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Abstract—Power flow routing is an emerging control paradigm
for the dynamic control of electric power flows. In this paper,
we propose a generic model of a power flow router (PFR) and
incorporate it into the optimal power flow (OPF) problem. First,
a generic PFR architecture is proposed to encapsulate the desired
functions of PFRs. Then, the load flow model of PFRs is developed
and incorporated into the OPF framework. To pursue global
optimality of the non-convex PFR-incorporated OPF (PFR-
OPF) problem, we develop a semidefinite programming (SDP)
relaxation of PFR-OPF. By introducing the regularization terms
that favor a low-rank solution and tuning the penalty coefficients,
a rank-1 solution can be obtained and used for recovering an
optimal or near-optimal solution of the PFR-OPF and the results
are verified in numerical tests. The efficacy of the PFR-OPF
framework allows us to investigate the impact of PFR integration.
With the system loadability as an example, the numerical results
show that remarkable enhancement can be achieved by installing
PFRs at certain critical buses of the network.

Index Terms—power flow routers, optimal power flow, convex
relaxation, semidefinite programming.

NOMENCLATURE

N Index set of buses.

& Index set of transmission lines.

Q, Index set of one-hop neighbors of Bus .

X Set of decision variables of the non-convex
PFR-OPF problem.

X Set of decision variables of the relaxed PFR-
OPF problem.

TIm The mth bag of tree decomposition.

T Set of matrix variable W’s diagonal entries
that correspond to the branch terminal voltages
of the buses/PFRs in bag J,,.

L Index set of transmission lines selected for
penalization.

Parameters

Yik Transmission line admittance of Branch (7, k).

Jik Line conductance of Branch (i, k).

bik Line susceptance of Branch (i, k).

Cik Shunt capacitance of Branch (i, k).

Ui min Lower bound of bus voltage V.

Ui max Upper bound of bus voltage V.

This research is supported in part by the Theme-based Research Scheme of
the Research Grants Council of Hong Kong, under Grant No. T23-701/14-N.
A.Y.S. Lam was also supported in part by the Seed Funding Programme for
Basic Research of The University of Hong Kong under Grant 201601159009.

The authors are with the Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Pokfulam, Hong Kong (e-mail: {jhlin, vli,
kcleung, ayslam} @eee.hku.hk).

Tik,mm
Tik,maa:
ﬁik,min
ﬂik,mam
Yiy,mazx
QCik,min
QCik ,max
Silmmaa:

Ep
Es

Variables
Vi

Vi

1k

T,

Bi
Vi

Wi

Wi klm

Wi

11,

1k

I

k

Lower bound of transformer ratio 7;, of PFR
i in Branch (i, k).

Upper bound of transformer ratio 7;, of PFR
i in Branch (i, k).

Lower bound of phase shift 5;, of PFR i in
Branch (7, k).

Upper bound of phase shift 3;, of PFR i in
Branch (i, k).

Upper bound of series voltage tap ratio vy;, of
PFR i in Branch (i, k).

Lower bound of reactive power compensation
Qci, of PFR ¢ in Branch (i, k).

Upper bound of reactive power compensation
Qci, of PFR i in Branch (i, k).

Upper bound of the magnitude of complex
power flow of Branch (i, k).

Penalty coefficient for regularization.

Penalty coefficient for apparent power losses.

Voltage of Bus ¢ or voltage of common bus of
PFR 1.

Branch terminal voltage of PFR ¢ in Branch
(i, k).

Transformer ratio of PFR ¢ in Branch (i, k).
Phase shift of PFR ¢ in Branch (i, k).

Tap ratio of series voltage injection of PFR 4
in Branch (i, k).

Reactive power compensation of PFR ¢ in
Branch (7, k).

Complex power of aggregate local power in-
jection of Bus/PFR .

Complex power flow from Bus/PFR ¢ to
Bus/PFR k.

Column vector obtained by stacking all the
branch terminal voltage variables.

Auxiliary matrix variable corresponding to
vector of branch terminal voltage V.
Diagonal entry of matrix variable W corre-
sponding to branch terminal voltage V;, .
Off-diagonal entry of matrix variable W cor-
responding to branch terminal voltages V;, and
Vi, -

Aucxiliary variable corresponding to bus volt-
age V.

Auxiliary variable corresponding to trans-
former ratio T;, .

Auxiliary variable corresponding to series
voltage tap ratio ;, .



hy Regularization function.

Ly Apparent power loss over the series impedance
of Branch (i, k).
A Loading factor.

I. INTRODUCTION

The increase in energy demand and the integration of renew-
able energy sources (RESs) are stressing the grid, prompting
system operators to take active control measures for managing
the power flow more efficiently and intelligently. Traditional
power flow controls may no longer be suitable for the future
power system operation because of their limited control range
and slow dynamic response [1]. Due to the development of
power electronics over the past two decades [1]-[3], power
flow routing [2], [4], [5], an emerging control paradigm for the
dynamic and responsive control of power flows, is a promising
solution for power flow control.

Power flow controllers (PFCs) and power flow routers
(PFRs) are the building blocks of power flow routing. In this
paper, we propose a generic model of PFRs and an optimal
power flow (OPF) framework for the analytical study of power
flow routing. We will explain our motivation and identify the
research gap by reviewing the state-of-the-art.

The need for a smarter and more resilient grid has led to
continuous innovations on PFCs [1]-[3] and PFRs [4], [6],
[7], but the literature does not usually make a clear distinction
between PFCs and PFRs. To avoid ambiguity, we use PFR
to refer to a control device that is able to manage multiple
incoming/outgoing power flows, while PFC refers to a device
that can only actively adjust the power flow through one
transmission line or appliance. Hence, a PFC is part of a
PFR. In general, PFCs [1]-[3] control the branch power flow
by modifying the parameters of a transmission line, such
as series injection of the voltage source and/or resistance,
and shunt reactive power compensation. PFRs are useful for
interconnecting multiple transmission lines and interfacing
appliances at different power levels [4], [6], [7]. The energy
router [6] and the solid-state transformer (SST) [7] only focus
on interfacing various types of local power injections, but they
are not designed for controlling branch power flows.

We can see that most existing research efforts on PFCs and
PFRs have been devoted to the hardware implementation [1]-
[31, [6], [7], whereas [4] does focus on the generic model of
a PFR. However, the PFR model proposed in [4] is just a
simple combination of a computational unit and several PFCs,
and it is only applicable to the distribution network. The lack
of a generic functional model of PFRs has hindered network-
level research on power flow routing. To overcome this, we
propose a generic PFR model that covers the necessary and
desired functions of a PFR so as to facilitate a theoretical study
of power flow routing in the power network.

We focus on the modelling of PFRs for power system
optimization. Although the research on load flow models of
PFCs is rich [3], [5], [8], [9], existing work on the modelling
of PFRs is rather limited. Flexible AC transmission system
(FACTS) devices [3], the best known PFCs, have been studied
extensively for improving asset utilization [5], [8], [9]. A

sensitivity method has been employed in [5] to analyze the
impact of PFCs on corrective power flow control. However,
due to the inherent complexity of the method, reactive power
is not considered in [5]. In general, a PFC adjusts the power
flow by its series and/or shunt sources injected over the
transmission line [3]. The change of power flow induced by the
series source of the PFC is usually converted to and modelled
as power injections to both buses of the branch [5], [8], [9],
since the approach preserves the symmetry of the admittance
matrix and the structure of the Jacobian matrix. Different
from the literature, we develop the load flow model of a
PFR characterized by “branch terminal voltages,” the terminal
voltages of the PFR, which is a more intuitive approach to
formulate the power flow according to the PFR’s operating
principle.

