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Problem

Given two compact sets E1, E C ID, how to characterize all the finite
Blaschke products B, By satisfying

B '(E1) = By '(E2)?
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Problem
Given two compact sets E1, E C ID, how to characterize all the finite
Blaschke products B, By satisfying

B '(E1) = B, H(E2)?

Will solve this problem when E; and E are connected compact sets of
positive hyperbolic capacity.
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Background

B is a finite Blaschke product of degree n if

wZ—21 Z—2 zZ— 2z,

B(z)=e

1—zz 1 -2z 1-3zz7
where z; € D and 0 € R.

e Fatou (1923) proved that B : D — D is analytic and n-valent (i.e.,
every point in D has precisely n preimages in D counted with
multiplicity) iff B is a finite Blaschke product of degree n.

e Walsh (1952) suggested that finite Blaschke products should be
considered as in D and he proved a
version of Gauss-Lucas Theorem for finite Blaschke products.
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B(z)=e

where z; € D and 6 € R.

e Fatou (1923) proved that B : D — DD is analytic and n-valent (i.e.,
every point in D has precisely n preimages in D counted with
multiplicity) iff B is a finite Blaschke product of degree n.

@ Walsh (1952) suggested that finite Blaschke products should be
considered as “non-euclidean polynomials” in ID and he proved a
version of Gauss-Lucas Theorem for finite Blaschke products.
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Finite Blaschke Products vs Polynomials

Dictionary

These two kinds of finite maps share many similar properties and hence we
can establish a dictionary between these two kinds of finite maps.

Let f : X — X be a finite map with degf > 1, X = C,D.

A polynomial /finite Blaschke product f is said to be if there do not
exist two polynomials/finite Blaschke products f1,f; with deg fi,degf, > 2
s.t.

f(z) = Alf(2)].
Otherwise, f is called
Given a polynomial/finite Blaschke product f, we can factorize it as a

composition of prime polynomials/finite Blaschke products only, and this
factorization will be called a
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These two kinds of finite maps share many similar properties and hence we
can establish a dictionary between these two kinds of finite maps.

Let f: X — X be a finite map with degf > 1, X = C,D.

Definition
A polynomial /finite Blaschke product f is said to be prime if there do not
exist two polynomials/finite Blaschke products fi,f; with deg f1,deg f, > 2
s.t.

f(z) = flf(2)].

Otherwise, f is called composite.

Given a polynomial/finite Blaschke product f, we can factorize it as a
composition of prime polynomials/finite Blaschke products only, and this
factorization will be called a prime factorization.
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Theorem (Ritt,1922)

A nonlinear polynomial P is composite if and only if the monodromy group
of P is imprimitive.

Any two prime factorizations of P have the same number of prime
polynomial factors.

Given two prime factorizations of a nonlinear P € C|[z], one can pass from
one to the other by repeatedly use of the following operations:

1) PobP = (15 ol)o(L7to 15) with polynomials P, P and linear
polynomial L;

2) Tmo T,= Tpo Ty, where T, is the degree n Chebyshev polynomial;

3) z'[Po(2)]¥ 0 zK = zK o [2" Py(2¥)], with r,k € ZF and Py € C[z].
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Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product B (deg B > 1) is composite if and only if the
monodromy group of B is imprimitive.

The number of prime factors is independent of its prime factorizations.

Given two prime factorizations of a finite Blaschke product B (deg B > 1), one
can pass from one to the other by repeatedly use of the following operations:

1) BoB=(BoM)o(M~1oB), with finite Blaschke products B, B and a
Moébius transformation M

2) fmnr © for = fo.mr © fm.r, where f, + is the Chebyshev Blaschke product of
degree n;

3) z[Bo(2)]* 0 zF = z¥ o [2"By(Z¥)], with r,k € Z and a finite Blaschke
product By.
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f;77.17r o f;7.7 — n,mt o f;??.T' Where f;7.T /S the Of—
degree n;
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Chebyshev Blaschke Products
Definition
The Chebyshev polynomial T,(z) is a polynomial of degree n, defined by

Th(cosf) = cos nb.

To define Chebyshev Blaschke products:

@ cosf is replaced by = 5111]1((2:)) for 7 € Ryi.

o Note that cd(u,7) = sn(u + 5, 7).
.. cd is an elliptic function with the periods 2w; and wy, where

wi(t) = m30,7)=7(1+2g+2¢*+ )} q=¢
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Chebyshev Blaschke Products
Definition
The Chebyshev polynomial T,(z) is a polynomial of degree n, defined by

Th(cosf) = cos nb.

To define Chebyshev Blaschke products:
@ cosf is replaced by cd(u,7) := % for T € Ryi.
o Note that cd(u,7) = sn(u + 5, 7).
.. cd is an elliptic function with the periods 2w; and wy, where
wl(T) = 7“9%(0’7—) = 7'['(1 + 2q + 2q4 + - )25 q= e7rl'7'

wa(1) = Twi(7).

