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Identification of critical combination of vulnerable links in transportation 

networks – a global optimization approach   

Abstract: This paper presents a global optimization framework for identifying the most 

critical combination of vulnerable links in a transportation network. The problem is 

formulated as a mixed-integer nonlinear program with equilibrium constraints, aiming to 

determine the combination of links whose deterioration would induce the most increase in 

total travel cost in the network. A global optimization solution method applying a 

piecewise linearization approach and range reduction technique is developed to solve the 

model. From the numerical results, it is interesting and counterintuitive to note that the set 

of most vulnerable links when simultaneous multiple-link failure occurs are not simply the 

combination of the most vulnerable links with single-link failure, and the links in the 

critical combination of vulnerable links are not necessarily connected or even in the 

neighbourhood of each other. The numerical results also show that the ranking of 

vulnerable links will be significantly affected by certain input parameters.  

Keywords: resilience; vulnerability; transport network; MPEC; global optimization 

1. Introduction  

 

The prosperity of a society is closely linked to the performance of the supporting transportation 

infrastructure, with consequences to economic growth and quality of life. Unfortunately, it is 

known that the operation of transportation infrastructure is vulnerable to unexpected disruptions.  

A key issue in the vulnerability analysis and resilience transport system design is to identify the 

critical elements (e.g., set of links or nodes) of a network, where the failure of these elements 

would bring the most serious impacts on the entire system (Chen et al., 2012). The robustness of 

the transportation network can then be enhanced through reinforcing these critical elements 

subject to budgetary constraints.  

 

Traditionally, critical elements in a network can be identified by using a brute-force simulation 

based approach (Taylor et al., 2006). Each link or node is iteratively removed from the network 

and the corresponding consequence is estimated as the changes in the network performance (e.g., 

increase / decrease in travel times) through repeated simulations. Nevertheless, there are two 

weaknesses in such simulation-based approach. First, the travellers’ responses are not captured. 

As it is understood, travellers will respond (e.g., reroute or reschedule their travel) when the 

conditions of the transportation network change. Second, the simulation-based approach does not 

guarantee the global optimality of the solution unless all possible combinations are scanned. 

However, the number of possible combinations can be prohibitively huge such that it may be 
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time-consuming to simulate the outcomes of all possible combinations, and therefore some 

combinations may be excluded in advance to reduce the computation time. As a result, the 

‘most’ critical combination of elements identified from the simulation approach may not be the 

‘true’ one and hence may be misleading for resilient network planning.  

 

This study aims to narrow the research gap in the literature by proposing a rigorous mathematical 

program model formulation to identify the critical elements in a transportation network that will 

bring the most severe impact under disruptions. Following Scott et al. (2006) and Nagurney and 

Qiang (2009), the impact of losing a network element (e.g. link, node) is reflected by the changes 

in the corresponding cost (e.g.  travel distance, cost, or time) between all origin-destination pairs 

in the network subject to disruptions. We adopt an optimization approach which is formulated as 

a transport network design problem (NDP) that involves the decision on removal of a link or a 

set of links from an existing transportation system that will cause the most deterioration (i.e., 

increase in travel costs) in the network. The optimization is subject to equilibrium constraints 

which represent travellers' routing decisions following Wardrop’s first principle (Wardrop, 

1952). Assuming travellers always choose the route with the least travel time, which is calculated 

through BPR function, the equilibrium constraints can guarantee that the network equilibrium 

condition is reached when no user can unilaterally lower his route travel time. With the 

equilibrium constraints, the optimization problem hence is a mathematical program with 

equilibrium constraints (MPEC) or a mathematical program with complementarity constraints 

(MPCC). The MPEC or MPCC problems are special cases of bi-level programs (e.g., Meng et 

al., 2001; Meng and Yang, 2002; Ban et al., 2006). In this study, we have an upper-level problem 

seeking a link or a combination of links that “maximizes” the total network cost while the lower-

level problem is a minimization problem whose solution satisfies the Wardrop equilibrium 

conditions at optimality (Beckmann et al., 1956). Nevertheless, it is known that MPEC is 

inherently non-convex, and global optimal solutions are generally difficult to solve (Luo et al., 

1996). (Here, to claim a mathematical program is non-convex, we are not focusing on the non-

convex or non-cave property of the objective function, but highlighting that the problem 

constraints form a non-convex set.) Many global optimization solution methods have been 

developed to solve the transportation network design problems (Wang and Lo, 2010; Luathep et 

al., 2011a; Wang et al., 2013; Ekström et al., 2014; Liu and Wang, 2015; Wang et al. 2015; 

Riemann et al. 2015; Liu et al. 2015). A comprehensive review and discussion on network design 

problems and bi-level programming can be found in Magnanti and Wong (1984), Yang and Bell 

(1998), and Farahani et al. (2013).  

