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Transient probing of the symmetry and the asymmetry of electron interference
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The transient processes of electron transport in nano-scale devices exhibit special phenomena that exist only
in the transient regime. Besides how fast the steady states are approached, one interesting aspect of transient
transport arises from its strong dependence on the initial state of the system. Here we address the issue of
how the symmetries embedded in the initial state interplay with those of the system structure in the course
of transient transports. We explicitly explore the transient currents arising from various initial occupations
in a double-quantum-dot Aharonov-Bohm interferometer. We find symmetry relations between the transient
in-tunneling and out-tunneling dynamics for initially empty or full quantum dots when the energy levels in the
electrodes are symmetrically distributed with respect to the energy levels in the quantum dots. This is true for
whatever applied fluxes. We also find the flux-even components of the currents and the flux-odd components of
the currents exhibit distinct cross-lead symmetric relations.

DOI: 10.1103/PhysRevB.93.125437

I. INTRODUCTION

Coherence of electron propagations in mesoscopic systems
is the foundation of developing quantum electronic devices.
The study of interference between different electron propa-
gation paths is an important approach to investigate electron
coherence. The manifestation of the underlying coherence in
physical observables is closely related to the symmetry of
the interfering states. By tuning the symmetry of the system,
the interference results can be utilized to modulate electron
transport properties, essential for device functionalities. In
addition to the manifestation of electron coherence via steady-
state current-voltage characteristics, time-dependent coherent
transport has also attracted much attention. In particular,
the availability of time-resolved measurement techniques in
nanoelectronics makes it feasible to reveal the special roles
played by the transient effects [1-5]. In this article, we
explore the special transport properties, uniquely exhibited
in the transient regime, that reveal the underlying symmetries
induced by the device geometries, via the use of an Aharonov-
Bohm (AB) [6] interferometer with two quantum dots (QDs).

On one hand, frequency-resolved responses to time-
dependent periodic driving have been intensively studied
[7-10]. On the other hand, the transient transport currents
in response to pulsed voltages provide useful information for
the switching behaviors of electronic devices [11-13]. The
transient currents induced by optical excitations on molecular
transport devices are interesting for their relevance to optical
switches [14—18]. Real-time migrations of electrons between
molecules and conduction channels are the focus in some
energy [19] and material applications [20].
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Particularly for nanoelectronic systems, steering the tran-
sient currents can potentially offer versatile resources for
timely operating quantum electronic circuits at nanoscale.
In general, the transient dynamics is sensitive to the initial
state of the system. In some circumstances, the starting
point of the transient dynamics is appropriately given by
the steady state of the whole transport setup before the
turning on of the pulses [11-13]. In a broader context of
quantum technology, besides how fast one can switch on
and off a current, utilization of the whole trajectory of a
system from a prepared initial state to a desired later state
is also highly relevant. Experimentally, preparation of desired
charge states in QDs have been realized [4,21-23]. Therefore,
one is naturally motivated to investigate how the transient
transport dynamics depends on the initial preparations (see, for
example, Refs. [24-26]). In addition to this, tuning geometric
symmetry has been found useful in modulating the stationary
transport properties. For the purpose of exploiting the transient
transport properties as potential resources, it is thus important
to understand how the symmetry embedded in the initial state
interplays with the geometric symmetry of the interference
device.

Geometric symmetry of nanostructures can affect interfer-
ence effects to change the stationary transport currents. For
example, working principles for molecular transistors have
been proposed based on the interference effects governed by
molecular geometries [27-29]. Experimental observations of
such effects rely on properly arranging molecule-lead coupling
configurations on the molecular scale [30-32]. Another widely
applied approach to manipulate stationary transport by tuning
interference is to thread a magnetic flux through a ring-shaped
nanostructure, rendering the AB effect. This was realized
earlier with metallic ring interferometry [33]. With a QD
sitting on one arm, making the other arm of the ring as
a reference, studies on the resonant tunneling through the
QD have been experimentally carried out [34-41]. Ring-
shaped natural molecules and artificial molecules are useful
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nanostructures that can host the AB effect and at the same time
provide manipulable geometric symmetry. For ring-shaped
natural molecules, effective use of magnetic fluxes either
requires unrealistically high magnetic fields [42] or other
special conditions [43]. Evoking the AB effect with artificial
molecules has been realized by putting two QDs on the
two arms of a mesoscopic interferometer [44-46]. This is
known as the double-quantum-dot (DQD) AB interferometer.
Such setups offer the advantages of incorporating molecular
symmetry into the flux-modulated interference effects. How to
use the AB oscillations to discern molecular parities has been
theoretically [47] and experimentally studied [46]. By properly
combining it with the spin-orbit interaction, mixed actions of
charge and spin interference have been shown to give rise to full
spin-polarized transport [48,49]. The AB interference is also
useful to affect the occupation difference between degenerate
QDs [50] and modulate the current noises [51,52].