@ The elliptic modulus k() 192 (0,7) \/7 ;
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Chebyshev Blaschke Products

Definition

The Chebyshev Blaschke product f, -(z) is a finite Blaschke product of
degree n, defined by

for (v k(7) cd(uwi(7), 7)) = / k(nT) cd(nuwi(nT), nT).
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Chebyshev Blaschke Products

Definition

The Chebyshev Blaschke product f, -(z) is a finite Blaschke product of
degree n, defined by

fnr(\V k(7) cd(uwi(T), 7)) = \/ k(nT) cd(nuwq (nT), nT).

For example,

h-(z) = z
22 — a 192(0 27’)
fr(z) = ——2 where a=/k(2r) = 20
2r(2) = g where a = VKRN =56 50y
22— a 20@1(7) 93(1/6,7)
f:?,’T(Z) = Zl_—azz, where a = k(T)Cd ( 6 ,T) = 19%(1/677')
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The Correspondence Table

Tn for
Definition Ta(z) = cosnb, | f,.(z) = /k(nT)cd(nuw:(nT), nT),
where z = cos where z = /k(7) cd(uw1(7), T)
Zeros z, = Cos W z, = \/_cd( (2p— 1)“’1(7) 7)
(p=1,...,n) (p=1,. )
Critical points w, = cos 2% wp = \/k(T) cd(p“”T(T), T)
(p=1,...,n—-1) (p=1,...,n—-1)
Critical values +1inC k(n7) inD
Preimage Tn_l([—l7 1]) fn}l([—\/k(m'), Vk(nT)])
=[=11] = [= k(7). VK(7)]
Nesting property Tomn=Tmo T, fon, s = fmonr © oz
Julia set JT,) =[-1,1] J(f, ) = 0D
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Objective

Given two compact sets Eq, E; C DD, try to characterize all finite Blaschke
products By, B satisfying By *(E1) = By }(E»).

Know how to do it for polynomials p;, p> sharing compact Ky, Ko C C :
pri (K1) = py ' (Ka) = K.

The case K1 = K, = K = Julia set of p; and p, has been studied by,
Baker & Eremenko(1987), Beardon (1992), Schmidt & Steinmetz (1995),
Atela & Hu (1996),etc.
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Known Results for Polynomials

Sharing set problems £} (K1) = f; }(Ky) for fi, € C[z] were studied:

o If K1 = Ko ={—1,1} and deg f; = deg £,
Pakovitch (1995) proved that fi = £f which solved a problem of
C.C. Yang (1978)

@ Pakovitch made use of the uniqueness property of

e If K1 = K3 is a compact set of positive (logarithmic) capacity,
Dinh (2002) gave a complete description of f; and f; by using the
uniqueness of

@ In 2008, Pakovitch gave the generalized result for any compact
K1, Ky: apart from the uniqueness of from zero,
he also made use of on factorization of polynomials.

o Will follow Dinh’s approach.
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Known Results for Polynomials

Sharing set problems f; }(Ky) = f; 1(Kz) for i, , € C[z] were studied:

o If Kt = Ko ={—1,1} and deg f; = deg 5,
Pakovitch (1995) proved that fi = £, which solved a problem of
C.C. Yang (1978)

@ Pakovitch made use of the uniqueness property of the least deviations
from zero.

e If K1 = K3 is a compact set of positive (logarithmic) capacity,
Dinh (2002) gave a complete description of f; and f; by using the
uniqueness of logarithmic equilibrium measures.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 10/1



Known Results for Polynomials

Sharing set problems f; }(Ky) = f; 1(Kz) for i, , € C[z] were studied:

o If Kt = Ko ={—1,1} and deg f; = deg 5,
Pakovitch (1995) proved that fi = £, which solved a problem of
C.C. Yang (1978)

@ Pakovitch made use of the uniqueness property of the least deviations
from zero.

e If K1 = K3 is a compact set of positive (logarithmic) capacity,
Dinh (2002) gave a complete description of f; and f; by using the
uniqueness of logarithmic equilibrium measures.

@ In 2008, Pakovitch gave the generalized result for any compact
Ki, Ko: apart from the uniqueness of the least deviations from zero,
he also made use of Ritt's result on factorization of polynomials.

@ Will follow Dinh’s approach.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 10/1



Relatedto gioh =g o b

e Dinh showed that if f;*(K) = £, *(K) for a compact set K of
positive (logarithmic) capacity, then 3g1, g € C[z] s.t.

giofh =groh.

@ The idea of his proof is to make use of the uniqueness of logarithmic

equilibrium measures to obtain subharmonic functions u; and u» s.t.

upofi=uof.

@ Then by considering the germ of conformal map near oo, d¢ such that
fiodr = f; , he showed that 3 g1, € C[z] s.t.

giofh =g oh.
Ritt's result for polynomials.

Finally the complete classification of f; and f, can be obtained by applying

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages

DA



Relatedto gioh =g o b

o Dinh showed that if f;*(K) = £, *(K) for a compact set K of
positive (logarithmic) capacity, then 3g1, g» € C[z] s.t.

grofi=goh.