We further incorporate the PFR model into the OPF frame-
work. The OPF problem determines the optimal operating
points for a power system in terms of a global objective
function, subject to the network physics, such as Kirchhoff’s
circuit laws, as well as the engineering limits of the state and
control variables of the system, such as inequality constraints
on transmission line flows, power generations, and configura-
tions of control devices [10], [11]. In the proposed PFR model,
the voltage of a conventional bus is augmented and evolves
into multiple branch terminal voltages to reduce the coupling
among corresponding power flows. As a result, the size of the
PFR-incorporated OPF (PFR-OPF) problem is proportional to
the number of branches, and comparable to the conventional
OPF problem whose size is proportional to the number of
buses since the power network is in general a sparse graph.
Hence, existing nonlinear programming (NLP) solvers, such
as interior point methods used in our numerical tests, are still
able to obtain a local optimal solution of the non-convex PFR-
OPF problem. Although the existing power injection method
[5], [8], [9] and the model proposed in this paper are not
essentially different since they both aim to model the control
abilities of PFCs and PFRs, the proposed PFR model is more
amenable for applying the convex relaxation to the PFR-OPF
problem. In the power injection method, the series injected
source of PFC introduces nonlinear terms which are not easy
to relax, especially for those characterizing the phase-shifting
effect.

In general, the alternating-current (AC) OPF problem is
challenging due to its non-convexity and usually very large
problem size [10]. The non-convexity stems from the nonlinear
power flow equation due to Kirchhoff’s laws, as well as
the nonlinear or even discrete characteristics of some control
variables, such as tap-changing transformers [10], [12]. The
problem size can be very large in the real-world industrial
application not only because of the scale of the power system,
but also more significantly due to the number (tens of thou-
sands or more) of postulated contingencies [10], [12]. In the
literature, various approaches have been proposed to tackle
those respective challenges [10], [13]. Many nonlinear pro-
gramming (NLP) approaches, such as quadratic programming,
Lagrangian relaxation, heuristic algorithms, and interior-point
methods, have been proposed to cope with the non-convexity
[10], [13]. In order to solve the security-constrained OPF



(SCOPF) with a large number of contingencies efficiently,
various classes of approaches, including iterative contingency
selection schemes, decomposition methods, and network com-
pression, have been developed [12], [14]. Some of them are
mature and capable of finding at least the local optimum of
large-scale SCOPF problems with up to 3000 buses [14] or
even 9000 buses and 12000 contingencies [12].

In this research, we only consider the basic and continuous
scenarios of the AC OPF problem, and do not include con-
tingencies and discrete variables. With such simplifications,
this paper aims to address the non-convexity introduced by
Kirchhoff’s laws as well as PFCs and PFRs, and pursues
global optimality of the PFR-OPF problem through convex
relaxation. However, it is worth pointing out that the compu-
tational challenges induced by the security constraints and the
discrete variables can be formidable as both the numbers of
contingencies and discrete variables can be huge, thousands or
more in the real-world industrial OPF problems. Therefore, in
the industrial practice, given the stringent time constraint to
provide a solution, achieving global optimality of the OPF
solution is often not the primary concern since it can be
too time-consuming [14]. Although the solution method for
the OPF problem proposed in this paper is not designed to
address the large-scale SCOPF problem, we expect that the
proposed PFR-OPF framework is extensible to incorporate
the security constraints. In fact, due to their fast-response
capability, PFCs and PFRs can be very powerful resources to
perform post-contingency corrective control [5]. The flexible
SCOPF framework proposed in [5] incorporates PFCs into the
corrective SCOPF problem, while the ability to handle a large
contingency set is not discussed. When the PFCs and PFRs are
treated as re-dispatchable resources in the corrective SCOPF
problem, the coupling effect among their post-contingency
decision variables would be a new challenge due to the
nonlinear control regions of PFCs and PFRs, especially for
the phase shifting effect. Hence, existing methods for the
large-scale SCOPF problem, such as contingency selection and
decomposition [12], [14], may not be applicable directly. It is
an important problem and will be our future work.

In recent years, there have been extensive research efforts to
develop convex relaxation methods for the conventional OPF
problems in pursuit of the global optimality [15]-[23]. The
main focus of these convex relaxation methods in [15]-[23],
similar to our work, is to tackle the non-convexity due to
Kirchhoff’s laws, and thus they do not consider discrete vari-
ables. Among these proposals, only [18] studies the SCOPF
problem but it does not account for a large contingency set.
While the local solution techniques usually find the global
optimal solutions in practice [14], they may fail to converge
or converge to a local optimum [13], [24]. Moreover, they are
unable to guarantee global optimality of the solutions. The
second-order cone programming (SOCP) relaxation is able to
globally solve the OPF problems for the radial networks that
satisfy certain technical conditions [17], [23]. The semidefinite
programming (SDP) relaxation has received much research
attention [15], [18], [19], [21] since it is able to obtain the
global optimal or near-optimal solutions for a broad class of
meshed networks. Voltage phasors can be recovered success-

fully from the solution if the rank of its matrix variable is equal
one. While the structure of feasible region and the existence
of local optima may render the SDP relaxation unable to
produce a physically meaningful solution [24], penalization
[18], [19] and Laplacian-based [21] approaches have been
proposed to encourage a rank-1 solution so that a feasible
and globally near-optimal solution to the original non-convex
OPF problem can be obtained for many test cases, including
some large networks with up to 3000 buses. Recently, the
SDP relaxation have been generalized to a family of “moment
relaxation” [16], [20], [22] which is essentially a polynomial
optimization approach and seeks to attain tighter relaxation
by gradually increasing the order of relaxation if the lower-
order relaxations fail. While higher-order moment relaxations
are able to globally solve a broader class of OPF problems
comparing to the first-order relaxation, i.e., the SDP relaxation,
the computational cost grows very quickly as the relaxation
order increases [16]. Therefore, sparsity-exploiting technique
[20] has been proposed to reduce the computational burden.
And penalization approach [22] has also been adopted to
improve numerical performance when a near-optimal solution
is obtained.