 

It should be noted that, the model formulation in this study is to maximize the total network cost, 

rather than the minimization of the total cost as in the traditional network design problem. Many 

existing solution algorithms for solving conventional transportation network design problems 

highly rely on the formulation property that the objective function is to be minimized and the 

objective function is convex (e.g., the convex BPR travel time function). The problem of interest 

− identification of the most critical combination of vulnerable links − does not have this nice 

property. Therefore, most of the existing algorithms will not be applicable any more to solve this 

problem. Based on the idea of the global optimization solution method proposed in Wang and Lo 

(2010), this study applies linearization techniques to develop a single-level mixed-integer linear 

programming (MILP) to approximate the formulated NDP. Then, a global optimal solution of the 

transformed MILP can be guaranteed and obtained by applying general solution algorithms like 
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the branch and bound method. The model results could provide the decision makers important 

assisting tools to generate insights on how one should spend the limited budget on transportation 

infrastructure construction and maintenance to maximize its resilience.  

 

Compared to existing literatures (e.g., Chen et al., 2012), the main contributions of this study are: 

i) A rigorous mathematical program model formulation which identifies the most 

critical combination of vulnerable links in vulnerability analysis when simultaneous 

multiple-link disruptions and travellers’ route choice are considered.  

ii) A global optimization solution method which ensures the solution quality and 

ascertain the true most critical elements in the transportation network, and 

iii) A methodology which determines most critical sets of vulnerable links and their 

ranking in terms of vulnerability when only single-link disruption is considered.  

 

Unlike Wang and Lo (2010), this paper addresses a different network design problem with a 

maximization of the total network cost of the objective, besides, a more advanced linearization 

model and a range reduction technique is adopted to enhance the computational efficiency. 

While Liu and Wang (2015) considered a continuous network design problem with stochastic 

user equilibrium, this paper deals with a discrete network design problem with deterministic user 

equilibrium. The proposed methodology is expected to be very effective when the number of the 

combination of links considered is large. It should also be noted that, though single link failure 

occurs more frequently in real life, it is indeed a very special case of the combination of multiple 

link failures, which is more general and thus deserves more research attention. More importantly, 

although the probability of occurrence of simultaneous multiple failures (due to, for example, 

earthquakes) may be low, the consequence/impact can be extremely high (e.g., immediate needs 

of affected people such as food and clean water cannot be transported to affected areas). 

Therefore, this paper carries the study of identification of vulnerable links one step forward by 

extending from the special case of single vulnerable link identification to a more general problem 

with consideration of multiple link failures. 

 

This paper is organized as follows: Section 2 presents the network design model formulation and 

the transformed mixed-integer linear model reformulation for seeking a global optimal solution. 

Section 3 presents numerical examples showing how the proposed method is applied for network 

vulnerability analysis. Finally, Section 4 provides some concluding remarks and future 

extensions.  

 

2. Problem formulation 

 

This section presents the bi-level formulation for determining the most critical links in a 

transportation network whose closure or failure would incur the worst deterioration of network 

performance. The performance of a network is measured as the sum of travel costs associated 

with all flows on it. Consequently, the most critical link or combination of links refers to those 

without which could induce the most increase in the total travel cost.  
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2.1 Model formulation 

The following notation is used in the formulation. 

Sets: 

A  set of road links in the network 

W  set of origin-destination (OD) pairs 

wR  set of paths between OD pair w W  

Parameters: 

wd  OD travel demand of OD pair w W , which is given as a constant 

  the link-path incidence matrix, [ ],  , ,w

ap ww W a A p R      , where 1w

ap   if link a  

belongs to path p  between OD pair w , and 0w

ap   otherwise 

N  total number of links in a given network, N = |A| 

k  total number of links assumed to be disrupted simultaneously 

,0at  free flow travel time of link a A  

ay capacity of link a A  

M  a large enough positive number 

L  a negative number whose absolute value is large enough  

  a small enough positive number 

m  power to /a ax y ,  usually set to an integer number 

Variables: 

ax  traffic flow of link a A  

au  binary decision variable indicating which link is disrupted: link a A  is disrupted if 0au  ; 

otherwise it is in the normal condition.  
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at  travel time on link a A  

w

pf  flow on path p  between OD pair w W  

w

pc  travel time on path p  between OD pair w W  

w  minimum path travel cost between OD pair w W  

w

p  binary variable indicating whether a path is used or not: path p  is used if 0w

p   and is not 

used if 1w

p   

The problem of finding the most critical link(s) in the network is formulated as a bi-level mixed-

integer nonlinear program with user equilibrium constraints shown as follows:  

[MINLP] 

Max  a a

a A

Z x t


    (1) 

Subject to  

 0,1 ,    

a

a A

a

u N k

u a A



  


  


  (2) 

   ,0 1 / 1 ,    
m

a a a a at t b x y u M a A     
 

  (3) 

,    a ax u M a A    (4) 

 1

0

{0,1}

,   

w w w

p p p

w w w w

p p p

w w

p

w

p

w

L f M

L c M

c

p R w W

  

  





      

     


 



  


  (5) 
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,   

,   

,   ,   

0,   

0,   ,   

w

w

w w

p

p R

w w

a ap p

w W p R

w w

p ap a w

a A

a

w

p w

d f w W

x f a A

c t p R w W

x a A

f p R w W







 



  



  



   

  


   




 

   (6) 

 

The optimization problem above seeks the critical link(s) whose disruption(s) would maximize 

the increase in total travel cost of the network, *

a a a a

a A a A

Y x t x 
 

     . (As was proposed in Scott 

et al. (2006), the difference between the total network travel time costs before and after the link 

disruptions is the network robustness index.) In the expression of Y, 
*

ax  represents the 

equilibrium traffic flow and a  is the link travel time respectively for each link a in the network 

when no link disruptions occur. As the values of *

a a

a A

x 


  for all links are fixed as base condition 

and do not change after the link disruptions, it can be ignored in the objective function of the 

maximization formulation. Consequently, the objective *max a a a a

a A a A

Y x t x 
 

      can be 

reduced to a

Aa

a txZ 


max  as (1). 