® The idea of his proof is to make use of the uniqueness of
to obtain subharmonic functions u; and wy s.t.

upofi=uwoh.

@ Then by considering the , 0f such that
fiodr = fi , he showed that 3 g1, € C|z] s.t.

giofh =groh.

Finally the complete classification of f; and f, can be obtained by applying
Ritt’s result for polynomials.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages



Relatedto gioh =g o b

o Dinh showed that if f;*(K) = £, *(K) for a compact set K of
positive (logarithmic) capacity, then 3gy, g» € C[z] s.t.

giofh =groh.

@ The idea of his proof is to make use of the uniqueness of logarithmic
equilibrium measures to obtain subharmonic functions u; and wy s.t.

upofy=uyoh.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 1/1



Relatedto gioh =g o b

o Dinh showed that if f;*(K) = £, *(K) for a compact set K of
positive (logarithmic) capacity, then 3gy, g» € C[z] s.t.

giofh =groh.

@ The idea of his proof is to make use of the uniqueness of logarithmic
equilibrium measures to obtain subharmonic functions u; and wy s.t.

upofy=uyoh.

@ Then by considering the germ of conformal map near oo, d¢ such that
fiodr = f; , he showed that 3 g1, g € C[z] s.t.

giofi=goh.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 1/1



Relatedto gioh =g o b

o Dinh showed that if f;*(K) = £, *(K) for a compact set K of
positive (logarithmic) capacity, then 3gy, g» € C[z] s.t.

giofh =groh.

@ The idea of his proof is to make use of the uniqueness of logarithmic
equilibrium measures to obtain subharmonic functions u; and wy s.t.

upofi=uwof.

@ Then by considering the germ of conformal map near oo, d¢ such that
fiodr = f; , he showed that 3 g1, g € C[z] s.t.

giofi=goh.

Finally the complete classification of f; and f> can be obtained by applying
Ritt's result for polynomials.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 1/1



Theorem (N. & C.Y. Tsang)

Let By, B> be finite Blaschke products, deg By = di, deg By = db, di < db,
and E1, Ep C D be connected compact sets of positive hyperbolic capacity
s.t.

Q:=BY(E) =B, (E)

Then we have

if di|da, then there exists a finite Blaschke product g s.t.
By = g1 0By and E; = gy Y(B);

if di t da, then there exist finite Blaschke products g1, g», with
degg) = d»/d,deggo = di/d, where d = gcd(di, do) s.t.

g1081:g2082.
and a compact connected set E3 C ID s.t.

Ey =gy }(E3) and By = g, *(E3).
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Theorem (N. & C.Y. Tsang)

Let By, B> be finite Blaschke products, deg By = di, deg By = db, di < db,
and Eq1, E; C D be connected compact sets of positive hyperbolic capacity
s.t.

Q:=BY(E) =B, (E)

Then we have

(a) if di|da, then there exists a finite Blaschke product gy s.t.
B, = g1o0 B and E; = gl_l(Eg),'

(b) if di t da, then there exist finite Blaschke products g1, g», with
deg g1 = d»/d,deg g» = d1/d, where d = gcd(d1, da) s.t.

g10B1 =g o By,
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Theorem (N. & C.Y. Tsang)

Let By, By be finite Blaschke products, deg By = di, deg B, = db, di < db,
and Eq1, E; C D be connected compact sets of positive hyperbolic capacity
s.t.

Q:=BY(E) =B, (E)

Then we have

(a) if di|da, then there exists a finite Blaschke product gy s.t.
B, = g1o0 B and E; = gl_l(Ez),'

(b) if di t da, then there exist finite Blaschke products g1, g», with
deg g1 = d»/d,deg g» = d1/d, where d = gcd(d1, da) s.t.

g10oB1 =g 0By,
and a compact connected set Ez3 C D s.t.

E = g (E3) and E; = g, 1 (E3).
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Theorem (Cont.)

gloBi =g obB

Furthermore there exist finite Blaschke products Bl, Bg, W, with
deg W =d, s.t.

Bl=BloW, BQ=B2OW,

so that

gloélzgzoég
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Theorem (Cont.)

gloBi =g obB

Furthermore there exist finite Blaschke products B, Bg, W, with
deg W =d, s.t.