To pursue global optimality of the PFR-OPF problem, we
derive an SDP relaxation of the original problem. While there
is much research on the convex relaxation of the conventional
OPF problem [15]-[23] as discussed, we found no existing
work that applies it to an OPF problem with PFCs or PFRs.
The convex relaxation for the PFR-OPF poses a new chal-
lenge that has not been studied before. Since the relationship
among the terminal voltages of a PFR is highly nonlinear
and non-convex due to the enhanced voltage controllability,
it is difficult to construct a relaxation that preserves such
coupling and leads to an exact solution for successful recovery
of voltage phasors. While it has been shown that the SDP
relaxation is able to handle variable real transformer ratios
and shunt elements [15], the exact relaxation for the series
injected source of PFC and PFR, such as the phase shifter,
has not been tackled yet. In fact, existing research on the
SOCP relaxation [17] assumes that phase shifters possess
unlimited phase-shifting capabilities or their capabilities would
not be the binding constraints so as to avoid incorporating
the nonlinear phase-shifting effect into the OPF problem.
However, this ideal assumption may not always hold. In this
research, we account for the capability of phase shifters and
model the phase-shifting effect explicitly in PFR-OPF problem
as well as its SDP relaxation. It is achieved by relaxing part
of the coupling constraints and incorporating the regularization
terms that favor an exact solution into the objective function.
As verified in our numerical tests, such regularization helps
improve the quality of the solution significantly while it only
has a negligible effect on the optimal value of the original
objective. In addition, we show excellent compatibility of the
proposed PFR model in the sense that existing techniques for
improving the performance of the SDP relaxation, such as the
penalization method to solicit a low-rank solution [18], [19],
and the graph-theoretic decomposition method to reduce the
computational complexity [18], can naturally be adapted to
our PFR-OPF framework. Although the SDP relaxation may



fail to find a physically meaningful solution for a few power
networks with certain configurations as studied in [20], [22],
[24], the remedial approaches [18], [19] adopted are able to
improve its quality of solutions significantly and broaden its
range of applicable cases, such as the network with up to
3000 buses as evaluated in our numerical study in Section
V. The generalization of the SDP relaxation for the PFR-
OPF problem into the higher-order moment relaxation is an
ongoing research and remains challenging since the phase-
shifting effect would render the rectangular representation of
voltage variables in the moment relaxation [16], [20], [22]
nonlinear and hence difficult to relax as the relaxation order
goes above one. Nonetheless, we consider that this research
may serve as the initial efforts to apply convex relaxation to
the OPF problem with a set of nonlinear control variables for
voltages.

To summarize, we propose a generic PFR model and an OPF
framework incorporating PFRs. Our contributions are listed as
follows:

o The proposed PFR model encapsulates the desired fea-
tures of PFRs, and is amenable for implementation and
for the theoretical study of power flow routing.

o The load flow model of PFRs is developed and incor-
porated successfully into the OPF framework for power
flow analysis and grid optimization.

o« We derive a computationally efficient SDP relaxation
of the PFR-OPF problem and design the regularization
method to facilitate a rank-1 solution. The benefit of PFRs
in enhancing the system loadability is evaluated by the
proposed framework.

This paper extends our prior work [25] with substantial

differences and improvements as follows:

o This paper improves the PFR model by designing a
generic formulation of the branch terminal voltages so as
to adapt the model to various grid components including
conventional buses and PFCs.

o This paper solves the PFR-OPF problem through an
SDP relaxation, which is more realistic than the SOCP
relaxation in [25], which requires a sufficient number of
ideal phase shifters to ensure exact relaxation.

o This paper compares the results of the non-convex and
relaxed PFR-OPF problems, and analyzes the quality of
the SDP solution by varying the penalty coefficients.

The remainder of this paper is structured as follows. In

Section II, the generic architecture of the PFR model is
proposed. In Section III, the load flow model of PFRs is
developed and incorporated into the OPF framework. Then,
the PFR-OPF problem is relaxed and solved through the SDP
relaxation in Section IV. Case studies are presented and the
numerical results are analyzed in Section V. Finally, Section
VI draws the conclusions.

II. GENERIC MODEL OF POWER FLOW ROUTERS

A PFR can manage all of its incoming/outgoing power flows
intelligently, and coordinate with other grid components to
maintain the system stability. In general, a PFR should achieve
the following functions:

Branch
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—— Power Flow Grid
_ Information

Flow

Power Flow Router
(tine Prc) . (tine PFC} . (tine Prc) .

Common
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| | | | |
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Fig. 1. Proposed architecture of a power flow router.

Transformer  Voltage Injection

Line PFC

Common Bus Branch Power Flow

Fig. 2. Functional schematic of a line power flow controller.

« interconnection and coordination of multiple bidirectional
branch power flows at different voltage levels;

« autonomous control of individual branch power flows;

« independent control of the active and reactive power flows
for each branch;

¢ supporting various types of interfaces for local power
injections at different voltage and power levels;

o voltage regulation and reactive power compensation; and

o power buffering and energy storage.

Based on the above design objectives, we propose a generic
architecture of PFR as shown in Fig. 1. Existing designs of
PFR [4], [6], [7] can be viewed as some particular embodi-
ments of the proposed architecture. Two major types of power
flows, namely, branch power flows from/to other PFRs/buses,
and local power injections, are injected to a PFR. Within
the PFR, all power flows share a “common bus,” which is
analogous to the conventional bus, after passing through the
respective PFCs or interfaces. The control capabilities of PFCs
enable the autonomous control of the corresponding power
flows.

The “line PFC,” whose functional schematic is shown in
Fig. 2, connects the external transmission line to the common
bus of the PFR, and controls the corresponding branch flow.
The line PFC consists of a controllable transformer and a
series-injected voltage source. The transformer is used to
adjust the voltage of the branch power flow to the same level
as that of the common bus. Primary control of the power flow
is achieved by controlling the series-injected voltage source,
similar to the control mechanism of some existing PFCs, such
as the unified power flow controller (UPFC) [3].

The local power injections are categorized into five types,
namely, energy storage, dispatchable generation, intermittent
RES, critical load, and elastic load. Energy storage acts
as an energy buffer. The RES power is interfaced by the
“RES PFC” which regulates the RES power, such as reactive



power compensation and voltage regulation. Local demand is
classified into the critical load and the elastic load. The former
has to be met in real time while the latter may be a deferrable
load or a non-critical load managed by the “load PFC”. The
“load PFC” that interconnects the common bus and the elastic
load can be an electric spring [26] to regulate the common
bus voltage and absorb the fluctuations of the RES power.
The energy storage, dispatchable generator, and critical load
would be connected to the common bus through respective
interfaces.

The operations of the PFCs and interfaces are coordinated
by a central processing unit (CPU) which is the central con-
troller of the PFR. PFRs can also communicate and coordinate
with each other via some other controllers in the network.

It should be noted that the architecture given in Fig. 1 is
an ideal configuration. A practical PFR may sacrifice certain
power flow control capability to strike a balance between the
control capacity and the cost of the device.

III. LoAD FLOwW MODEL AND OPTIMAL POWER FLOW
A. Load Flow Model of Power Flow Router

The load flow model of a PFR is developed based on the
PFR model discussed in Section II. Consider a power network
with N buses modelled as a connected undirected graph,
denoted by G = (N, €) with the bus set N := {1,2,...,N}
and the set of transmission lines or branches & C N x N.
A branch (i, k) € € with its two terminal buses i,k € N is
modelled by the equivalent 7 circuit with the line admittance
Yik = Gik + jbik, where g;r > 0 and b;; < 0 denote the
conductance and susceptance of branch (i, k), respectively,
and the shunt capacitance c;z; = cx; > 0 as illustrated in
Fig. 3. Denote the set of one-hop neighbors of each bus i € N
as ©; C N. Note that Branch (i,k) and Branch (k,i) are
regarded as the same branch since G is undirected.

By abuse of notation, we denote the PFR installed at Bus
1 € N as PFR i. The branch power flows and the local power
injections of Bus ¢ are interfaced to PFR ¢. The common bus
of PFR i is characterized by the voltage V; € C analogous to
that of a conventional bus, with the operation range given as:

Ui,min S |Vv1‘ S Ui,m,ar (1)

where the operator || takes the magnitude.

