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Exotic Haldane superfluid phase of soft-core bosons in optical lattices
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We propose to realize an exotic Haldane superfluid (HSF) phase in an extended Bose-Hubbard model on
the two-leg ladder (i.e., a two-species mixture of interacting bosons). The proposal is confirmed by means of
large-scale quantum Monte Carlo simulations, with a significant part of the ground-state phase diagram being
revealed. Most remarkably, the newly discovered HSF phase features both superfluidity and nonlocal topological
Haldane order. The effects induced by varying the number of legs are furthermore explored. Our results shed
light on how topological superfluid emerges in bosonic systems.
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I. INTRODUCTION

Searching for a novel topological phase is at the frontier
of condensed-matter research [1]. Recently, apart from signif-
icant interests on topological insulators [2,3] and topological
metals including semimetals [4,5], a topological superfluid
(TSF) phase as an exotic quantum phase has also been attract-
ing more and more attention. The TSF is not only of fundamen-
tal importance, but also has potential applications for topolog-
ical quantum computing [6,7]. A variety of schemes have been
proposed to realize fermionic TSFs [§—18]. However, an idea to
realize bosonic TSF, which is rather distinct from the fermionic
one and how to probe it in a controllable way are still badly
awaited.

An ideal experimental platform to quantum simulate a non-
trivial condensed-matter model is an optical lattice loaded with
cold atoms, which has successfully emulated a Bose-Hubbard
Hamiltonian and demonstrated superfluid-Mott-insulator (SF-
MI) transition [19]. This experimental achievement has
led to the renewed interest for Bose-Hubbard-like models
[20,21].

It was recently indicated that a Haldane insulator (HI)
can appear in one-dimensional bosonic systems [22-27]. The
bosonic HI phase was initially found for dipolar bosons [22]
and later in the extended Bose-Hubbard model which in-
cludes a nearest-neighbor boson-boson repulsion [23,24,26].
These HIs were determined in the case of unity filling
where dominant occupation numbers are 0-2. The bosonic
HI is therefore reminiscent of the Haldane phase conjec-
tured for spin-1 systems whose local spin variables are
—1to 1 [28]. In a topological aspect, the Haldane phase
is protected by the lattice inversion symmetry and can
be classified as a symmetry-protected topological phase
[29,30].

A paradigmatic example of fermionic TSF is the inhomo-
geneous topological superfluidity which features modulated
particle density and inhomogeneous SF on one-dimensional
lattices [31]. Recall that the single-chain extended Bose-
Hubbard model hosts a homogenous SF phase [23-26].
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When two such SF chains are coupled by an on-site
repulsive interaction, the particle density modulation may
arise along each chain. The superfluidity thus becomes
inhomogeneous and is possibly compatible with the nonlocal
Haldane order. As a result, a novel bosonic TSF phase,
which we call the Haldane superfluid (HSF) phase, may
emerge.

The structure of the paper is as follows. Section II
introduces the model Hamiltonian. The numerical method
and physical observables are described in Sec. III. Section IV
presents numerical results, and a brief discussion is given in
Sec. V.

II. MODEL HAMILTONIAN

As a test bed for the aforementioned conjectures, we
consider an extended Hubbard model of soft-core bosons on a
two-leg ladder (shown in Fig. 1), which is described by

U
H=—1) (ala; +aah) + > D nilni = 1)

(]

AV minj + VLY nmnj, (1)
(

[ i)

where  represents the hopping amplitude along either chain of
the ladder, U is the on-site repulsion, and V) and V, respec-
tively, are nearest-neighbor repulsions along and perpendicular

to the chains. The operator aiT (a;) denotes the bosonic creation

(annihilation) operator, and n; = aj a; is the particle-number

operator. It is noteworthy that the system can be known as
a Bose-Bose mixture in the sense that each chain hosts a
species [32-36].

Here we focus on the case of unity filling where the Haldane
string order can be stable. The main findings are summarized
as a ground-state phase diagram for V|/U = 3/4, shown in
Fig. 2. In the phase diagram we confirm the existence of
topological phases HSF and HI in a broad parameter region. In
the following, we present Monte Carlo results to demonstrate
the existence of HSF and HI phases and explore how they
behave.
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FIG. 1. An illustration of the present proposal [Hamiltonian (1)].
The bosons interact via a nearest-neighbor repulsion along chains
(V}), a repulsion across chains (V), an on-site repulsion (U), and
can hop to nearest-neighbor sites along chains with the energy —z.
The bosons on two chains (of two species) are colored in magenta
and cyan, respectively.

III. NUMERICAL METHOD AND PHYSICAL
OBSERVABLES

We perform large-scale Monte Carlo simulations for
model (1) using an unbiased algorithm of a worm-type
update that works in continuous imaginary time [37-39]. This
algorithm is still efficient in rather difficult cases [40]. Our
simulations are carried out in a canonical ensemble with a
broad range of chain lengths L € [64,512]. To guarantee that
the ground-state information is obtained, we decrease temper-
ature until its effect is negligible. The lowest temperature we
use to check every conclusion is lower than g = 512.