Various time-dependent aspects of DQD AB interferom-
eters have been tackled. Real-time detection of interference
pattern formation has been experimentally attempted [53].
The flux-dependent decoherent and coherent dynamics of
the uncoupled DQD has been tackled by the exact fermion
master equation for noninteracting electrons [54,55]. With
interdot Coulomb repulsion considered, the photoresponse of
the DQD AB interferometer and the waiting time distributions
have respectively been investigated in the weak-tunneling
limit [56,57]. The reduced density matrix dynamics under
the influence of the flux, including also interdot Coulomb
interaction, has been studied by the use of the exact-numerical-
path integral [58]. The latter approach has also been applied
to examine the transient magnetotransport in similar sys-
tems [59]. The effects of Fano resonances on the dynamics
of wave scatterings with a coupled DQD molecule in the AB
interferometer has been inspected in the time domain [60].

The choice of a simple uncoupled DQD placed in an AB
interferometer provides a suitable platform to clearly define the
geometric symmetry of the DQD molecule and the symmetry
associated with initial occupations in the QDs. In a previous
paper, we have comprehended the flux responses of the QD
occupations, the transport currents as well as the circulating
currents of the DQD AB interferometers in the transient as well
as in the steady-state regimes [61]. However, we have only
worked under the conditions that tunnelings through the two
QDs are symmetric and initially the two QDs are not occupied.
Here we remove all these restrictions and we show that
DQD AB interferometers indeed provide several benefits that
diversify the uses of the transient currents. Our main findings
are summarized below. (i) Unlike the steady-state currents,
which contain only components that are even in the flux (insen-
sitive to the flux direction), the transient currents can exhibit
components that are odd in the flux. They behave distinctly
from their even counterparts in terms of the manifestation of
the geometric symmetry of the device. (ii) Initially empty QDs
and initially occupied QDs can induce completely different
ways of electron motions, giving rise to distinguishable in-
tunneling and out-tunneling transient currents, respectively.
Their relationship is associated with the symmetry of the
energy level positions. (iii) Asymmetry among different
components of the transient currents can be either enhanced
or suppressed by properly tuning the device geometry.
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The paper is organized as follows. In Sec. II, we briefly
review the general model for mesoscopic transport systems and
the nonequilibrium Green’s function formalism (NEGF) for
calculating the currents. Methodologically, there exist many
sophisticated theoretical approaches to study time-dependent
quantum transport [12,13,62-72]. Most of them are based
on NEGF. Since many papers on quantum transport use the
scattering formalism [73-75], for pedagogical purposes, we
also present a connection to the scattering-state approach for
deriving the transient time-dependent transport properties. We
pay special attention to how the currents depend on the initial
occupations in the central nanostructures. In Sec. III, we intro-
duce our target system, an AB interferometer with two QDs.
We identify the purely transient components of the tunneling
currents and discuss generally their physical meanings. In
Sec. IV, we show how the symmetry and asymmetry of the
device parameters can give rise to distinguishable transient
dynamics. Section V contains our conclusions.

II. FORMALISM FOR TRANSIENT QUANTUM
TRANSPORT

A class of quantum transport systems is described by the
following general Hamiltonian,

H = Hs + Mg + Hr. (la)
where
MHs =Y eyd)d,, (1b)
i,jeS

is the Hamiltonian for the central scattering region, and

Hg = ZH,J = Z Zsakclkcak (Ic)

a kea

is the sum of Hamiltonians of the electrodes, each labeled by
a. The tunneling of electrons between the central region and
the electrodes is described by

Hr = Z{takiclkdi + tiakdj-cak}' (1d)

i,ak

Here the subscripts i,j € S = {1,2, ..., D} enumerate the D
single-particle levels within the central region and k € o
stands for the continuum levels k within the electrode «.
The field operator dj(d;) or cak(cik) annihilates (creates)
an electron on level j € S or level k € «. The hopping
amplitude between a level i in the central part and a level
k in lead « is given by ¢,,; = t},. Since we are targeting at
the single-particle interference effect, interactions leading to
dephasing of transport are ignored [76-78].