For each one-hop connected Bus/PFR k € (2; of PFR 1,
we define a “branch terminal voltage” V;, & C, indicating
the terminal voltage of PFR 4 for Branch (i, k). According to
Fig. 2, the relationship between the common bus voltage V;
and the branch terminal voltage V;, can be modelled by:

Vi, = T5, &P (14 7,V )

where 3;, € R is the phase shift of the transformer, and
T;, € R represents the transformer ratio. Moreover, as a
common practice for the series voltage compensation [1], [3],
we assume that the series voltage that the line PFC can inject
is a fraction 7;, € C of the voltage T}, ¢V, which is
equal to the grid-side voltage of the line PFC when the series
voltage compensation is zero. In addition, the line PFC, as a
power electronic device, of PFR i in branch (i, k) may possess

z.
Vik |—> Sik —k Ski<—| Ve
—T

V:H prc

PrC HV,

—_=L— jcik Iik jcki 1_—

Fig. 3. Notations for a branch (4, k).

certain extra capability of reactive power compensation which
is modelled by the reactive power injection Q)¢;, € R. The
controllable ranges of T;,, G;, , Vi,, and Qc¢;, are constrained
by respective upper and lower bounds as follows:

T smin < Tiy, < Tjy, maa 3)
Bi,min < Bix < Biy,mas €]
0 < Vi | < 7ig;maa &)
Qciy,min < Qci, < Qciy,mas (6)

where 7;, maz € [0, 1] characterizes the capability of the series
voltage injection.

Denote the complex power flow from PFR i to Bus/PFR
k € Q; as Sip = Pip + jQqr which satisfies Ohm’s law as:

Sir = Vi, (Vi — Vi) vyl — i Vi cin (7)

where * denotes the conjugate operator of a complex number.

Symmetrically, the branch terminal voltage V};, on the other
end of Branch (i,k) and the complex power flow Sj; are
modelled as:

Vi, = Tkieﬂah (1 + Vi ) Vi ®)

Ski = Vi Vi, = Vi) "yl =3 1V * e ©)

Let S; = P; + jQ; denote the complex power of the aggre-
gate local power injection of PFR <. Then, if the conversion

losses of the line PFCs are neglected, the power balance
equation for PFR ¢ is formulated as:

Si= Y Si.

keQ;

(10)

From (7) and (9), the branch power flows S;; and Sp;
are controlled by the terminal voltages V;, and Vj, of the
two buses/PFRs on both ends. According to (2), for a fixed
common bus voltage V;, each terminal voltage {V;, |k € ;}
of PFR ¢ can be controlled autonomously by the corresponding
line PFC. On the other hand, the PFR is more than a simple
aggregation of a number of PFCs since the terminal voltages
of the PFCs in a PFR are not completely independent and
are actually coupled weakly by the common bus voltage.
This feature is characterized by the proposed PFR model.
PFRs enable larger controllable ranges of the branch terminal
voltages than the voltages of the conventional buses. Hence,
the achievable region of branch power flows of PFRs is greater
than those of conventional buses. The enlarged control regions
contribute to reduction of transmission losses, relief of grid
congestion, and improvement of power transfer capability.

Since the focus of this study is on the modelling and
optimization of branch power flows, we do not go into details
on the load flow models of the local power injections. In this
paper, we only consider the simple power injection models
of conventional generators and critical loads as formulated



in Section V-A. Nonetheless, existing sophisticated power
injection models, such as the smart load model [27], can be
incorporated directly into the PFR model.

The load flow model of PFR given in (1)—(10) is versatile
and applicable to various types of grid components, including
conventional buses and PFCs, by setting proper lower and
upper bounds of the parameters in (3)—(6).

B. PFR-Incorporated Optimal Power Flow

The load flow model of PFR developed in Section III-A will
be incorporated into the OPF problem. The OPF with PFRs is
different from the conventional OPF since the bus voltage has
evolved into several branch terminal voltages when the PFR
is attached to the bus. Define the set of the variables as:

ﬁikaﬂlw'Yi,w’kaQCikaCki)W?k‘) S 5} (11)

We minimize a global objective function f of the power net-
work, subject to the power balance constraints at PFRs/buses,
the constraints for the control regions of PFRs, and the
constraints for branch power flows. The general form of the
PFR-incorporated OPF (PFR-OPF) is formulated as follows:

rn)énf (12a)
subject to
|Sikl s [Skil < Sikmaz, V(i k) € E (12b)
(1), (10), Vi e N (12¢)
2)—(7), Vi e N,k € Q; (124d)

The constraint in (12b) specifies the upper limits of the
branch flow magnitude to protect transmission lines. Can-
didates for the scalar function f can be any economic or
operational evaluation of the system, such as the generation
cost or the system loadability which will be studied in Section
V.

The PFR-OPF problem in (12) extends the conventional
OPF problem by augmenting the controllable ranges of the
conventional buses. Therefore, the PFR-OPF problem is non-
convex and non-deterministic polynomial-time hard (NP-hard)
like the conventional OPF [15] due to the non-convex feasible
region of power flows determined by (7) and (10). Moreover,
the PFR-OPF problem entails a higher computational com-
plexity than the conventional OPF problem because of the
increase in the problem size and the nonlinear relation between
the common bus voltage and the branch terminal voltage as
indicated in (2). Nonetheless, since the power network in
general is sparse with a small edge-to-vertex ratio, the increase
in the problem size from the order of the number of buses to
that of the number of branches is almost linear.

IV. CONVEX RELAXATION
A. Semidefinite Programming Relaxation
Inspired by the methods proposed in [15], [18], [19] for
convexifying the conventional OPF problem, we propose a

method to relax the PFR-OPF problem in (12) into an SDP
problem to seek the global optimal solution.

We introduce the auxiliary matrix variable W € C2*2E

corresponding to the branch terminal voltages as:

W:=VV* 13)

where V € C?¥ is defined as a column vector obtained by
stacking the paired voltages V;, and V}, for every branch
(i,k) € £. If W replaces V in the PFR-OPF problem in (12),
there are at least two additional constraints to be included in
the formulation so that V can later be recovered from W.
The first constraint is W = 0, which means W is positive
semidefinite. The second one is rank{W} = 1, which means
the rank of W is equal to one. Without this rank constraint,
the original non-convex power flow region determined by (7)
and (10) is relaxed into a convex region. However, different
from the existing studies [15], [18], [19] on the SDP relaxation
for the conventional OPF problem, such relaxation does not
suffice to render the PFR-OPF problem convex due to the
highly nonlinear relationship between the common bus voltage
and the branch terminal voltage of a PFR modelled in (2).
To tackle this issue, we develop a relaxation method which
can not only preserve the coupling between the terminal
voltages of the PFR but also produce a rank-1 solution W ;¢
for successful recovery of the voltage phasors. For ease of
presentation, we label the diagonal entries of W as:

Wi, = Vie|? Vi € Nk € Q, (14)
and the off-diagonal entries of W as:
Wit = Vi, VL Vi, e Nk € Qi,m e (15)
Then, taking the magnitude squared of (2), we get:

Wi, =1L, 1 W; (16)

where W;, 11;,, and IT';, are defined as:
Wi = |Vi|* VieN (17)
IL, =T ,Vie N, ke (18)
Loy o= 14,7 Vie N, ke (19)

Note that the angle variable (3;, in (2) disappears after we
determine its magnitude. According to (3) and (5), the feasible
regions of II;, and I';, are convex. Hence, (3), (5), and (16)
can be combined into one constraint as follows:

Tii-,min(l - ,yik>maz)2Wi < Wlk (20)
< Tfkmaw(l + %mmamywivVi € Nv ke Qi

Constraint (20) is convex since the feasible region of W; is
linear according to (1) and (17).