The following observables are sampled to reveal ground-
state properties. Superfluid density is evaluated via winding
number fluctuations [41],

L2—d (WZ)
=" 2
where W represents the winding number of a world-line
configuration and d = 1 is the effective dimension. We also
measure correlation functions that reveal crystalline order,
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FIG. 2. The ground-state phase diagram of model (1) with
V,/U = 3/4. Quantum phases on the phase diagram include charge
density wave (CDW), HI, HSF, and SF. The dotted green path is
described in Fig. 3, whereas the blue one is discussed in Figs. 4-6;
the extensions to multileg ladders, corresponding to the two colored
circles, are also illustrated in Fig. 6.
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TABLE 1. The classification of quantum ordered phases—CDW,
SF, HI, MI, HSF, and supersolid (SS)—via the robustness of measured
observables as L — oo and  — oo.

Ps O(Linax) O (Lnax) Op(Linax)
CDW =0 #0 #0 #0
SF #0 =0 =0 =0
HI =0 =0 #0 =0
MI =0 =0 =0 #0
HSF #0 =0 #0 =0
SS #0 #0 #0 #0

Haldane string order, and parity, respectively, which are
defined as

O.(i — jI) = (=D"8n;8n;),

i1
o,(li — jh) = <8n,~ exp (i@ Z(Snk)Snj>, 3)

k=i

j—1
O,(li — j) = <exp <i9 Z(Snk>>,
k=i

where én; = n; — i1 represents the particle-number fluctuation
from average filling 7 (this paper focuses on i = 1); 0 =7
denotes the topological angle, corresponding to the maximum
of O(f) in the Haldane phase of the spin-1 system that
is analogous to the present model [42]. The measurements
are taken along the chains, and the symbol |i — j| denotes
the distance between two lattice sites along the chains. To
explore long-range correlations, we pay special attention to
O (Linax), Os(Lmax), and Op(Lmax) With Ly, as the maxi-
mum horizontal distance between two sites. Our simulations
are carried out on periodic lattices such that L, = L/2.
Table L illustrates how these observables are used to distinguish
among the quantum ordered phases.

IV. MONTE CARLO RESULTS

We concentrate on a typical ratio of intrachain nearest-
neighbor repulsion and on-site repulsion, the same as that
in Ref. [24] V|/U =3/4. At V; = 0 model (1) reduces to
the single-chain extended Bose-Hubbard model which hosts
a bosonic Haldane insulating phase [22-26]. Our results
are consistent with those in Ref. [24]: As ¢ increases there
appear in order CDW, HI, and SF phases, separated by a
CDW-HI transition at /U = 0.21(1) and a HI-SF transition
att/U = 0.32(1). In the following, we will consider the cases
that interchain repulsions are turned on, i.e., V;, > 0.

First, we explore the stability of HI against the interchain
interaction. Figure 3 shows the Monte Carlo results for
t/U = 1/4 to reveal whether and when the HI disappears. For
each considered value of V, /U, we find in the thermodynamic
limit that o, = 0. Therefore the system is always insulating.
As V| /U increases, a phase transition occurs at V, /U =~
0.022 beyond which the bosons form a CDW phase. This
transition is reflected by a sharp increase in O.(Lp,y) from
0 to a finite value. Furthermore, the Haldane string order
is robust under weak interchain interactions and persists for
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FIG. 3. Quantities p;, Oc(Lmax); Os(Lmax), and O,(Lay) versus
Vi/UatV/U =3/4andt/U = 1/4.

0 < V. /U < 0.022(4). Therefore, the HI phase is stable under
weak interchain interactions.

As interchain repulsions are present, the topological HSF
phase emerges. As shown in the phase diagram (Fig. 2), the
HSF phase is sandwiched between HI and SF phases. It is
crucial to analyze the effects induced by strengthening the
hopping of the bosons which are in a HI phase and to see how
they become SF. As demonstrated in Fig. 4 for V, /U = 1/25,
we determine four quantum ordered phases: As ¢ increases,
the CDW, HI, HSF, and SF phases appear sequentially and are
separated by three transitions. The CDW-HI phase transition
occurs att/U = 0.27(1). Whereas O;(Lax) is robust on both
sides of the transition point, the crystalline order parameter
O.(Lmax) vanishes in the HI phase and remains robust in the
CDW phase. The transition point can be determined via the
sudden decrease in O.(Lmax). The superfluidity emerges at
t/U =~ 0.33 which is estimated via the evaluation on where the
variation of p, is most drastic. Surprisingly, the Haldane string
order does not vanish immediately. The existence of both string
order and superfluidity reveals a novel topological phase which
we term HSF. As ¢/ U further increases, the string order finally
vanishes while the SF density persists, and the system becomes
SF. The precise determination of the HSF-SF transition point
is difficult since the amplitude of string correlation in the HSF
phase is already weak (but finite). Here we employ a similar
treatment as that in Ref. [25] and plot L O (L, ) for different
lattice sizes. On the SF side and as L — oo, one expects
O;(Lmax) o< L™1. Therefore, the L O;(L nax) curves of different
sizes come to merge together at the transition point, which is
estimated to be /U = 0.42(1). Correspondingly, a more or
less useful signal can be found from p; data: On the SF side
ps 1s almost a constant as /U changes whereas on the HSF
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FIG. 4. Quantities py, Os(Lpax), and O.(Ly.x) versus t/U at
Vy/U =3/4and V| /U = 1/25. The inset of the lower panel is for
scaled string order parameter L O;(L,x) and focuses on the HSF-SF
transition.

side it varies more quickly. These evidences together indicate
a HSF-SF transition, occurring at ¢t /U = 0.42(1).