The essential quantity probed by transport measurements
is the tunneling current. The current tunneling out of lead « at
time ¢ is defined by

d
lo(t)= =~ (N () = I {[H.N ()]
=—i DY ek (d) (1)) = taki el (D). (2)

i kea

where N, (t) = Y ., clk ¢, 18 the total particle number oper-
ator in lead « in the Heisenberg representation. We have also
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set charge unit e = 1 and A = 1. The bracket (-) = tr[-5(t)]
denotes the average over the initial state, p(#y), at time t = t,
of the total system including the central scattering region plus
the electrodes.

The initial state of the total system () is assumed [12,79]
to be a product state of the central area and the electrodes,
namely,

p(t0) = ps(to) [ | Autto), (3a)
where
A _ CXP[—(Ha - MaNa)/kBTa]
Pult0) = b=y — 1N ks Tl OO

represents the thermal equilibrium of the electrode «, each
with the chemical potential u, and the temperature 7,,. Here
kp is the Boltzmann constant. The initial state of the central
scattering area is denoted by pq(#o) and is not restricted. We
discuss how the transient currents depend on pg(%o).

A. Scattering-state method

The time developments of the tunneling currents I,(¢)
can be calculated via different approaches [12,71]. Here we
introduce the scattering-state method, which tackles the time
developments of the Heisenberg field operators d;(¢)’s and
¢, (t)’s through the scattering states. It starts with solving the
Lippman-Schwinger equation [80] for the scattering states, as
the eigenstate of the total Hamiltonian,

W Hl = —eatrl, +intcl, — vl (4)

where n — 0. The solution is found to be [81]

rxk =cak+2tw¢k d +Z

x Gji(eak +in), (%)

where the Green’s function in the energy domain, G;;(z) =
[G(D)]i;,

ﬁcucﬁq
Eak — Epg + in

G =[z1p—e—Z@I ", 6)
has been introduced with the self-energy,
= dow T'(w)

B = [ G2, ™
21 7 —w

and the total level-broadening function is

I (w) = Z I'(w), with

() =27 Y 8w —
kea
where [T*(w)];; = 1""‘ ().

The states formed from w 2x10), where |0) denotes the
vacuum of the total system, constitute a complete set in the
single-particle space and the relation {wﬁq,wg:k} = Sak,pq 1S
satisfied. One can therefore express d; for all j and c,,
for all ok in terms of linear combinations of the v,;’s.
The time dependencies of d j(t) and c,,(t) are then found

ak)tiaktakja (8)
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through ¥, (1) by ¥, (1) = e~ €10y, . as v satisfies the
Lippman-Schwinger equation, Eq. (4), with the eigenenergy
eqk- Specifically,

dj() =" Gji(ear + imtiare Yy,

ak i
takj G ji(epg +int,
Cak(t) — Z Suk a + Z akj ™ ji\eBq ifq
— &gk +1in
Bq
X e—isﬁq(t—lg)wﬂq . (9)

Replacing 14, on the right-hand side of Eq. (9) with Eq. (5),
we obtain

d(t) =i ZG (t.10)d, +ZG,ak(t,t0)cak ,

e () =i Z Gl j(t10)d; + Y Gy g (t10)cp, 1
Bq

(10a)
where
G’ — d —iw(t—ty) .
ij(t’tO) ) e Gij(a)—i-lr)),
G’ . (t,1) _—/ e —i(t—t0) Z ,,(a) + imtjak
i,ak\"> B o ”7 s
— tar1 Gii(w +in)
iw(t—to) fakl TAW T )
1,1 § : ’
ak j( 0) / - ”7
G — ; do _.
r . —igqr(t—10) —iw(t—1to)
w110 { Bpqane A /,oo w’

y Z [ takj G ji(w + intigy j| }
= (0 — €ar +imw —epg +in) |]
(10b)

The result of Eq. (10) is identical to that obtained via directly
solving the Heisenberg equations [82], which are similar
to those attainable from a single-electron approach in the
Schrodinger picture [83].