Constraint (2) states that k  links are simultaneously disrupted at a certain time, wherein k  is a 

given fixed integer and the binary decision variable au  is used to indicate whether a specific link 

is disrupted. For example, supposing the situation of finding a combination set of three links, one 

only needs to set k  equal to three. It should be noted that one can also adjust constraint (2) to 

model the special situation if only one link fails by only letting 1k  . Since setting k  does not 

affect model property, the proposed solution algorithm is still applicable to solve the model. Link 

travel time function is given in constraint (3), which is the only nonlinear constraint in the model. 

The first term of the link travel time function follows the form of traditional Bureau of Public 

Roads (BPR) function, while the second term ensures that link travel time is a very large value if 

the link is disrupted, which will make this link unlikely be chosen in travellers’ routing process. 

Constraint (4) relates link flow with the binary decision variable and entails that there is no flow 

on a disrupted or failed link. Then, Wardrop’s principle is applied to describe travellers’ routing 

choice behaviour and the resultant user equilibrium traffic assignment is depicted via the linear 

set of constraints (5). In (5), the binary variable w

p  is introduced to ensure that, if a path is used, 

the travel time must be equal to other used path and smaller than the unused one. The details of 

the verification of the equivalence between this constraint and user equilibrium conditions can be 

referred to Wang and Lo (2010). The flow conservation constraints in the network and 

nonnegative constraints are stated in constraints (6). Here, for simplicity and illustration purpose, 

it is assumed that the demand does not change after a disruption of link(s). However, if 

considering the impact of social media, the travel demand should be reduced because some 
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travellers will change their minds and make different decisions on trip-making. In this case, if we 

assume the demand can be determined through a pre-processing module as was done in Chen et 

al. (2012), the developed model formulation and solution method would be still applicable. 

 

The BPR function calculates link travel time under a certain flow for each link and impacts the 

route choice of network users, while network users' route choice in turn impacts the traffic flow 

on a specific link. Following the Wardrop's first principle, a new equilibrium condition is 

reached after a certain link or a combination of link failures when no user can reduce one's own 

travel time by changing route unilaterally. (Here, for simplicity, no other routing behaviours like 

bounded rationality (e.g., Wu et al. 2013) is considered.) Thus, the total network travel time in 

this situation can be obtained. The presented model is indeed to find the link/combination of 

links, whose failure will result in the largest network travel time. 

 

One can notice that the objective of this formulation is to maximize the total travel time of the 

transportation network, which is rather different from the traditional transportation network 

design problem formulation, wherein the total system travel time is to be minimized. Therefore, 

many existing solution algorithms in the literature for solving transportation network design 

problems, taking advantage of the minimization of convex objective function (i.e., the convex 

BPR travel time function), will not be applicable. To solve for a global optimal solution of this 

formulated model, we present a solution approach that linearizes the model into a mixed-integer 

linear program (MILP), whose global optimization solution can be obtained with standard 

solution algorithms for MILPs such as the branch and bound method. 

 

2.2 Linearization scheme 

 

The optimization model formulation in Section 2.1 is a nonlinear program which is inherently 

non-convex. Following Wang and Lo (2010), we adopt a linearization for seeking a global 

optimal solution. 

 

In the constraint sets of the model formulation, the only nonlinear terms are contained in (3), i.e., 

the link travel time function. It will be transformed into an equivalent set of linear constraints, 

and thus the model constraints will become completely in linear form. 

 

An efficient linearization technique is applied here following the Log model introduced in 

Vielma et al. (2010) to ensure the convex combination is always between at most two adjacent 

breakpoints. 

 

Letting  /
m

a a al x y , the link travel time function (3) can be expressed as: 

   ,0 1 1 M,    a a a at t bl u a A       (7) 

which is linear with respect to al  and au . It should be noted that in  /
m

a a al x y , ax  is the only 

decision variable while the link capacity ay  is fixed and given. Therefore, following the Log 
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model (Vielma et al., 2010), we have (8)-(10) to approximate the single-variable nonlinear term 

al : 

 
4

( )

( )

/

v v

a a a

v V P

v v

a a a

v V

a

P

x x

x y l









 

 




                 (8) 

( )

0    ( )

1

v

a

v

a

v V P

v V P




  

            (9) 

1

{0,1}   

k

k

v k

a a

v L

v k

a a

v R

k

a ak K

 

 









 

  