Bl=éloW, BQ=B2OW,
so that

gloélzg2oé2
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Theorem (Cont.)

gioBi=gobB
grloBioW=goBoW

groBr=goB
Hence there exist Mébius transformations 11, > s.t. either

g =Zz[R(@)]™9om, Bl =mtoz%/d
& =zd1/do7'2, ég :Tz_lozCR(zdl/d)

for some finite Blaschke product R and for ¢ being the remainder after
division of dp/d by di/d,

y
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Theorem (Cont.)

gioBi=gobB
grloBioW=goBoW

gioBi=g0o5B;
Hence there exist Mébius transformations 11, > s.t. either
g =Zz[R(@2))9om, B =1tozh/d
g =z%70m, By =m;"0z°R(z/9)
for some finite Blaschke product R and for ¢ being the remainder after

division of dp/d by di/d, or

> -1

81 =fgyddr/d°T, B =7 ofg,4r,
. 1

8 =faddr/d°T2, Ba =7y 0ofg 4,

for Chebyshev—B/aschke products fdg/d,dﬂ'/d? fdl/d,dz’r/dv fd1/d,’rv fdz/d{r'
y
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Hyperbolic Capacity

For a compact subset E C D, the hyperbolic capacity cap,(E) can be
defined in a similar way of the logarithmic capacity (by replacing the
Euclidean metric |z — (| by the pseudohyperbolic metric

p(z,¢) = ’%

, z,CE]D).)
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Hyperbolic Capacity

For a compact subset E C D, the hyperbolic capacity cap,(E) can be
defined in a similar way of the logarithmic capacity (by replacing the
Euclidean metric |z — (| by the pseudohyperbolic metric

p(z,¢) = ’12__52

: z,Ce]D).)

Let P(E) be the class of all probability measures on a compact set £ C D.
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Hyperbolic Capacity

For a compact subset E C D, the hyperbolic capacity cap,(E) can be
defined in a similar way of the logarithmic capacity (by replacing the
Euclidean metric |z — (| by the pseudohyperbolic metric

z—¢

p(z,O:’ =

— ,z,Ce]D).)

Let P(E) be the class of all probability measures on a compact set £ C D.

Definition
Let E C D be compact and p € P(E). The hyperbolic potential of u is
the function u)} : D — (—o0, +00] defined by

h _ 1
i) = [ 108~ dulc).

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages 23 May 2013 15/1



Hyperbolic Capacity
Definition

Let E C D be compact. The hyperbolic energy I : P(E) — (—o0, +00] is
defined by

) = [ [[1og —seu@)autz) = [ ufi)d(a)
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Hyperbolic Capacity
Definition

Let E C D be compact. The hyperbolic energy I : P(E) — (—o0, +00] is
defined by

) = [ [[1og —seu@)autz) = [ ufi)d(a)

Definition
Let E C D be compact. The hyperbolic equilibrium energy of E is defined
by

VE= inf Iy(p),
E= dnf n(1)

and the hyperbolic capacity of E is defined by

capy(E) = exp(—V2).
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Hyperbolic Equilibrium Measure

Theorem (M.Tsuji, 1947)

For each compact set E C D with capp,(E) > 0, there exists a unique
measure plt s.t. VI = Ip(ul).

Such a measure /z’é is called the for E.

Let E C D be compact and let /zié be the hyperbolic equilibrium measure
for E. Then its potential uf:,, has the following properties:
E

(a) ulhh (z) < VL inD and
YE

(b) ul'zhE(z) = V} quasi-everywhere (q.e.) on E, i.e., except for a set of

capacity zero.
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Hyperbolic Equilibrium Measure

Theorem (M.Tsuji, 1947)

For each compact set E C D with capp,(E) > 0, there exists a unique
measure plt s.t. VI = Ip(ul).

Such a measure uﬁ- is called the hyperbolic equilibrium measure for E.

u//j/é(z) < VP inD and

u/'jh (z) = V! quasi-everywhere (q.e.) on E, i.e., except for a set of
E
capacity zero.
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Hyperbolic Equilibrium Measure

Theorem (M. Tsuji, 1947)

For each compact set E C D with capp,(E) > 0, there exists a unique
measure plt s.t. VI = Ip(ul).

Such a measure u’é— is called the hyperbolic equilibrium measure for E.

Theorem (M. Tsuji, 1947)

Let E C D be compact and let uﬁ- be the hyperbolic equilibrium measure
for E. Then its potential uﬂh has the following properties:
E
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Hyperbolic Equilibrium Measure

Theorem (M. Tsuji, 1947)

For each compact set E C D with capp,(E) > 0, there exists a unique
measure plt s.t. VI = Ip(ul).

Such a measure ufé is called the hyperbolic equilibrium measure for E.

Theorem (M. Tsuji, 1947)

Let E C D be compact and let u’é— be the hyperbolic equilibrium measure
for E. Then its potential uﬂh has the following properties:
E

(a) UZ’,L—(Z) < VEinD and

(b) uZ,, (z) = V} quasi-everywhere (q.e.) on E, i.e., except for a set of
E
capacity zero.
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Application of the Hyperbolic Equilibrium Measure

Theorem (A)

Let By and B, be finite Blaschke products of degrees di > 1 and d» > 1
respectively, and let E;, E; C D be compact.

Suppose that cap,(E1), capy(E2) > 0 and Q := B }(E1) = By Y(E).
Then

u/hh o Bi(z) U//jh o By(z)

'Ey Ep

di do

for all z € D.
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Application of the Hyperbolic Equilibrium Measure

Theorem (A)

Let By and B, be finite Blaschke products of degrees di > 1 and d» > 1
respectively, and let E;, E; C D be compact.