To account for the phase-shifting angle variable 3;, in (2)
and Constraint (4) while ensuring convexity, we propose to
limit the angular difference between any two branch terminal
voltages of the same bus/PFR by:

aikil,min S AWikil S eikil,maacaVi S N, k 7é le Qi; (21)

where 6;,, min and 0;, i, maqz are the lower and upper bounds,
respectively, of the angular difference /W, ;, between V;, and
V;,. Due to the stability concern, a large phase shift between
the two branch terminal voltages should be avoided. Hence, we

assume that ZW;, ;, € [~F, §], which also makes Constraint



(21) convex. Then, we can derive the values of 6;,;, min and
0i,.i,,maz Dased on (2)—(5) as follows:
oikil,7nin = max{ﬁik,min - ﬁil,maz — arcsin Vi, max

22
— arcsin ixrna:ry_z Nie/\/‘,k#leQi.( )
Vi, 51

eikil,maz = mln{ﬂik,ma:v - Bihmin + arcsin Yii ,max

23
+arcsin%hmam,g},wEJ\/',kyélGQZ-. 23)

From (21)-(23), we have Re{W;,;,} > 0, where Re{-} is
the operator for getting the real part. Thus, Constraint (21) can
be explicitly expressed in the convex form as follows:

Re{Wikiz } tan eikihmin < Im{Wikil}

S Re{Wikil}tanﬁikihmm,Vi S N, :ZC 7é l € Qi, (24)

where Im{-} is the operator for getting the imaginary part.
Then, we derive a constraint to account for the coupling
between W; and W; According to (21)-(23), we have:

(25)

ki
COs 4Wikil > cos(max{|9ik,»hmm\ ) ‘aikiz,’mmK'})
According to (2)—(5), we can obtain:

‘Wzk21| 2 WszA,mznTz,,mzn (]- - ’Yik,ma:r) (]- - ’Vil,maaz) (26)

Re{ Wj,

Note that cos /W, ;, = W, ?"'r}. Hence, from (25) and
X3

(26), we can obtain the relationship between W; and W, ;, as:

Re{Wikil} Z WiTik,minTil,min (1 - ’Yik,mazv) (1 - ’Yihmacv)
Cos(max{|9iki,,min| 9 |9iki,,maz|})7V7; S Na k 7& le Q’L (27)

We have developed the convex constraints (20), (24), and
(27) to relax the non-convex constraint (2) and to account for
the operation range of the PFR specified in (3)-(5). However,
they are still not sufficient to make the optimal solution W ;¢
of the relaxed problem to be rank-1, since PFR enlarges the
controllable ranges of its branch terminal voltages. Thus the
off-diagonal entries W;,;,,Vi € N,k # | € Q,, related to
PFR ¢ are only coupled weakly with the diagonal entries of
‘W. Under such circumstance, most numerical algorithms tend
to result in the highest-rank SDP solution, even though a
rank-1 solution may exist. To address this issue, we introduce
a regularization term h, that favors a low-rank solution to
the original objective function f. As discussed in [18] and
[28], a penalty function that minimizes a weighted sum of the
diagonal entries as well as maximizes a weighted sum of the
off-diagonal entries W, ;,,Vi € N,k # | € §;, can serve this
purpose. Therefore, we formulate the regularization function
h,. as follows:

h, = Z Z (Wi, + Wi, — Wi,

i€EN k<leQ;

We summarize the SDP relaxation for the PFR-OPF prob-
lem. Define the penalty coefficient for the regularization h,. as
e, > 0. We also define the set of the variables of the relaxed
PFR-OPF problem as:

X ={W}U{(S;, Wy)|i € N} U{(Six, Sk,

Qciy, Qck,)| (4, k) € £} (29

The relaxed PFR-OPF problem is formulated as follows:

min f + &, h, (30a)
X
subject to
Si= Y (S +iQci,),Vie N (30b)
keQ;

Sik = (Wlk — Wikki)ka — jWikcik7Vi S N, ke Qi(300)

Ul ppin S Wi S U ans Vi €N (30d)
Qciy,min < Qciy < Qciymaz,Vi € N, ke Q;  (30e)
|Sik] ;s |Skil < Sikmaz, V(i k) € E (30f)
W - 0 (30g)
and (20), (24), (27) (30h)

Note that for a conventional bus 7 without a PFR or PFC,
the corresponding penalty in (28), (W;, + W;, — W;,;, —
Wi ), Vi < 1 € Q;, is kept constant by Constraints (20),
(24), and (27). In fact, the regularization ¢,.h, has a negligible
effect on the optimal value of the original objective while it is
very effective in yielding a rank-1 W ;. This will be verified
by our numerical tests in Section V.

B. Adapted Techniques for Performance Improvement

While the SDP relaxation for the OPF problem can facilitate
the search of the global optimum, the number of scalar
variables of its semidefinite matrix variable, such as W, grows
quadratically with the size of the power network. Besides
the issue of high dimensionality, the SDP relaxation may
not always result in a rank-1 matrix solution depending on
the problem formulation [18], [19] and the values of line
admittances [15]. While the relaxed PFR-OPF problem in
(30) will also experience these issues, we show that the
graph-theoretic decomposition method proposed in [18] for
reducing the computational complexity and the penalization
method in [18], [19] for soliciting a low-rank solution can be
adapted naturally to our PFR-OPF framework to ameliorate
the situation.

As discussed in [18], the semidefinite constraint on the
square matrix variable related to the bus voltages can be
replaced by a set of semidefinite constraints on some prin-
cipal submatrices of the matrix variable without affecting the
optimality of the relaxed problem according to the chordal
theorem [29]. The dimensions of those principal submatrices,
which are constructed from a tree decomposition of the power
network, are much lower than the full matrix variable due to
the sparsity of the network [18]. The interested readers may
refer to [18] and the references therein for information about
the tree decomposition and its algorithm. By adopting the
definition and notation of the tree decomposition in [18], we
denote the bags of a tree decomposition of the power network
as J1,J2,...,Ju € N, where M is the number of bags.
Note that each bag J,,,,m = 1,..., M, is a subset of the bus
set \. Construct the set Z,,, := {W;, |i € T,k € ;}, which
consists of W’s diagonal entries that correspond to the branch
terminal voltages of the buses/PFRs in J,,,m = 1,..., M.
Let W{Z,,} be the principal submatrix of W formed by the
intersected rows and columns containing the elements in Z,,.



Theorem 1: The optimal objective value of the relaxed PFR-
OPF problem in (30) does not change if its constraint W > 0
is replaced by the constraints as follows:

W{Z,} =0,vm e {1,2,...,M}. (31)

Proof: This theorem is a direct variant of Part 2 of
Theorem 1 in [18] to fit into our PFR-OPF framework. Since
the bus voltage has evolved into several branch terminal
voltages in the PFR model, we replace the bus-related variables
in Part 2 of Theorem 1 in [18] by the branch-related variables
in Theorem 1 in this paper. Constraint (31) preserves the
structural information of the tree decomposition of the power
network. Therefore, the rest of the proof follows from Part 2
of Theorem 1 in [18] and the chordal theorem in [29]. [ |

Theorem 1 allows us to reduce the computational complex-
ity of the SDP relaxation remarkably. Take the IEEE 118-bus
system [30] as an example. There are 186 branches in the
system, and thus W is a 372 x 372 matrix. However, the
submatrix with the largest size among all of the M = 117
submatrices in (31) according to the tree decomposition results
is merely a 28 x 28 matrix which is less than 0.57% of the
size of W.