              (10) 

where 
al  is the linear approximation of al . v

ax  is the (v+1)th breakpoint in the feasible region of 

ax , in which 0

ax  is the first break point with the minimum value of ax  in the region. v

a  is the 

convex combination factor of the associated breakpoint v

ax . P  is the set of partitioned intervals 

and ( )V P  is the set of breakpoints. kL  and kR  are two types of breakpoint sets based on the 

concept of Gray codes. k

a  is a binary variable. aK  is the index set of binary variables for link 

a A .  

al

ax
n

ax1n

ax 0

ax 1

ax 2

ax 3

ax 4

ax 5

ax 6

ax

0

al
1

al
2

al

3

al

4

al

5

al

6

al

1n

al


n

al

n

a
1n

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a

nG1nG 1G 2G 3G 4G 5G 6G Gray codes

Weighted factor

*

ax
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Fig. 1. Piecewise-linear approximation of  /
m

a ax y . 

 

As is shown in Fig. 1, the feasible region of link flow ax  is partitioned into a number of 

intervals, and the original nonlinear function is approximated by a linear interpolation, that is, a 

piecewise-linear function. It is clear that the piecewise-linear function is much closer to the 

original function with a higher number of intervals. However, the linearization scheme greatly 

affects the performance of solution process, especially when the number of intervals is large. In 

the literature, many model formulations are proposed for developing piecewise-linear functions, 

for example the model employed in Wang and Lo (2010) and Luathep et al. (2011a). 

Nevertheless, the number of binary variables needed in the linearization is equal to the number of 

linearization intervals. When more intervals are applied to improve the solution accuracy, more 

binary variables need to be introduced in the formulation, which reduces the solution efficiency 

significantly. Here, in this study, we employ the Log model as our linearization scheme to 

achieve higher computational efficiency because only a logarithmic number of binary variables 

and constraints are required. The mechanism is explained below.  

 

Specifically, linear constraints (8)-(10) are used to describe the piecewise-linear approximation. 

Constraints (8) state that ax  is a convex combination of the breakpoints and 
al  is the value of the 

piecewise-linear function evaluated at ax . Constraints (9) ensure that all weighted factors are 

non-negative and the sum of them is equal to one. A number of binary variables k

a  is employed 

in constraints (10) to guarantee that at most a pair of v

a , which are associated to two adjacent 

breakpoints, is strictly positive, making the interval between the two breakpoints active in 

determining the linear approximation. In other words, constraints (10)ensure that the convex 

combination is always between two adjacent breakpoints. 

Gray codes

0    0    0

0    0    1

0    1    1

0    1    0

1    1    0

1    1    1

1R 2R 3R

1R 2R

1R 3L

1R 2L

2L 3R

1L 2L

1L 2L 3L

0

1

2

3

5

6

4

1G

2G

3G

4G

5G

6G

 

Fig. 2. Example of Gray codes and definition of sets kL  and kR . 

 

It should be noted that the number of binary variables required for the partition scheme with n  

breakpoints (including two end points) is only  max 2log 1k n    . Next, for one link a A  , 
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we demonstrate how constraints (10) work as a linear approximation by an illustrative example, 

as shown in Fig. 2. Since all variables in this small example are specifically for link a , thus for 

simplification purpose, the subscripts a  are omitted. A series of Gray codes are utilized to 

describe how the intervals between adjacent breakpoints are activated. Gray code, also known as 

the reflective binary code, is a binary numeral system with two adjacent numbers differing by 

only one bit. In this example, seven breakpoints are used and therefore the length of each of the 

Gray codes is  2log 6 3   . A Gray code is pre-specified for each interval as shown in Fig. 2, 

ensuring that two adjacent codes differ by only one bit. For example, the second and third codes 

differ only in the second bit and have the same values in the other bits. Indeed, two consecutive 

Gray codes can be used to represent one factor 
k , as is schematically shown in Fig. 2. In this 

example, two consecutive codes with both the first bit equal to zero and the third bit equal to one 

are used to define 
2 . Since each Gray code is unique and the sequence is pre-determined, the 

factor can be determined if the same bits and values of two consecutive codes are specified and 

vice versa.  

 

The variable v is included in the set kL  if the values on the thk  bit of two consecutive codes (v 

and v+1) are both equal to one, and included in the set kR  if both are equal to zero. It is noted 

that the first and last weighted factors are only related to one Gray code. In this case, the sets kL  

and kR  in constraints (10) are determined. The mathematical form of kL  and kR  can be given by  

      1 1| 1 and 1 0 and 1  and 1k k k k

k v v nL v V G G v G v n G          

and  

      1 1| 0 and 0 0 and 0  and 0k k k k

k v v nR v V G G v G v n G        ,  

where k

vG  represents the thk  bit of the thv  Gray code. For any given value of 
k , constraints 

(10) will enforce that only one interval between two adjacent breakpoints is active, i.e., the 

associated 
1 and k k  
 are positive and all the other , , 1i i k k    are zero. One can verify an 

arbitrarily selected case, for example, when
1 2 30; 1     . Based on the combination of kL  

and kR  as shown in Fig. 2, we have  

0 1 2 3 1

5 6 1

0 1 2

3 4 5 6 2

0 4 3

2 6 3

1 1

0

1 1

0

1 0

1

    

  

  

    

  

  

      


  
    


    
    

   

 (11) 

From (11), we have 
0 3 4 5 6 0          and 

2 3 and    are positive, which means the 

interval between breakpoints 2 and 3 is active for this given value of 
k . Similarly, one can 

verify other specific cases as well.   
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By doing so, only  2log 1n     number of binary variables is needed in this linearized model 

formulation if a partition scheme with n  number of breakpoints is used. Thus, comparing with 

other linearization model formulation that usually needs 1n   number of binary variables, this 

method involves much fewer binary variables and number of constraints.  