Suppose that cap,(E1), capy(E2) > 0 and Q := B }(E1) = By Y(E).
Then

quél o Bi(z) - UZ',L—Z o By(z)

i = 5 , forall z€D.
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Pullback Measure

Definition

Given a probability measure p on E, the pullback measure B* i is the

probability measure on B~1(E) s.t. for all holomorphic functions f on
B~Y(E),

JARCLERICEY I SENCLA)

EeeB1({ch)

where the summation is over all the roots of B(£) — ¢ and a root of
multiplicity m is repeated m times.
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Pullback Measure

Definition
Given a probability measure p on E, the pullback measure B* i is the

probability measure on B~1(E) s.t. for all holomorphic functions f on
B~Y(E),

| F@dE0E© = [ 3 Aduc)
B~1(E) 1

£€eB=1({¢})
where the summation is over all the roots of B(£) — ¢ and a root of

multiplicity m is repeated m times. Indeed,

B E) = [ > 1du(O=d-u(E). BCE.
o ce-1(1¢y)
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Equilibrium Measure on B~1(E)

Proposition

Let B be a finite Blaschke product of degrre d and Q = B~1(E). Suppose

capy(E) > 0. If ut is the equilibrium measure on E, then the equilibrium
measure /16 on § is

B*//,ié
d
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Equilibrium Measure on B~1(E)

Proposition

Let B be a finite Blaschke product of degrre d and Q = B~1(E). Suppose
capy(E) > 0. If ut is the equilibrium measure on E, then the equilibrium
measure ﬂ?z on Q is
B* ,UJZ-
d
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Equilibrium Measure on B~1(E)

Proposition

Let B be a finite Blaschke product of degrre d and Q = B~1(E). Suppose
capy(E) > 0. If ut is the equilibrium measure on E, then the equilibrium
measure ﬂ?z on Q is
B* ,UJZ-
d
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Recall that
Theorem (A)

Let By and By be finite Blaschke products of degrees di > 1 and d» > 1
respectively, and let Ey, E, C D be compact. Suppose that
capp(E1), capp(E2) > 0 and Q := By Y (E) = By ().
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Recall that
Theorem (A)

Let By and By be finite Blaschke products of degrees di > 1 and d» > 1
respectively, and let Ey, E, C D be compact. Suppose that
capp(E1), capp(E2) > 0 and Q := By Y(E1) = By (E2). Then

uZ,él o Bi(z) - uZ,’Z:2 o By(z)

a = & , for all z € D.
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Recall that
Theorem (A)

Let By and By be finite Blaschke products of degrees di > 1 and d» > 1
respectively, and let Ey, E, C D be compact. Suppose that
capp(E1), capy(E2) > 0 and Q := By 1(E;) = By *(E2). Then

UZZ o Bi(z) UZ'Z: o By(z) B
L o =2 5 , forall z € D.

To prove this theorem, we need the following lemma.

Lemma

Let u be a finite Borel measure on D with compact support. Then

AuZ = 27,

where A is the generalized Laplacian.
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Proof of Theorem A
Let //,;- be the hyperbolic equilibrium measure of E;.
e d; le/z,’é and d, "B5pug are hyperbolic equilibrium measures of Q
@ By the uniqueness, we get d 1B /1 =d, 182/1,_:2
Uhh o B;
o uh , =5 i=1,2
Bfk“/é( d; Y o
dj
e By Lemma
h h
AUBl /"El 72/(0’ Bl:UE1 27_0’ B2/LE2 AU
d1
_,h
o LetWV B uBgﬂ,&2
d do
h .
As UB?“E -
d; '

*1,h .
2ME,

da

onD. As AV =0, V is harmonic on D
=0onJdD, V=0 on oD

o UV =0 on D, which proves the Theorem A
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Proof of Theorem A

Let //,;-j be the hyperbolic equilibrium measure of E;.
@ By the uniqueness, we get d 18*/1’7 =d 18*/1” .
! 1 1 Eq 2 2 E;
B.
g © Bi
° B* ,h —
i ME;

i

d;
di
e By Lemma,

° dleikHIch and d{lBgu’éz are hyperbolic equilibrium measures of €.
h
ul Li=1,2.

1HE
dy

h L
Eq 2 MEy
dp
h
AS UB‘%‘ h
i /[EI

AUZ;\”h = —QWdlef/(Zl = *271‘6/27185/1,22 = Auh
o Let U =uh,
Bl I

do
dj

2‘/‘22

)

uh, , onD. As AV =0, V¥ is harmonic on D.
=0onJdD, V=0 on 0JD.

e VU =0 on D, which proves the Theorem A.
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Proof of Theorem A

Let ,u’,;-j be the hyperbolic equilibrium measure of E;.
° dlef;/Z:l and d{lBg,u’éz are hyperbolic equilibrium measures of €.