Using Eq. (10) in Eq. (2), with the initial state given
by Eq. (3), we obtain an expression for the time-dependent
tunneling current,

L) = —2ReTr/ dt[E5 ()G (T.0+Z(1.1)G=(1.1)],

(11a)
where the retarded component of the self-energy is given by
[Zo(.0)],; = =6t — 1) f —r“ (w)e =) (11b)
and the lesser component of that self-energy is

< . do o —iw(ti—1p)
[X;(t,0)]ij =i / Efa(w)rij(w)e S (11¢)
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where f,(w) = 1/[e/@#«)/*sTe 4 1] is the Fermi function for
electrode «.

In Eq. (11), the notation Tr means trace over the indices of
the central scattering area. The advanced Green’s function is
related to the retarded Green’s function by

Gi(t1.h) =[G (t.1)]", (12a)

where G?j(tl,tg) = [G“(#;,1,)];; and the retarded Green’s
function, defined for arbitrary two times # >t and
ty = fo,

Gli(t1.12) = —i6(ty — )({d;(1).d (1)),

can be computed from Eq. (10), resulting in

(12b)

r *dw it —t) .
Gi(tn) =0(n — fz)/ ¢ TG0+ in).
—0Q
(12¢)

The lesser Green’s function, defined by

[G=(t1.0)]ij = i(d}(12)d; (1)),
is found via Eq. (10) to be

(13a)

t
G=(1,t") =G’ (t,1))G~(19,10) G (9,1") +/ dr

o
t/
X / dv'G"(t,1)x~(r,7)G(t',t"), (13b)
to

where

) =) Zi(rT), (13¢)

and the lesser Green’s function at the initial time 7, shows an
explicit dependence on pg(f) as

[G=(t0.t0)];j = itr[d!d, pg(1)).

Here tr means tracing over all the degrees of freedom
of the whole system (central scattering region plus the
electrodes).

(13d)

B. Transient dependence of the tunneling currents on the initial
state of the central area

The above result, Eqs. (11), (12), (13), shows that the
dependence of the tunneling currents on the initial state of
the central scattering region only comes from the second term
in Eq. (11a) through the lesser Green’s function [Eq. (13)].
By setting pg(fo) = |0s)(Os| [such that G=(t,%) = 0], where
|0s) represents the empty state of the central scattering area,
or letting #; — —o0, Eq. (11a) becomes the current obtained
in Ref. [12]. The expression Eq. (13b) can be obtained via the
NEGEF technique by setting the coupling between the QDs and
leads to zero for t < #y [84]. One can also obtain Eq. (13b)
via the influence functional theory [71]. Substituting Eq. (13)
into Eq. (11), the time-dependent tunneling current can thus
be separated into two terms,

I (1) = I5™ (1) + 1), (14a)
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where

t
L™ =— 2ReTrf dt{X;(,7)G"(t,1)
to

+ X, DIG™(z,0)]lo}, (14b)

in which

[G=(z,0)]]o = /Tds/ ds'G"(1,5)X (5,5 )G"(s',1),
! ’ (14c)

and

t
I(t) = — 2ReTr/ dt X! (t,7)

fo

x G (1,10)G = (t0,10) G (y,1). (14d)

The first term /.™(¢) describes the tunneling current that is
independent of the initial occupation in the central scattering
region. The superscript “em.” stands for initially “empty”
states. The second term /.°°(t), where the superscript “occ.”
abbreviates “initial occupation,” explicitly includes this effect.
The result, Eq. (14d), further indicates that 7;°(¢) is inde-
pendent of the initial chemical potentials and temperatures of
the electrodes. As long as there are no bound states [85], the
Green’s function, G%(ty,t — oo0) = 0, vanishes in the long-
time limit. The current purely induced by initial occupation,
17°°(¢), then only survives transiently.

III. INITIAL-OCCUPATION-DEPENDENT TRANSIENT
INTERFEROMETRY WITH PARALLEL QUANTUM DOTS

The target system in the present work consists of two QDs
arranged in parallel between two electrodes. It is schematically
shown in Fig. 1. For simplicity, we assume that each QD
contains a single spinless orbital. The Hamiltonian of the
central nanostructure Eq. (1b) is then specified by

Hs = e1d|d) + exdids. (15)

The two QDs are uncoupled but tunneling through one QD
can interfere with tunneling through the other. To reveal and
control such interference for the study of transient transport,
we utilize a magnetic flux penetrating through the loop formed
by the two QDs and the two leads. This implements the AB
effect via properly attaching phases to the hopping amplitudes

FIG. 1. A schematic sketch of the DQD device under consid-
eration. Two single-level QDs with on-site energies ¢, and ¢, are
coupled to the two separate leads with the tunneling amplitudes #;.
The device is threaded by the the Aharonov-Bohm flux ¢.
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Lok = fiake'®= in Eq. (1d) such that the constraint
dL — dr = ¢ = 21D/ Dy, (16)

where ¢4 — ¢ = @y, is respected. Here @ is the applied
magnetic flux through the ring and @ is the flux quantum.
This enters the Green’s functions above through the level-
broadening functions,

I'fi(w) = T (w)e' @0, (17a)
with

D) =21 ) 8(0 — Eq)raklak)-

kea

(17b)

Without loss of generality, we assume I_‘l‘.’j (w) to be real for all
o=L,Randi,j € {1,2}.