Furthermore, to pursue a rank-1 solution of the SDP re-
laxation, [19] proposes to penalize the total reactive power
generation, and [18] further proposes to penalize the apparent
power loss over the series impedance of the transmission
lines. While both methods can be incorporated into the PFR-
OPF problem easily, we use the latter in this paper since
it is formulated by the entries of W explicitly and allows
flexibility to adjust the total penalty by modifying the set of
the penalized transmission lines. Similar to [18], define the
apparent power loss over the series impedance of Branch (i, k)
without incorporating the shunt capacitance as:

Lix, = |Sir. + jWiy cik + Ski + Wi, cril
= |W'Lk + Wi, — Wik, — Wkiik‘ |y:k| (32)
Denote the set of branches that are selected for the penalty
as L, C &. A convenient and safe choice of L4 is to
make it equal to the branch set £ of the network. [18] also
proposes a heuristic method for designing L. Define the
penalty coefficient for apparent power losses as €5 > 0.
We summarize the two adapted techniques for improving the
performance of the SDP relaxation and formulate the improved
relaxed PFR-OPF problem as follows:
min f + ,h, + &, Z L (33)
X .
(i,k)ELS

subject to (30b)—(30f), (30h), and (31).

The improved relaxed PFR-OPF problem in (33) is modified
from the relaxed problem in (30) by adding the penalization
term of apparent power losses to the objective function, and
replacing the original SDP constraint in (30g) by a set of SDP
constraints in (31) according to the tree decomposition results
of the power network.

V. CASE STUDY
A. Problem Specification and Performance Metric

We investigate the impact of PFR integration on system
loadability. According to [31], the loadability can be assessed
by increasing all of the loads by a loading factor A > 0 until
the system reaches the critical state. Therefore, as a specific
implementation of the PFR-OPF problem, the local power in-
jections are categorized into the reactive power compensation
of the PFRs, the critical loads, the dispatchable generators with
the operation ranges as follows:

Si = (Pai = Pri) +§(Qai — Qui+ Y, Qi) Vi € N (34)

keQ;

Pri +jQri = MPrio +jQrio), Vi € N (35)
PGi,min < PGi < PGi,maLMVi € N (36)
QGi,min < QGi < QGi,mamaVi € N (37)

where Pg; and QQ; denote the active and reactive generations,
respectively, of the generator at Bus/PFR 7,7 = 1,...,N.
Their controllable ranges are specified in (36) and (37),
respectively. Pr; and (Qp; denote the active and reactive loads,
respectively, at Bus/PFR i. Pr;o > 0 and Q0 € R are the
base active and reactive loads, respectively, at Bus/PFR 1.

To evaluate the loadability, each of the three versions of the
PFR-OPF problems in (12), (30), and (33) is extended by con-
sidering \, Pgi, Qai, Pri, Qri,i = 1,..., N, and Constraints
(34)—(37). Finally, the objective function f is set as:

f:_ZPLi

iEN

(38)

We will assess and compare the loadabilities of the power
network under various penetrations and allocations of PFRs
and UPFCs [3]. The reason for choosing UPFCs for com-
parison with PFRs is that the UPFC has similar power flow
control capability as the PFR. The UPFC is one of the most
versatile PFCs and is able to regulate the bus voltage and
control the active and reactive power flow independently [3].
While UPFCs are deployed far less commonly in the real-
world power systems compared to some other FACTS devices,
such as static shunt compensators (SVCs) [3], due to the
currently high costs of UPFCs, existing academic research has
explored and demonstrated the benefits of UPFCs in various
aspects, such as the enhancement of system stability [32] and
reliability [33].

Denote the optimal loading factor as A, obtained by
solving the PFR-OPF problems for loadability assessment.
Aopt Will serve as the performance metric.

B. General Setup

In Sections V-D and V-E, numerical tests are performed
on the standard IEEE benchmark systems with 30, 57, and
118 buses. The parameter specifications of the three tested
systems follow the standard settings archived at [30], except
for the branch flow limits of the 57-bus and 118-bus systems
which are not given in [30]. Without loss of generality, we
set the flow limits of all branches of the test systems with
57 and 118 buses to be 300 MW and 600 MW, respectively,



based on the nominal settings. This set of tests is to investigate
the effect of the penalty coefficients ¢, and ¢ of the relaxed
problem in (33) on the quality of solutions, and to evaluate the
enhancement of loadability with various penetrations of PFCs
and PFRs.

Furthermore, in Section V-F, we investigate the tractability
of the PFR-OPF problem of large power networks with up to
3000 buses. The test systems are seven models of the Polish
power systems included in MATPOWER [34]. The parameter
specifications of the test systems in the simulations follow the
MATPOWER data sets [34].

In this paper, we follow the standard specifications as much
as possible in the numerical tests rather than look for special
test cases by varying the parameters, because we would like
to focus on the modelling of PFRs and its impact on system
loadability, and do not discuss the existence of multiple local
optima of the PFR-OPF problem. Nonetheless, it would be of
importance and part of the future work to study the influence of
PFCs and PFRs on the optimality and the structure of feasible
region. In fact, there is no general method to produce a test
case with multiple local optima since such locality is sensitive
to the parameter specifications and the objective function of
the OPF problem [22], [24].

For ease of analysis, we assume that, for every PFR and
UPFC, the capability of the series voltage injection v;, maz =
0.05, the limits of the branch reactive power compensation
Qcik,maz = —Qcik,min = 0.05 p.u., and the transformer
ratios T3, ’s are equal to their respective nominal settings. For
every phase shifter, the capability of phase shift is set as
Biy,maz = —Biy, min = 5°. The per-unit base is 100 MVA.

The original non-convex PFR-OPF problem in (12) is solved
by the interior point method supported by the NLP solver
IPOPT [35]. For each test case, the power flow solution of
its nominal setting is fed in as the initial solution of the NLP
solver. The test codes are programmed in the Julia language
and its optimization packages [36].

The relaxed PFR-OPF problem in (33) is solved by the SDP
solver of the Mosek toolbox for MATLAB [37]. The test codes
are implemented by CVX [38] in MATLAB.

All the numerical tests were performed in a computer with
a quad-core 3.30 GHz processor and 16 GB of RAM.