 

For the objective function, the current form of 
a a

a A

x t


  is nonlinear. However, we can rewrite 

the total system travel cost to this equivalent form, w w

w W

d 


 . Not using link travel time, we use 

the minimum OD travel time to calculate the total system travel time cost. According to 

Wardrop’s first principle, all used paths for the same OD pair take on this minimum OD travel 

time, 
w  . Thus, the product between 

w  and the OD demand 
wd  describes exactly the total 

system travel time. Noting the fact that the OD demand 
wd  is fixed and is a given constant, the 

total system travel cost function w w

w W

d 


  is now linear in form. 

 

In summary, the final linearized model formulation can be expressed as follows: 

[MILP] 

Max  w w

w W

F d 


    (12) 

Subject to  

 0,1 ,    

a

a A

a

u N k

u a A



  


  


  (13) 

   ,0 1 1 M,    a a a at t bl u a A       (14) 

 
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( )

( )

0    ( )
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,   

}
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v v

a a a

v V P

v v

a a a

v V P

v

a

v

a

v V P

v k

a a

v L

v k

a a

v R

k

a

m

a

x x

l

v V P

k

x y

a A

K









 

 













 

 

  





 





















 











                 (15) 

,    a ax u M a A    (16) 
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 1

0

{0,1}

,   

w w w

p p p

w w w w

p p p

w w

p

w

p

w

L f M

L c M

c

p R w W

  

  





      

     


 



  


  (17) 

,   

,   

,   ,   

0,   

0,   ,   

w

w

w w

p

p R

w w

a ap p

w W p R

w w

p ap a w

a A

a

w

p w

d f w W

x f a A

c t p R w W

x a A

f p R w W







 



 

  

   

 

   



 

   (18) 

 

By the application of linearization, the original model, which is a mixed-integer nonlinear 

programming, is now transformed into an MILP. The original model, if solved by a traditional 

solution algorithm, can only obtain a local optimal solution; whereas the transformed MILP can 

now be solved by standard solvers for global optimal solutions, which is also the reason of 

applying linearization. 

 

2.3 Range-reduction technique 

To further improve the computational efficiency, an optimization-based range reduction 

technique is applied to reduce the solution space, i.e., the feasible link flow variable ax . The 

partition scheme used in the solution method affects the solution accuracy and solution 

computational time significantly: more refined partition scheme with more breakpoints will 

make the linear approximation more accurate, while at cost of introducing more binary variables 

and thus more calculation time. It is ideal that the variable feasible region is reduced, meanwhile 

ensuring the optimal solution is not ruled out, so that using the same number of partition 

breakpoints can achieve higher solution accuracy. Besides, the fact that Range-reduction 

technique is able to significantly improve the solution efficiency has been tested and proved in 

many previous studies in the literature. Readers who are interested in this technique can refer to 

Lin and Tsai (2012, 2013). 

 

For a link flow variable ax , the improved new bounds new

ax  and new

ax  can be obtained through 

the following mixed integer linear programming model: 

 

maximize  new

a ax x   

Subject to 
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w w

w W

F d F


    

and all the constraints in MILP: (13) - (18) 

 

minimize  new

a ax x   

Subject to 
w w

w W

F d F


    

and all the constraints in MILP: (13) - (18) 

 

We further add the following two remarks:  

 

Remark 1: The key to apply the range reduction technique is to find a reasonable lower bound 

F  to the solution of the original maximization problem. Many different measures can be devised 

to obtain this lower bound. One way is to construct a linear outer-approximation to each of the 

nonlinear travel time functions, so that the nonlinear constraints are relaxed and cast into a linear 

form. By solving the relaxed linear program, a lower bound of the solution of the original 

maximization problem is achieved. One may also simply solve the traffic assignment of the 

original network assuming no link failure, whose resultant total travel time could be regarded as 

a lower bound to the maximum solution of this model formulation, which indeed describes the 

worst-case scenario if any road link is disrupted in the network.   

 

Remark 2: This model formulation is designed to find out the most critical combination of 

vulnerable links in the network. However, it can also be easily extended to find i) the most 

critical link in the network when only single link failure occurs, and ii) the most vulnerable set of 

links as well as their ranking in terms of vulnerability. To do so, we can just assume 1k   in the 

model formulation. The model solution will provide the information of the most critical link in 

the network if only single link is disrupted. For the second case, the already calculated most 

critical link(s) should be ruled out from the set of possible failed links and constraint (13) should 

be adjusted accordingly. The mathematical property of the modified MILP model remains 

unchanged and thus can be solved by the proposed solution method.  