@ By the uniqueness, we get dl_lBi“,uZ-1 = dz_lBé‘//é.
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Proof of Theorem A

Let ,u’,;-j be the hyperbolic equilibrium measure of E;.

° dlef;/Z:l and d{lBé*,u’é are hyperbolic equilibrium measures of €.

@ By the uniqueness, we get dl_lBi“,uZ-1 = dz_lBé‘//é.

UZhOBi
° -5 =172
ul, , = =12,

l'u'E,- d,
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Proof of Theorem A

Let ,u’,;-j be the hyperbolic equilibrium measure of E;.

° dlef;/Z:l and d{lBé*,u’é are hyperbolic equilibrium measures of €.

@ By the uniqueness, we get dl_lBi",uf,;-1 = dz_lBé‘//é.

UZ',;-OBi
oul , =—— i=12
i PE, d;
d.

i

o By Lemma,

h —1px*, h —1px*x, h h
Au?, , =—2nd; "B = —2nd, "B =Aul, ;.
BYul 1 PiHE 2 P2HE Byl
dp a
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Proof of Theorem A

Let ,u’,;-j be the hyperbolic equilibrium measure of E;.

dlef;/él and d{lBg,u’éz are hyperbolic equilibrium measures of 2.

o By the uniqueness, we get d; 'Bjult = d; ' Biull .

UZZ o B;
ouh, , =———— i=1,2.
B; PE; d,'
d;
o By Lemma,
h 1 1 h
AuBf#,é —2md; Bl,u,:—1 —2mdy Bz,uE AuBz*/"é .
1 2
dp a

o Letv =yl , — ug* , onD. As AV =0, V¥ is harmonic on D.

Bl 1 2 HE,
di da
As u"‘;*uh =0onJdD, ¥V =0 on 0D.
i ME;
i)

i
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Proof of Theorem A

Let ,uﬁ- be the hyperbolic equilibrium measure of E;.
o d 181/‘51 and d{lBg,u’éz are hyperbolic equilibrium measures of 2.
o By the uniqueness, we get d; 'Bjult = d; ' Biull .

UZh o B

E; .

° u’;* hy = ———, i =1,2.
i ME; d;
d:

i

o By Lemma,

h 1 1 h
Ausfﬂ,‘%1 —2md; Bl,u,:—1 —2mdy Bz,uE AuBZ*H,Z:z.
a b

o Letv =yl , — ug* , onD. As AV =0, V¥ is harmonic on D.

Bl 1 2 HE,
d da
As u"‘;*uh =0on dD, ¥V =0 on JD.

i ME;
d:

i

e W =0 on D, which proves the Theorem A.
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Invariants of a Finite Blaschke Product near 0D

@ Study the continuous function v : 9D — JD which is invariant for a
finite Blaschke product B, i.e.,

Bou= B on 0D.
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Invariants of a Finite Blaschke Product near 0D

@ Study the continuous function v : 9D — JD which is invariant for a
finite Blaschke product B, i.e.,

Bou= B on 0D.

@ In fact, these functions form a cyclic group.
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Invariants of a Finite Blaschke Product near 0D

@ Study the continuous function v : 9D — JD which is invariant for a
finite Blaschke product B, i.e.,

Bou= B on 0D.

@ In fact, these functions form a cyclic group.

Theorem (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1. The set of the
continuous functions u : 0D — 0D s.t. Bou = B is a cyclic group (for the
composition) of order d, say {uy, -+ ,uq}.
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Analytic Extension of wuy

Moreover, each uj, can be extended analytically to a neighborhood of 9.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1 and denote by

M = max{|a| : B(a) = 0}. Then each of the d continuous function uy on
0D (1 < k < d) s.t. Bouy, = B has an analytic extension i in the
annulus A= {z € C: M < |z| < 1/M} which still satisfies B o T, = B.

Denote the extension i; by ug.
Then ug is a conformal map in a small neighborhood of 9D s.t.

Bougk=B (1< k<d),
uyd = id, and

ug, ugz, cee u‘fgd*l, id are all distinct.
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Analytic Extension of wuy

Moreover, each uj, can be extended analytically to a neighborhood of 9.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1 and denote by

M = max{|a| : B(ar) = 0}. Then each of the d continuous function uy on
dD (1 < k < d) s.t. Boug = B has an analytic extension Uy in the
annulus A= {z € C: M < |z| < 1/M} which still satisfies B o &y, = B.
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Analytic Extension of wuy

Moreover, each uj, can be extended analytically to a neighborhood of 9.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1 and denote by

M = max{|a| : B(ar) = 0}. Then each of the d continuous function uy on
dD (1 < k < d) s.t. Boug = B has an analytic extension Uy in the
annulus A= {z € C: M < |z| < 1/M} which still satisfies B o &y, = B.

Denote the extension ii; by ug.
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Analytic Extension of wuy

Moreover, each uj, can be extended analytically to a neighborhood of 9.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1 and denote by

M = max{|a| : B(ar) = 0}. Then each of the d continuous function uy on
dD (1 < k < d) s.t. Boug = B has an analytic extension Uy in the
annulus A= {z € C: M < |z| < 1/M} which still satisfies B o &y, = B.

