 times slower.

Table 4.4
Number of iterations, residuals and run times for Regalia’s iterative method, r = 5.

total number total runtime
d of iterations ||A − S ×1 U ×2 · · · ×d U ||F [seconds]

3 72 1.78e−15 0.2034
4 69 1.24e−14 1.2668
5 58 4.08e−14 8.4662
6 98 3.27e−13 314.2224
7 251 1.7373e−12 16301.7894
8 NA NA NA

Finally, the CANDECOMP-algorithm from Tensorlab is applied to all symmetric
tensors of Experiment 3. This algorithm allows each rank-1 term to be symmetric as
well. In Table 4.5 the total number of computed terms, the residual and total run time
in seconds are listed. As with Regalia’s iterative method, for d = 8 the algorithm also
fails due to the intermediate result being too large. Since we are interested in a full
decomposition we set the total number of desired rank-1 terms equal to the number
of terms obtained from the STEROID. This does surprisingly not result in small
residuals for the CANDECOMP-algorithm. The total run time is highly variable over
the different orders and for the d = 6 case 4 times slower compared to the symmetry
exploiting STEROID algorithm.

5. Application. In this section we show how STEROID readily solves a prob-
lem in nonlinear block-structured system identification [10] and nonlinear state-space
identification [20]. As illustrated in Figure 5.1, the goal is to recover the internal
structure of an identified static polynomial mapping

(5.1)


y1(t) = f1(u1(t), . . . , up(t)),

...
yl(t) = fl(u1(t), . . . , up(t)),

which relates the p inputs u1(t), . . . , up(t) to l outputs y1(t), . . . , yl(t). This internal
structure is determined by writing each of these multivariate polynomials f1, . . . , fl
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Table 4.5
Number of terms, residuals and run times for Tensorlab’s iterative method.

total number total runtime

d of terms R ||A −
∑R
i=1 a

d
i ||F [seconds]

3 50 2.7187e−9 0.1480
4 75 5.8317 9.1233
5 750 1.1831e−5 21.4996
6 1750 12.7366 1793.0454
7 2675 0.0909 802.7768
8 5550 NA NA

as a linear combination of univariate polynomials gj(xj)

(5.2) fi =

n∑
j=1

lij gj(xj) (lij ∈ R)

where each xj is an affine transformation of the inputs

(5.3) xj = bj +

p∑
k=1

tjkuk. (bj , tjk ∈ R).

The scalars bj are typically called the bias or threshold. A slightly different version of
this problem has been solved in [8, 30], where the conversion of the inputs u1, . . . , up
to the states x1, . . . , xn happens by means of a linear transformation.
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Fig. 5.1. The polynomial mapping f1, . . . , fl is decoupled into a set of parallel univariate
polynomials g1, . . . , gn by means of an affine transformation T and linear transformation L.

The coefficients bj , tjk will turn out to be the entries of the eigenvectors vj of a
STEROID and similarly the lij coefficients are the real l coefficients of a STEROID.
We now show how this comes about. It is important to observe here that we replace
our earlier notation of xj as the eigenvectors computed by the STEROID algorithm
with vj in order to avoid confusion with the internal state variables xj of the nonlinear
system. Let d be the maximal total degree of the polynomial system (5.1). In order to
estimate all coefficients bj , tjk, we first need to make sure that each of the polynomials
(5.1) is homogeneous of degree d. This is achieved by introducing the homogenization
variable u0(t), which satisfies u0(t) = 1∀ t ∈ R. For example, if we have d = 4 and the
polynomial f1 = u21+5u1u2−9, then its homogenization is fh1 = u20u

2
1+5u20u1u2−9u40.

The natural isomorphism between homogeneous polynomials and symmetric tensors
allows us then to write the homogeneous polynomials fh1 , . . . , f

h
l as symmetric tensors
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F1, . . . ,Fl. Each of these tensors is of order d and has dimension p+1, due to the extra
homogenization variable. From the application of the STEROID Algorithm onto each
symmetric tensor F1, . . . ,Fl, a set of pure power vectors vj is obtained. From these
vectors vj a basis X can be constructed such that each symmetric tensor F1, . . . ,Fl
can be decomposed in terms of this basis. The lij coefficients are then found from
solving the least-squares problems

li = argmin
l
|| vec (Fi)−X l||F (i = 1, . . . , l).