 

 

3. Numerical examples  

 

In this section, the performance of the proposed model and the linearization solution method is 

tested on two networks: one is the 16-link network used in Suwansirikul et al. (1987) as a 

medium-size test network and the other is the well-known Sioux Falls network as a large-scale 

network for finding a global optimal solution to the MILP model. A personal computer with an 

Intel(R) Core(TM) i7 860 @ 2.80GHz CPU, an 8GB RAM and Windows 7 Enterprise operating 

system (64-bit) is used for solving the numerical test. The model was coded with a free 

MATLAB toolbox YALMIP-R20131220 (Löfberg, 2004), calling an external commercial 

optimization solver CPLEX optimization studio 12.3 (IBM ILOG, 2009) to solve the MILP 

model.  
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Fig. 3. The 16-link test network 

3.1 Case 1: the 16-link test network 

3.1.1 Effect of demand under single link failure 

The 16-link network as shown in Fig. 3 has 6 nodes. Two OD pairs (1,6) and (6,1) are used for 

all the tests. To consider the effect of travel demand, this problem is solved under three levels of 

demand, a low level, a medium level and a high level demand, as listed in Table 1. All the other 

input data for this test network is as the same as those in Suwansirikul et al. (1987). Each link 

flow variable is partitioned by 16 intervals.  

 

Table 1 Three different levels of demand. 

OD pair Low level demand Medium level demand High level demand 

(1,6) 2.5 5 10 

(6,1) 5 10 20 

 

Table 2 shows the five most vulnerable links under the three cases. The most critical link in all 

these cases is link 16. Once it is disrupted, the whole network travel time cost will greatly 

increase by 172 times (=15689.01/91.07), 1486 times (=500161.48/336.57) or 2780 

(=16001205.19/5756.59) times of the original travel time cost under the three demand levels, 

respectively. Hence, transportation network planners or managers should take more measures to 

reinforce this critical link to enhance the network robustness. Though demand level and total 

system travel cost are quite different, the five most vulnerable links and their orders are exactly 

the same. However, this result may be specific to the network layout and problem setting of this 

example and it cannot be concluded that the demand level does not affect the most vulnerable 

links. In practice, the identification of vulnerable links should be made based on the proposed 

model and the specific network layout and travel demand characteristics. 
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Table 2 The five most vulnerable links in the 16-link network. 

Vulnerability order 
(ranking) 

 
Low level demand 

 
Medium level demand 

 
High level demand 

 
Link No. Total cost 

 
Link No. Total cost 

 
Link No. Total cost 

1 
 

16 15689.01 
 

16 500161.48 
 

16 16001205.19 

2 
 

3 3994.54 
 

3 125436.02 
 

3 4009047.40 

3 
 

9 712.22 
 

9 20402.86 
 

9 648218.43 

4 
 

13 216.47 
 

13 4763.19 
 

13 148085.41 

5 
 

8 177.30 
 

8 2442.00 
 

8 71818.40 

 

3.1.2 Effects of the power of link performance functions 

Table 3 Sensitivity of parameter m in the link travel time function 

Power Vulnerability order 1 2 3 4 5 

m=1 Link No. 3 9 8 16 13 

 
Total cost 5.1086E+03 3.2895E+03 2.8643E+03 2.6428E+03 1.7515E+03 

       
m=2 Link No. 3 16 9 8 13 

 
Total cost 4.1802E+04 4.0660E+04 1.6733E+04 7.3763E+03 6.5716E+03 

       
m=3 Link No. 16 3 9 13 8 

 
Total cost 8.0083E+05 4.0371E+05 1.0141E+05 3.0387E+04 2.2419E+04 

       
m=4 Link No. 16 3 9 13 8 

 
Total cost 1.6001E+07 4.0090E+06 6.4822E+05 1.4809E+05 7.1818E+04 

       
m=5 Link No. 16 3 9 13 8 

 
Total cost 3.2000E+08 4.0025E+07 4.2349E+06 7.3338E+05 2.3479E+05 

       
m=6 Link No. 16 3 9 13 8 

  Total cost 6.4000E+09 4.0008E+08 2.7957E+07 3.6542E+06 7.7537E+05 

 

We also test the effects of different values of power m  used in the link travel time function. By 

separately setting m  to be different integer values, the five most vulnerable links and the 

corresponding system total cost are calculated. The high demand level is adopted in this test. 

From the results in Table 3, one can find that, in all the six cases, links 3, 8, 9, 13 and 16 are 

always the five most vulnerable links; however, the rankings are different with various values of 

m . When 1m  , links 3 and 9 are the two most vulnerable links, whereas the second most 

vulnerable link changes to link 16 when 2m  . Rankings of the other four cases ( 3, ,6m  ) 

are the same, but very different from those cases when 3m  . Thus, one can find that the power 

m , i.e., the travel time function, significantly affects the ranking of vulnerable links in the 
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network. In practice, accurately calibrated travel time function is required in identifying the most 

vulnerable links in the network. 