To discuss the transient transport, we first extract the
components of the tunneling currents that are purely transient.
We identify the regime where only these components exist so
that the steady-state currents vanish. We elucidate the physical
meanings of different transient tunneling currents. This then
clarifies the directions for subsequent analysis of how their
characters depend on the interferometry parameters.

Here we show the following. (i) Apart from I1)°(¢),
purely transient effects in the tunneling currents can also be
found from /3™ (¢). These purely transient components can
be extracted from the directly observable currents. (ii) Since
the steady-state currents vanish in the zero-bias regime, it is
convenient to study the transient currents at zero bias. (iii) The
currents purely induced by initial occupations can be analyzed
by resolving contributions from each QD.

A. Transient zero-bias currents

The present setup is a two-terminal system. The label for
reservoir « in Eq. (14) then takes the value« = L oro = R for
aterminal on the left or on the right. In the steady states, charge
conservation asserts I,(t — oo0) = —I;(t — 00), where &
refers to the opposite of «, i.e., L = R and R = L. Before
the steady state is reached, due to the time dependence of
charge occupation in the central scattering area, one generally
has 1,(¢) # —15(¢).

Therefore, it is necessary to characterize individually the
currents on each side. Generically, we have

™) =T, (1) + ALL™ (@), (18a)
where
I, (1) = / N d—wf(w)ﬂ“(t,w) (18b)
oo 2T
and
AL (1) = /oo j—:Afa(w)T;*)(t,w) (18¢)

are the contributions from the average of the Fermi functions,

JL(@) + fr(w)

flo) = 5 (18d)
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and from the deviation of the Fermi distribution in each
reservoir from the average,

Afo(w) = fo(®) — f(o),

respectively. The transmissionlike energy- and time-dependent
functions in Egs. (18b) and (18c) are

(18e)

t
TH(t,w) =2ImTr / dr{F”‘(w)eiw(’T)G“(r,t) + 20 (t,7)

fo

X fr dt1/ du,G'(t,11)[T%(w) £ T%(w)]

X eiw(T‘TZ)G”(rz,t)}, (18f)
obtained by substituting Eq. (11c) into Eqgs. (14b) and (14c).
In Eq. (18b), 7\ P(t,w) is the transmission of electrons with
energy o from reservoir « into the QDs at time ¢. The second
part of the current, AI;™(¢), is nonzero only when f7(w) —
fr(w) is nonzero. It is therefore attributed exclusively to the
effect induced by a bias, represented by the difference between
the two Fermi functions. The other part, TZm'(t), survives even
without a bias.

In the steady states, the current, I = I (t — o0) =
—Ig(t - 00), is reduced to the well-known expression,
namely [86],

*®d
I= / ﬁ[ﬁ(w) — [R@)]T (@) = L AIE™(t — 00),
(19)
where

T () = 1T - 00,0) = Tr{T*()G ()T (@) G* ()}

(20)

for both = L,R. In Eq. (19), {1, = 1 and ¢ = —1. Hence-
forth, from Eqgs. (19) and (18) one sees unambiguously that
TZm'(t — 00) = 0 and that the steady-state currents vanish at
zero bias.

We thus identify that sz'(t) is a purely transient component
of the current /J™(¢) for whatever biases. The effects that are
exclusively transients are contained only in sz'(t) and 17°“(t).
Given the abilities of preparing various initial occupations
of the QDs (including the initial empty state) [4,21-23],
the currents purely induced by initial occupations 1.(¢)
can be obtained by subtracting I;™(¢) from the total current
I,(t) starting from various occupations. The other transient
component, TZm'(t), can be found from the difference between
the currents /,(¢) obtained at reversed biases, namely,

1
2

—em. 1 .
I, (t)|(uL,MR)=(uA.,MB) = E[Io?m (t)|(ML-HR)=(MA»IlB)