The STEROID decomposition

Fi =

N∑
j=1

lij v
d
j ,

can then be written in terms of homogeneous polynomials as

(5.4) fhi =

N∑
j=1

lij (

p∑
k=0

tjkuk)d.

Setting the homogenization variable u0(t) , 1 effectively de-homogenizes all homoge-
neous polynomials fhi into

(5.5) fi =

N∑
j=1

lij (ti0 +

p∑
k=1

tjkuk)d.

By retaining the n vectors vj corresponding with nonzero lij ’s over all i’s and introduc-

ing the definitions gj(xj) , xdj and bj , ti0 into (5.5), the problem of reconstructing
the internal structure of the nonlinear system as given by (5.2) and (5.3) is completely
solved. The whole algorithm is summarized in pseudo-code in Algorithm 5.1.

Algorithm 5.1. nonlinear block-structured system identification
Input: multivariate polynomials f1, . . . , fl
Output: affine transformation T , linear transformation L

d← maximal total degree of fh1 , . . . , f
h
l

homogenize all f1, . . . , fl into fh1 , . . . , f
h
l of degree d

for i = 1, . . . , l do
Fi ← symmetric tensor corresponding with fhi
Vi ← STEROID(Fi)

end for
X ← construct basis from all Vi vectors
for i = 1, . . . , l do
li = argmin

l
|| vec (Fi)−X l||F

end for
L← collect all nonzero lij coefficients
T ← retain only n vectors from V corresponding with L

The following example illustrates the whole identification algorithm in detail.
Example 5.1. Consider the nonlinear 2-input-2-output system described by the

polynomials f1, f2 of total degree d = 3

f1 = 54u31 − 54u21u2 + 8u21 + 18u1u
2
2 + 16u1u2 − 2u32 + 8u22 + 8u2 + 1,

f2 = −27u31 + 27u21u2 − 24u21 − 9u1u
2
2 − 48u1u2 − 15u1 + u32 − 24u22 − 19u2 − 3.
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After homogenization we obtain

fh1 = 54u31 − 54u21u2 + 8u0u
2
1 + 18u1u

2
2 + 16u0u1u2 − 2u32 + 8u0u

2
2

+8u20u2 + u30,
fh2 = −27u31 + 27u21u2 − 24u0u

2
1 − 9u1u

2
2 − 48u0u1u2 − 15u20u1 + u32 − 24u0u

2
2

−19u20u2 − 3u30.

The homogeneous polynomials fh1 and fh2 are converted into the symmetric third order
tensors F1,F2 ∈ R3×3×3. Each application of the STEROID algorithm results in 15 vj
vectors, from which a basis X of 30 vectors is constructed. The least-squares problem
(2.5) is then solved for its minimum norm solution l1, l2, with residuals 2.30× 10−14

and 2.36 × 10−14 respectively. Both l1 and l2 contains 10 nonzero entries. Setting
u0 = 1 we obtain

f1 =
∑10
j=1 l1j (bj +

∑2
k=1 tjkuk)3,

f2 =
∑10
j=1 l2j (bj +

∑2
k=1 tjkuk)3.

6. Conclusions and Remarks. A constructive decomposition algorithm, named
STEROID, has been proposed to decompose a symmetric tensor into a real linear com-
bination of symmetric unit-norm rank-1 tensors. The method exploits symmetry and
permits an efficient computation, e.g. via the symmetric QR algorithm or divide-and-
conquer method, in subsequent reshapings and foldings of intermediate symmetric
matrices. In contrast to other iterative methods, STEROID does not require any
initial guess and and can handle large symmetric tensors. The original STEROID
algorithm works with symmetric tensors whose order is a power of two, whereas an
innovative tensor embedding technique is developed to remove this constraint and
allows the computation of a STEROID for arbitrary orders. In addition, two methods
are discussed that reduce the size of the least-squares problem, thereby increasing the
feasibility to tackle large-size problems. Numerical examples have verified the high ef-
ficiency and scalability of STEROID and have demonstrated its superior performance
in comparison to existing iterative methods. Finally, it was shown how STEROID can
be used to decouple a set of multivariate polynomials into a collection of univariate
polynomials in the setting of block-structured nonlinear system identification.
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