 

3.1.3 Effect of demand under simultaneous link failures 

By applying the developed model formulation and solution algorithm, we also test the scenarios 

wherein two links or three links in the network fail at the same time under different demand 

levels. In this medium size network, it is possible that two simultaneous link failures may result 

in certain OD pair disconnection. One can apply many existing methods particularly designed for 

identification of critical links leading to a disconnected network to figure out what combinations 

of link failures may incur disconnected OD pairs. As the vulnerability evaluation and analysis for 

disconnected network are unique and beyond the scope of this study, we exclude these link 

combinations first. Indeed, we formulate and solve a simple linear programming to find out that 

there are six link combinations that result in OD pair disconnection, i.e., (1, 2), (3, 6), (5, 8), (9, 

12), (11, 14) and (15, 16). Except the above six combinations, the five most vulnerable link 

combinations are listed in Table 4. One can find that the ranking is affected by the demand level, 

as the fifth vulnerable link combination changes from (14, 16) with the low level demand to (2, 

16) with the medium and high level demand. Besides, we also notice that the most vulnerable 

two-link combination under the three cases is always (6, 9), which are far apart from each other 

and do not connect to the same node. More interestingly, link 9 is the third most vulnerable link 

in Table 2 and link 6 does not include in the five most vulnerable links when only one link 

failure is considered. However, the combination of these two links is much more critical than the 

combination of the first two most vulnerable links, i.e., (3, 16), as obtained in Table 2. 

Computational time for this test is about 12 seconds. This numerical example demonstrates that 

the results of most vulnerable link combination with multiple-link failure could be way different 

from the results of most vulnerable single link.  

 

Table 4 The five most vulnerable two-link combinations when m=4. 

Vulnerability 

order  

  Low level demand   Medium level demand   High level demand 

  
Link 

combination 
Total cost   

Link 

combination 
Total cost   

Link 

combination 
Total cost 

1 
 

(6 9) 3.1366E+04 
 

(6 9) 1.0011E+06 
 

(6 9) 3.2031E+07 

2 
 

(3 16) 1.9623E+04 
 

(3 16) 6.2553E+05 
 

(3 16) 2.0012E+07 

3 
 

(9 16) 1.6455E+04 
 

(9 16) 5.2398E+05 
 

(9 16) 1.6762E+07 

4 
 

(8 16) 1.5774E+04 
 

(8 16) 5.0227E+05 
 

(8 16) 1.6067E+07 

5   (14 16) 1.5729E+04   (2 16) 5.0062E+05   (2 16) 1.6015E+07 

 

Results of the critical three-link combination in Table 5 also show the similar conclusion that the 

most critical link combination may not be the first three most vulnerable links obtained in Table 

2 and their locations may be far apart from each other. Some links that included in the critical 

combination do not even appear in Table 2, e.g., links 2, 6, 14, and 15. In this case, the demand 

level does not greatly impact the ranking of the critical link combinations. Computational time 

for the critical three-link combinations test is about 40 seconds. 
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Table 5 The five most vulnerable three-link combinations when m=4. 

Vulnerability 

order 

  Low level demand   Medium level demand   High level demand 

  
Link 

combination 
Total cost   

Link 

combination 
Total cost   

Link 

combination 
Total cost 

1 
 

(6 9 16) 4.711E+04   (6 9 16) 1.505E+06   (6 9 16) 4.815E+07 

2 
 

(6 8 9) 3.146E+04 
 

(6 8 9) 1.004E+06 
 

(6 8 9) 3.211E+07 

3 
 

(6 9 14) 3.141E+04 
 

(2 6 9) 1.002E+06 
 

(2 6 9) 3.204E+07 

4 
 

(2 6 9) 3.139E+04 
 

(6 9 14) 1.002E+06 
 

(6 9 14) 3.204E+07 

5   (5 6 9) 3.137E+04   (6 9 15) 1.001E+06   (6 9 15) 3.203E+07 

 

3.2 Case 2: the Sioux-Falls network 

To test the proposed model formulation and solution algorithm on a larger scale network, the 

well-known Sioux Falls network, as shown in Fig. 4, is adopted. The numerical test was 

conducted to find out the most vulnerable two-link combination in the network. In this large-size 

network, if the traditional network vulnerability scanning method is applied by removing each 

link from the network and then formulating and solving the total travel time loss, one can 

imagine how mechanically tedious and time-consuming this solution process could be. However, 

applying the model formulation and solution method proposed in this study, only one mixed-

integer linear programming is needed to be formulated and solved. The travel demand between 

24 nodes and free flow travel time of each link are the same as input data in Leblanc (1975). The 

parameter b  in the link travel time function is set equal to 0.15 and the given link capacity is 

listed in the Appendix. Each link flow variable is partitioned into ten even segments. In the 

numerical example, the total travel time cost from the original network with no disrupted links is 

used to initiate the range-reduction process.  
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Fig. 4. Sioux-Falls test network 

 

 

When calculating the most vulnerable two-link combination, those link pairs which will result in 

OD pair connection failure are excluded. In this network, this class of two-link combinations 

includes (20, 54), (17, 18), (38, 39), (37, 74), (1, 2), (3, 5), (5,14), (3, 4), (1, 14), and (2, 4). 