Denote the extension ii; by ug.
Then upg is a conformal map in a small neighborhood of 0D s.t.
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Analytic Extension of wuy

Moreover, each uj, can be extended analytically to a neighborhood of 9.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree d > 1 and denote by

M = max{|a| : B(ar) = 0}. Then each of the d continuous function uy on
dD (1 < k < d) s.t. Boug = B has an analytic extension Uy in the
annulus A= {z € C: M < |z| < 1/M} which still satisfies B o &y, = B.

Denote the extension ii; by ug.

Then upg is a conformal map in a small neighborhood of 0D s.t.
Q Bougk=B(1<k<d),
Q@ uy =id, and

Q up,uP, -, ux "t id are all distinct.
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The ug will give information about the factorizations of B
Theorem (B)

Let By and B, be two finite Blaschke products of degrees dy > 1 and d; > 1, and
let d = ged(dy, db).

If ® is a finite Blaschke product s.t. ® o ug, = ® in the neighborhood of 0D,
then there exists a finite Blaschke product B s.t.

® = BobB;.

If u,ogfldl/d = Nu;fzfdm ( ged(kj, d) = 1), then there exist finite Blaschke
products B, By, B, (deg B = d) s.t.

B, =ByoB, B,=B,0B.

If d =1 and if ug, o ug, = up, o up,, there exist finite Blaschke products
® (deg® = dvdh), By, B s.t.

(D:BiOBQ:BiOBl

= [ =
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The ug will give information about the factorizations of B
Theorem (B)

Let By and B, be two finite Blaschke products of degrees dy > 1 and d; > 1, and
let d = ged(dh, db).

(a) If & is a finite Blaschke product s.t. ® o ug, = ® in the neighborhood of D,
then there exists a finite Blaschke product B s.t.

(D:BOBl.

v
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The ug will give information about the factorizations of B
Theorem (B)

Let By and B, be two finite Blaschke products of degrees dy > 1 and d; > 1, and
let d = ged(dh, db).

(a) If & is a finite Blaschke product s.t. ® o ug, = ® in the neighborhood of D,
then there exists a finite Blaschke product B s.t.

q):BOBl.

(b) If uga®/? = y,‘;fi’z/ ™ (ged(k;, d) = 1), then there exist finite Blaschke
products B, By, B; (deg B = d) s.t.

BlzéloB, 82:B2OB.
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The ug will give information about the factorizations of B
Theorem (B)

Let By and B, be two finite Blaschke products of degrees dy > 1 and d; > 1, and
let d = ged(dh, db).

(a) If & is a finite Blaschke product s.t. ® o ug, = ® in the neighborhood of D,
then there exists a finite Blaschke product B s.t.

d=Bo Bl.
okydy/d _

(b) If ug y%ﬁsz/m ( ged(kj, d) = 1), then there exist finite Blaschke
products B, By, B; (deg B = d) s.t.

BlzéloB, 3229208.

(c) Ifd =1 and if ug, o ug, = up, o up,, there exist finite Blaschke products
¢ (deg® = didh), By, B} s.t.

® =B} oB,=B}oB.

v
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How to get g1 0 By = g» 0 By?

By Theorem A, we have

UZ’,;— o Bi(z) UZ’Z: o By(z) B
1d1 = 2d2 , forall z e D.

e For i =1,2, let K; be the component of D\ E; which borders on 9.
Since E; is connected, K; is doubly connected and there exists a
biholomorphic function ¢; from Kj onto {p; < |w| < 1} s.t.
i(0D) = ID.

e Note that ulhh (z) = —log|pi(z)| for all z € K;.

IE"

N Iog\vm&(z)\ log wdeBz( z)| and ‘Zdz 010 Bl( )| o ‘Zdl 0y 0 82(2)‘

for any zeD sufhaently close to 0D.

Tuen Wai Ng (joint work with Chiu Yin Tsar Finite Blaschke Products Sharing Preimages



How to get g1 0 By = g» 0 By?

By Theorem A, we have

UZ’;— o Bi(z) UZZ o By(z) B
1d1 = 2d2 , forall z € D.

e For i =1,2, let K; be the component of D\ E; which borders on 9D.
Since E; is connected, K; is doubly connected and there exists a
biholomorphic function ¢; from K; onto {p; < |w| < 1} s.t.
©i(0D) = OD.
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How to get g1 0 By = g» 0 By?

By Theorem A, we have

UZ’;— o Bi(z) UZZ o By(z) B
1d1 = 2d2 , forall z € D.

e For i =1,2, let K; be the component of D\ E; which borders on 9D.
Since E; is connected, K; is doubly connected and there exists a
biholomorphic function ¢; from K; onto {p; < |w| < 1} s.t.
©i(0D) = OD.

e Note that uZ,‘é (z) = —log |pi(2)| for all z € K;.
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How to get g1 0 By = g» 0 By?