C. Allocation Scheme for PFCs and PFRs

In our prior work [25], a greedy algorithm for allocating
PFRs to enhance the loadability is proposed. We apply the
placement algorithm, namely, Algorithm 1, in [25] to de-
termine the locations of the PFCs and PFRs in this study.
The numerical results reported in Sections V-D and V-E
show that this algorithm can achieve very good results. Since
the allocation of PFCs and PFRs is not the focus of the
present paper, the details of the placement algorithm are
omitted. Interested readers can refer to [25]. There is also
other allocation schemes, such as FACTS devices allocation
in [31], available in the literature. We expect that our PFR-
OPF framework can be extended and incorporated into the
existing methods, such as the one in [31]. In this paper, we do
not discuss the cost models of PFRs and UPFCs because our

TABLE I
ALLOCATION RESULTS OF PFRS AND UPFCs TO OBTAIN 99.5% OF THE
MAXIMUM ACHIEVABLE LOADABILITY

Test System Scenario Allocation Result
30-Bus System 2 PFRs Buses 8, 28
y 4 UPFCs Branches (6,8), (6,28), (8,28), (10,22)
3 PFRs Buses 1, 36, 38
57-Bus System Branches (1,15), (13,49), (14,46),
6 UPFCs (24,25), (37, 38), (44,45)
5 PFRs Buses 26, 37, 64, 65, 77
Branches (24,70), (25,26), (26,30),
118-Bus System 3 5ppcs  (30,38), (49,66), (59,63), (63.64), (65,68,

(68,69), (69,77), (75,118), (83,85), (89,92)

focus is on the modelling of power flow routing from an OPF
approach. While the cost model of PFRs is not available in the
literature, some existing works, such as [39], have analyzed the
cost and benefit of PFCs and showed that net financial benefits
can be achieved by optimizing the investment and placement
of PFCs.

In Sections V-D and V-E, we focus on three scenarios of
the system loadability for each of the three IEEE test systems
as follows:

e Maximum achievable loadability: It is achieved by in-
stalling PFRs at all buses of the system. This scenario
will be referred to as “full PFRs.”

e 99.5% of the maximum loadability: PFRs or UPFCs are
added to the system until the loadability reaches 99.5% of
the maximum achievable loadability. This set of scenarios
will be referred to as “Kr PFRs” and “Ko UPFCs,”
where Kr and K¢ are the numbers of PFRs and UPFCs,
respectively, allocated in the network. Table I summarizes
their allocation results of the IEEE systems with 30, 57,
and 118 buses applied in the simulations.

« Baseline loadability: No PFR or UPFC is allocated in the
system. This scenario will be referred to as “baseline.”

Hence, for each of the three test systems, we will compare
and report the results of four scenarios regarding the penetra-
tions of PFRs and UPFCs, namely, “Full PFRs,” “Kr PFRs,”
“Kc UPFCs,” and “Baseline,” in Sections V-D and V-E.

D. Selection of Penalty Coefficients

We investigate the effects of the penalty coefficients e,
and ¢, of the relaxed problem in (33) on the rank of the
optimal solution W ¢ and the original objective value which
is equivalently evaluated by the loadability A,,;. Since the
regularization €, h, is not required for the conventional OPF
problem, we search for an appropriate value of ¢, for the
conventional OPF problem first, and then apply the chosen e
to find an appropriate ¢, for a rank-1 W,,; under a specific
placement of PFRs or UPFCs. Without loss of generality, we
make L, equal to & which is most likely to lead to a rank-1
solution according to [18].

Fig. 4 presents the optimal loading factor A,,; and the rank
of W,,; under various values of ¢, for apparent power losses
with given values of ¢, for regularization. For the results of the
IEEE 118-bus system shown in Fig. 4(c), the two curves of “5
PFRs” and “13 UPFCs” almost overlap. As €, increases and
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reaches a certain threshold, W,; becomes rank-1 while the
obtained A,,; experiences non-negligible decrease if €, keeps
growing. Therefore, the value of ¢, should be chosen carefully
to avoid excessive penalization. Furthermore, the greater the
penetration rate of PFRs or UPFCs, the less the threshold of
s for a rank-1 W ;. The reason is that the voltage control
capabilities of the PFRs alleviate the coupling of the cycles
of the meshed network and thus make them ‘“easier” for the
SDP relaxation to attain a rank-1 solution [19].

Fig. 5 presents the solution \,y; and the rank of W,,,; under
various values of ¢, for regularization with given values of ¢
for apparent power losses. For each of the three test systems,
the two curves of “Kr PFRs” and “Ks UPFCs” almost
overlap. The results show that as long as ¢, surpasses a small
threshold which is no greater than one for each of the scenarios
reported in Fig. 5, the rank of W, stays at one. As €, grows
from 0.01 to 100, A,y decreases very slowly. In particular, for
the IEEE 57-bus system, A,,; remains almost the same when
€, varies as shown in Fig. 5(b). This suggests that the proposed
regularization £,.h, in (33) has almost a negligible effect on
the original objective value, and is very efficient in achieving
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ncreases. For each of the test systems, PFRs or UPFCs are added to the system

a rank-1 W,,,;. Moreover, the greater the penetration rates of
PFRs or UPFCs, the greater the threshold of ¢, for a rank-1
‘W,,,¢. This corresponds to our analysis in Section IV-A that
the weak coupling among the branch terminal voltages of the
line PFCs of a PFR entails the regularization.

E. Loadability Enhancement

The solutions of the original non-convex PFR-OPF problem
in (12) and its convex relaxation in (33) are compared and
summarized in Table II. Based on the findings in Section
V-D, €, and ¢, are set to obtain a rank-1 W,,; for the SDP
relaxation. The solution A,,; obtained by the original PFR-
OPF in (12) is referred to as “A,p: by NLP” because it is
solved by the NLP solver. Correspondingly, the solution A,
obtained by the SDP relaxation is referred to as “A,,; by SDP”
“Accuracy” in Table II represents the accuracy of the SDP
relaxation, evaluated by “X,,; by SDP” as a percentage of
“Xopt by NLP”” “Enhancement” represents the percentage im-
provements of loadability compared to the baseline scenarios
where no PFR or UPFC is available.

As shown in Table II, the optimal loading factor A,p¢
obtained by the SDP relaxation is almost the same as the



TABLE I

SOLUTIONS OF THE NON-CONVEX PFR-OPF AND ITS SDP RELAXATION FOR THE THREE IEEE TEST SYSTEMS

Solution & IEEE 30-Bus System IEEE 57-Bus System IEEE 118-Bus System

Performance | Baseline 4 UPFCs 2 PFRs Full PFRs | Baseline 6 UPFCs 3 PFRs Full PFRs | Baseline 13 UPFCs 5 PFRs Full PFRs
Er 0 0.1 0.1 0.1 0 1 0.1 0.1 0 0.1 0.1 0.1
€s 0.1 0.1 0.1 0.1 1.2 0.1 0.1 0.1 0.1 0.02 0.01 0

Aopt by SDP 1.034 1.650 1.656 1.658 1.076 1.538 1.539 1.546 2.036 2.286 2.291 2.302
Aopt by NLP 1.034 1.650 1.656 1.658 1.077 1.539 1.539 1.546 2.037 2.291 2.291 2.302

Accuracy 100% 100% 100% 100% 99.9% 99.9% 100% 100% 99.9% 99.8% 100% 100%
Enhancement - 59.6% 60.2% 60.3% - 42.9% 42.9% 43.5% - 12.5% 12.5% 13.0%

TABLE III
SOLUTIONS OF THE NON-CONVEX PFR-OPF AND ITS SDP RELAXATION FOR THE SEVEN MODELS OF THE POLISH SYSTEMS
Baseline Some PFRs Full PFRs
System SD)I\’Dpt l;\)I/LP Accuracy SD)I\’OM t;\)I,LP Accuracy  Penetration ~ Enhancement SD/}\)DPt ?\)I/LP Accuracy  Enhancement