Except the above ten combinations, the five most vulnerable two-link combinations are shown in 

Table 6. The computational time is about 16 hours for the two-link failure case. However, if an 

enumeration method is adopted to solve the same problem, the computational time exceeds 40 

hours.  

Table 6 The five most vulnerable two-link combinations in the Sioux-Falls network. 

Vulnerability order Link combination Total cost 

1 (43 60) 2.55E+09 

2 (28 56) 2.54E+09 

3 (7 74) 2.33E+09 

4 (35 39) 2.33E+09 

5 (23 27) 1.92E+09 
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4. Conclusion 

 

 In this study, we propose a bi-level formulation for identifying the most critical combination of 

vulnerable links in a transportation network. The bi-level problem here is indeed a mixed integer 

nonlinear program with equilibrium constraints. Unlike the traditional network design problem 

formulation which aims to minimize the total system travel costs with convex objective 

functions, the problem of identifying critical vulnerable link(s) studied in this problem is 

formulated as a maximization problem. Therefore, many existing solution algorithms for solving 

traditional network design problems (e.g., Szeto et al. 2014; Li et al. 2013) are not applicable for 

the model solution in this study. To this end, a global optimization solution method applying 

piecewise linearization approach is developed to approximate the model formulation into a 

mixed integer linear program so that general branch and bound method could be used to 

guarantee the global optimization solution of the model. The global optimization ensures that the 

solution can be used to identify the true globally most critical link(s), rather than a local solution 

that is not exactly the most critical one we are seeking. The model and method can also be used 

to determine the ranks of vulnerable links and the impacts of their failures in monetary terms. 

The results of the numerical tests demonstrate that the power value of the underlying travel time 

function, as well as the network travel demand level, will significantly affect the ranking of 

vulnerable links in the network. Moreover, it is interesting to note that the set of most vulnerable 

links when multiple-link failure occurs are not simply the combination of the most vulnerable 

links for single-link failure scenario, and the links in the critical combination of vulnerable links 

are not necessarily connected or even in the neighbourhood of each other. In the numerical 

examples, we have limited to combinations of two failed links considering the computational 

effort required for solving combinations of more links. Nevertheless, the proposed model can 

indeed be extended to cover combinations of more simultaneous link failures with sufficient 

computing power. To overcome the limitation of the proposed model and solution algorithm in 

solving large-scale network problem, more efficient solution method would be developed in the 

future study. Besides, in the future, we will develop a model and solution method to handle the 

case of node failures. Moreover, we will extend the current methodology to handle other 

vulnerability measures (e.g., Balijepalli and Oppong, 2014; Chen et al., 2007; Ho et al., 2013; 

Luathep et al., 2011b) and demand uncertainty (e.g., Chen and Yang, 2004; Chen et al., 2010; Ng 

and Waller, 2009a,b; Chen et al. 2011; Li et al., 2012, 2014) to find the critical combination of 

vulnerable links. 
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Appendix.  Link capacity of the Sioux Falls network 

 

Table A Capacity of each link in the Sioux Falls network. 

Link ay  
 

Link ay  
 

Link ay  
 

Link ay  

1 25.9002 
 

20 7.8418 
 

39 5.0913 
 

58 4.8240 

2 23.4035 
 

21 5.0502 
 

40 4.8765 
 

59 5.0026 

3 25.9002 
 

22 5.0458 
 

41 5.1275 
 

60 23.4035 

4 4.9582 
 

23 10.0000 
 

42 4.9248 
 

61 5.0026 

5 23.4035 
 

24 5.0502 
 

43 13.5120 
 

62 5.0599 

6 17.1105 
 

25 13.9158 
 

44 5.1275 
 

63 5.0757 

7 23.4035 
 

26 13.9158 
 

45 15.6508 
 

64 5.0599 

8 17.1105 
 

27 10.0000 
 

46 10.3150 
 

65 5.2299 

9 17.7828 
 

28 13.5120 
 

47 5.0458 
 

66 4.8854 

10 4.9088 
 

29 5.1335 
 

48 5.1335 
 

67 10.3150 

11 17.7828 
 

30 4.9935 
 

49 5.2299 
 

68 5.0757 
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12 4.9480 
 

31 4.9088 
 

50 19.6799 
 

69 5.2299 

13 10.0000 
 

32 10.0000 
 

51 4.9935 
 

70 5.0000 

14 4.9582 
 

33 4.9088 
 

52 5.2299 
 

71 4.9248 

15 4.9480 
 

34 4.8765 
 

53 4.8240 
 

72 5.0000 

16 4.8986 
 

35 23.4035 
 

54 23.4035 
 

73 5.0785 

17 7.8418 
 

36 4.9088 
 

55 19.6799 
 

74 5.0913 

18 23.4035 
 

37 25.9002 
 

56 23.4035 
 

75 4.8854 

19 4.8986 
 

38 25.9002 
 

57 15.6508 
 

76 5.0785 

 