To further confirm the existence of the HSF phase and
the HSF-SF transition, we perform finite-size scaling on p;
and Oy (Lnax) at low temperatures for different 7/ U’s that are
not far away from the estimated HSF-SF transition point. As
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FIG. 5. Finite-size scalings of p; and O(Lmay) at different?/U’s
with V/U =3/4and V, /U = 1/25. The main (inset) panels are for
B =512 (256). The t/ U ratios are 0.38 (HSF), 0.4 (HSF), 0.46 (SF),
and 0.48 (SF). The dotted lines indicate extrapolations to the infinite
chain.
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FIG. 6. (a) Correlations Cy and C.(L ) in the HSF region with
Vi/U =3/4and V, /U = 1/25. Quantities O;(Lpax) and Oc(Lmax)
versus chain number in (b) HI at V/U =3/4, V, /U = 0.01, and
t/U =1/4,and(c)HSFat V,/U =3/4, V, /U =1/25,andt/U =
0.36.

illustrated in Fig. 5 for both HSF and SF phases, we confirm a
finite SF density as L — oco. When L is large enough, a good
linear fit between O;(L.x) and 1/L is achieved in the SF
phase. In the HSF phase, however, O;(Ln,x) extrapolates to
a finite value as L — oo. In all these scalings the temperature
effects are negligible, indicating that ground-state information
is already obtained. In short, the existence of HSF and SF
phases, respectively, are confirmed on different sides of
t/U = 0.42(1), which is therefore a reliable estimate of the
transition point.

We then discuss the underlying picture of the HSF phase.
To address the possibility of phase separation, we collect
equal-time snapshots of world-line configurations in deep
HSF phases using different initial states and random number
seeds in the simulations. In none of the snapshots do we find
phase separation which can be signaled by separated regions
of Haldane string order. One can imagine two scenarios on
interchain correlations: (i) The symmetry between the chains
is broken, and the bosons on one chain become SF and on
the other form HI; (ii) superfluidity and Haldane string order
are both present in either chain. To distinguish between these
possibilities and get an in-depth understanding of HSF, we
calculate two types of interchain correlations,

Cw = (WrWp)?),
Cc(li — jl) = (dnt,;ént jdng ;0ng ), 4)
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where we set |i — j| = L., = L/2; the symbols T and B
indicate that the measurements are taken on the top and
bottom chains, respectively. As shown in Fig. 6(a) a HSF
regime where Cy > 0 and C.(Ly.) > 0, which hold as L
increases. Thus, in the HSF phase the interchain correlations
stabilize both nondiagonal and diagonal orders. These findings
indicate that both chains exhibit a robust superfluidity as well
as a finite nonlocal Haldane order. Scenario (ii) is therefore
validated, and what we found on each chain is a stable HSF
phase.

V. SUMMARY AND DISCUSSIONS

‘We have mapped out the significant part of the ground-state
phase diagram of weakly coupled chains of the extended
Bose-Hubbard model. In particular, we identified a novel
topological phase, the HSF phase, which has both nonlocal
Haldane order and superfluidity. As shown in Figs. 6(b)
and 6(c), we demonstrate how the nonlocal Haldane order
and the CDW order vary as the chain number increases. It is
found that the nonlocal orders in HI and HSF phases are both
stable and nearly unchanged within the uncertainties indicated
by the error bars.

Our proposal serves as a rather controllable approach to
realize the TSF without any involvement of spin-orbit coupling
and Zeeman field. The existence of the HSF is directly testable
by cold bosons on a two-leg optical ladder where boson-boson
interactions can be tuned via Feshbach resonances. Further-
more, as indicated in Ref. [43], the nonlocal characteristics
of cold bosons can be measured on either leg of an optical
ladder. The other realization of the present Hamiltonian
may be the bosonic mixture on an optical lattice, which
is achievable within state-of-the-art experimental capabilities
[44,45].

Finally, we wish to remark that there are rare examples
of coexisting diagonal and off-diagonal orders in many-body
systems. A paradigm is the SS phase on a lattice, which hosts
both crystalline order and superfluidity, is mostly induced by
simultaneously broken translational and gauge symmetries,
respectively [46]. The HSF phase, a quantum phase that has
both nonlocal Haldane string order and superfluidity, is a new
paradigm.
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