PL-2383wp 1.014 1.015 99.9% 1.025 1.026 99.9% 4.11% 1.1% 1.030  1.030 100% 1.5%

PL-2736sp 1.095 1.098 99.7% 1431  1.431 100% 4.27% 30.3% 1.501 1.501 100% 36.7%
PL-2737sop 1.275 1.276 99.9% 1.894 1.894 100% 4.60% 48.4% 1.987 1.987 100% 55.7%
PL-2746wop | 1.289 1.292 99.8% 1486 1.488 99.9% 1.97% 15.2% 1.554  1.557 99.8% 20.5%
PL-2746wp 1.111  1.111 100% 1.250  1.250 100% 1.97% 12.5% 1.270  1.272 99.8% 14.5%
PL-3012wp 1.080 1.083 99.7% 1.149  1.149 100% 1.99% 6.1% 1.161 1.161 100% 7.2%

PL-3120sp 1.117  1.117 100% 1.228 1.228 100% 5.22% 9.9% 1.253 1.253 100% 12.2%

Aopt by the non-convex PFR-OPF problem for each of the TABLE IV

scenarios. This suggests that the proposed SDP relaxation can
obtain nearly optimal results of the PFR-OPF problem. While
the penalization techniques are applied to pursue a rank-1
solution, the SDP relaxation can still obtain solutions which
are nearly optimal. In addition, it does not need a careful
choice of the initial solution, which is necessary for the NLP
method, to yield a good solution of the non-convex PFR-OPF
problem.

Fig. 6 demonstrates the evolution of the system loadability
as the number of PFRs or UPFCs allocated in the network
increases. The results indicate that with just a very small
proportion of the buses or branches installed with PFRs or
UPFCs, the power network can already benefit from a sub-
stantial improvement of loadability. Meanwhile, the marginal
enhancement of loadability by adding a PFR or UPFC to the
network decreases quickly as the number of PFRs and UPFCs
available in the network increases. While the observation on
the UPFC allocation matches with the existing findings on the
allocation problem of FACTS devices [31], our study further
reveals that the allocation of PFRs also possesses a similar
pattern. Furthermore, when we revisit the allocation results in
Fig. 6, Tables I and II together, we can see that the locations
of the UPFCs involves more buses than that of the PFRs
to achieve similar loadability enhancement. Hence, the labor
cost for installation of the PFRs may be lower than that of
the UPFCs. Nonetheless, a comprehensive evaluation model
is necessary to make the most cost-effective decision.

FE. Tractability for Large Systems

In this section, we investigate the numerical performance
of the SDP relaxation and the penalization techniques in the
large power networks with up to 3000 buses. Tables III and
IV summarize the results of the seven models of the Polish
power systems [34]. In Tables III and IV, the abbreviations

COMPUTATION TIMES (SOLVER TIME IN SECONDS) OF THE NON-CONVEX
PFR-OPF AND ITS SDP RELAXATION

System Baseline Some PFRs Full PFRs

SDP  NLP SDP NLP SDP NLP

PL-2383wp 62.6 24.1 68.3 82.9 95.7 101.3
PL-2736sp 1204 46.3 111.6 1369 | 171.9 118.0
PL-2737sop 1139 38.0 | 102.6 99.6 161.2 129.1
PL-2746wop 77.8 455 97.6 114.6 | 157.9 148.7
PL-2746wp 129.1  59.2 | 128.6 1079 | 197.5 155.1
PL-3012wp 93.5 62.9 72.9 128.1 170.1 1419
PL-3120sp 100.3 429 74.8 126.0 | 1583 176.5

[T}

“PL,” “s,” “w,” “op,” and “p” stand for “Polish,” “summer,”
“winter,” “off-peak,” and “peak,” respectively. The scenario of
the system with “some PFRs” is obtained by adding PFRs
to the system so that the loadability is at least 95% of
the maximum reachable loadability, which is similar to the
scenario definition in Section V-C. “Penetration” represents
the number of PFRs added to the system in that scenario to
the number of buses. Other terms in Tables III and IV have the
same meanings as those in Table II. To focus on the scalability
of the algorithm, the results with PFC placement are not
presented. For each of the test cases, we apply the procedure
for determining the penalty coefficients ¢, and €5 presented
in Section V-D to obtain a rank-1 solution to the relaxed
PFR-OPF problem in (33) so that the results are physically
meaningful.

As shown in Table III, the proposed SDP relaxation can
obtain optimal or near-optimal solutions for all of the seven
large networks. Both the NLP and the SDP approaches can
scale well. Each of the seven networks, except the PL-2383wp
system, is able to benefit from significant loadability enhance-
ment ranging from 7.2% to 20% by installing PFRs at only
a small proportion of the buses in the network. Considering
the diversities of the seven test systems in terms of network



sizes, loading conditions, i.e., off-peak and peak, and seasons,
i.e., summer and winter time, the results indicate that the
PFR integration is able to bring remarkable improvement of
loadability in most practical scenarios. Furthermore, while the
SDP relaxation alone may not be adequate to obtain practical
solutions to the PFR-OPF problem, some remedial approaches,
such as the penalization techniques adopted in this work,
can be developed to improve the quality of the solutions
and solve the problem to global or near-global optimality.
Therefore, the convex relaxation approach can serve as a
good alternative to the NLP approach and certify global
optimality of the solutions. As an important future work, we
will work on more sophisticated approaches, such as high-
order moment relaxation, to further improve the exactness and
numerical performance of the convex relaxation of the PFR-
OPF problem.

The corresponding computation times of the NLP and the
SDP approaches are reported in Table IV. Both approaches
converge within two hundred seconds in all the test cases.
It can be observed that, except for the baseline scenario,
the computation times of the two approaches in each test
case do not have a big difference in general. As for the
baseline scenario, the NLP approach requires less time than
the SDP approach in each test case. However, as PFRs are
added to the OPF problem, the NLP approach exhibits an
obvious and consistent increase in the computation times for
each test system due to the increase in problem size and
nonlinearity brought by the control variables of PFRs. On
the other hand, since the dominant computational complexity
of the SDP approach comes from the SDP constraints [18],
the introduction of PFRs has a less significant effect on the
computation time for the SDP approach than for the NLP
approach. For each of the seven networks, the computation
time of the “full-PFRs” scenario is higher than those of the
baseline and “some-PFRs” scenarios. This agrees with the
intuition because the PFR-OPF problem in the “full-PFRs”
scenario has the highest computational complexity among
various penetrations of PFRs.

VI. CONCLUSIONS

An OPF framework incorporated with PFRs is proposed to
facilitate the theoretical study and optimization on power flow
routing. First, the generic architecture with a load flow model
of a PFR is proposed to characterize the desired functions
of the PFR. Then, we formulate the PFR-incorporated OPF
problem which extends the conventional OPF by augment-
ing the controllable ranges of terminal voltages. The SDP
relaxation of the original non-convex PFR-OPF is derived
to pursue global optimality and computational benefits. Our
numerical study on the assessment of the system loadability
shows that the integration of PFRs and PFCs to the power
network can improve the loadability sigificantly, and that the
proposed SDP relaxation succeeds in obtaining the optimal
or near-optimal solution of the PFR-OPF problem. Moreover,
the SDP approach helps certify that the local NLP approach
finds the global optimums in all the test cases. Future work
will generalize the SDP relaxation to a moment relaxation

of the PFR-OPF problem, and further explore other potential
advantages of power flow routing, such as extending the
PFR-OPF framework to the corrective SCOPF scenario, and
the coordinated and dynamic control of PFRs and PFCs to
maintain the power balance and stability of the power network.
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