By Theorem A, we have

uly o Bi(z) uf, o By(z) B
ot e forall ze D
di d> ’ '

e For i =1,2, let K; be the component of D\ E; which borders on 9D.
Since E; is connected, K; is doubly connected and there exists a
biholomorphic function ¢; from K; onto {p; < |w| < 1} s.t.
©i(0D) = ID.

e Note that UZ’Z: (z) = —log |pi(2)| for all z € K;.

o loglpioBi(2)| _ |°g|§02;B2(Z)| and 2% 0y 0 By(2)| = |z% 0 3 0 By(2)|

d1 2
for any z € D sufficiently close to 9.
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How to get g1 0 By = g» 0 By?

e For any z € D sufficiently close to 0D,

W(z):=2z% 0y 0By(2) = e2% 0y 0 By(2).
@ ; can extend continuously and homeomorphically to D and
Y=z o;;loBl:emzdlo;;zoBg
can also be defined on 0D.
Theorem B.

@ Try to show that ug, and ug, satisfy conditions in (b) or (c)

of
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How to get g1 0 By = g» 0 By?

o For any z € D sufficiently close to 0D,

V(z) := 2% 0 p1 0 Bi(2) = 2% 0 0y 0 By(2).

@ ; can extend continuously and homeomorphically to 0D and

V=z:%0p0B =e2%0p,0B,

can also be defined on 9D.
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How to get g1 0 By = g» 0 By?

o For any z € D sufficiently close to 0D,

V(z) := 2% 0 p1 0 Bi(2) = 2% 0 0y 0 By(2).

@ ; can extend continuously and homeomorphically to 0D and

V=z:%0p0B =e2%0p,0B,

can also be defined on 9D.

@ Try to show that upg, and ug, satisfy conditions in (b) or (c) of
Theorem B.
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Pakovich's approach for Q = B, (E;) = B, }(E)

Let B3, denote the set of all finite Blaschke products of degree n and let
E C D be compact.

Definition
A finite Blaschke product B € B, is called a minimal Blaschke product of
degree n for E if ||B||g = Bmil? I|1Bl|E-

€bn
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Pakovich's approach for Q = B, (E;) = B, }(E)

Let B, denote the set of all finite Blaschke products of degree n and let
E C D be compact.
Definition
A finite Blaschke product B € B, is called a minimal Blaschke product of
degree n for E if ||B||g = Bmil? I|1Bl|E-

€bn

Theorem (Walsh (1952))

(Existence and location of zeros) A minimal Blaschke product B exists and
its zeros lie in the convex hull of E with respect to the hyperbolic
geometry in D.
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Pakovich's approach for Q = B, (E;) = B, }(E)

The counter-part of the two conjectures below are known to be true for
ploynomials.

Conjecture (A)

Such a minimal Blaschke product of degree n is unique up to
multiplication by e when | E| > n.
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Pakovich's approach for Q = B, (E;) = B, }(E)

The counter-part of the two conjectures below are known to be true for
ploynomials.

Conjecture (A)

Such a minimal Blaschke product of degree n is unique up to
multiplication by e when | E| > n.

Conjecture (B)

Let T be a minimal Blaschke product of degree m for E. Then for any
finite Blaschke product B of degree n, T o B is a minimal Blaschke
product of degree mn for B7(E).
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Pakovich's approach for Q = B }(E;) = B, }(E)

e For i =1,2, let C; be a minimal Blaschke product of degree d;/d for
E;, where d = gcd(dy, da).

@ By conjecture B, C; o B; is a minimal Blaschke product of degree
didy/d for Q = B 1(E).

@ Suppose |Q| > lem(d1, d2) = didz/d, by Conjecture A, we have

Cl ) Bl — eng ) B2

@ Then apply Ritt's theorem for finite Blaschke products.
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e For i =1,2, let C; be a minimal Blaschke product of degree d;/d for
E;, where d = gcd(dy, da).

@ By conjecture B, C; o B; is a minimal Blaschke product of degree
dida/d for Q = B H(E;).
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Pakovich's approach for Q = B, (E;) = B, }(E)

e For i =1,2, let C; be a minimal Blaschke product of degree d;/d for
E;, where d = gcd(dy, da).

@ By conjecture B, C; o B; is a minimal Blaschke product of degree
dida/d for Q = B H(E;).

@ Suppose [Q| > lcm(d1, d») = dida/d, by Conjecture A, we have

Cl @) Bl = eing @) Bg
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Pakovich's approach for Q = B, (E;) = B, }(E)

For i = 1,2, let C; be a minimal Blaschke product of degree d;/d for
E;, where d = gcd(d1, db).

@ By conjecture B, C; o B; is a minimal Blaschke product of degree
dida/d for Q = B H(E;).

Suppose |Q2| > lem(d1, d2) = didz/d, by Conjecture A, we have

Cl @) Bl = eing @) Bg

Then apply Ritt's theorem for finite Blaschke products.
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