+ Ioim.(t)l(ﬂLvﬂR)=(N-B’lLA)]' (21)

B. Resolving level contributions to initial charge-induced
currents

To study the effects of initial occupations on the tunneling
currents via 1;°“(¢), one needs to examine various attainable
occupations. For the interferometer with two QDs, particularly
interesting initial occupations are the states with one electron
either occupying QD1 or QD2, and the fully occupied
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configuration. We denote n;(#p) as the initial occupation on
QD i. These diagonal initial occupations are then described by
[G=(t0,10)];; = id;jn;(to), in Eq. (14d) leading to

12(1) = Y nito) (@), (22a)

with
t
Ig"](t)zzlmf dt[G*(t,) X" (t,1)G" (t,t0)]ii,  (22b)
to

resolving the current specifically induced by an initial occupa-
tion on level i. Consequently, the current induced by initially
occupying both QDs, denoted as I[!+2!(¢), is then

2
1) = 18 Olmwman=a. = Y 10, (23)

i=1

according to Eq. (22). The results Eq. (14) and Eq. (22) imply
that one only needs to separately track the dynamics of 17(¢)
for each level i to see how various initial occupations influence
the transient dynamics.

C. Physical meanings of transient currents

Having identified distinct transient components of the
tunneling currents, we now analyze their corresponding
underlying physical processes. Immediately after ¢ = 7, the
current /J™(¢) is contributed solely by the in-tunneling
processes (tunneling of electrons from reservoirs into the
central scattering area). Since in the beginning there were no
electrons in the central part, it is not possible to have electrons
tunnel out of the central area into the reservoirs. On the
contrary, 17°°(t) describes currents exclusively induced by out-
tunneling processes. The currents are defined as the negative
changing rate of the electron numbers in the electrodes. In-
tunneling from reservoirs into the QDs decreases the number
of electrons in the reservoirs and hence the changing rate of
electron number in the reservoirs is negative. Consequently,
we anticipate the in-tunneling currents to be positive. On the
contrary, we expect the out-tunneling currents to be negative.

Microscopically, the elementary processes underlying the
in-tunneling currents are induced by tunneling of electrons
from occupied levels below the chemical potentials in the
reservoirs to the QDs. The positions of the chemical potentials
relative to the energy levels of the QDs determine how much
can tunnel into the QDs and how much can tunnel out as well.
Therefore, the symmetry of energy levels on the QDs relative
to the chemical potentials is important for the relationship
between the in-tunneling and the out-tunneling currents. In
addition to that, the interferometer is also characterized by the
geometric symmetry of the device. The individual transient
components I(z,¢), T, (¢,¢) are explicitly associated with
the geometric characterization of the interferometer, namely,
the up (i = 1), down (i = 2), left (¢« = L), and right (« = R).
Below we show how to modulate the properties of these
transient currents by investigating different components of the
transient currents in association with these two symmetries of
the system.
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IV. SYMMETRY IN THE DYNAMICS FOR THE
TRANSIENT CURRENTS

In order to have an unambiguous picture, we explicitly
specify the relevant parameters of the system. We assume
the widely applied wideband approximation. Within this
assumption, ;. = f;, becomes independent of k in Eq. (17b)
and, consequently,

F,a,(w) = FZ = anafiat_jav 24

where g,, is the density of states of lead «. Following Eq. (24),
we have 1:‘?2 = 27TQaflaf2a = \/(anaflafla)(anafZafZW) =
T TS, The solution to the Green’s functions and the
consequent currents Egs. (18) and (22) are explicitly obtained
and summarized in Appendix A. The parameters of the
interferometry are then specified by the four bonds, [—’ILI s f‘sz,
['R, and ['R, the two on-site energies of the QDs, ¢; and &5,
the two chemical potentials, ;. and g, of the reservoirs, and
the applied flux ¢. The currents are functions of both time and
flux, namely, 1,(t) — 1,(¢,9).

The symmetry of the energy level positions concerns the
relative configuration of the four energy references ¢;,¢, and
My, M1g- We denote the energy references by

g0 = (&1 +&)/2 (25)

and

Mo = Uy + 1g)/2. (26)

The geometric symmetry of the interferometer is specified by
the distribution of the four bonds and the two on-site energies
of the QDs. It is also affected by the applied flux. The geometry
of the bonds can be classified according to the geometric
symmetry they present: (i) left-right symmetry, namely, ['; =
'R =T;; and (ii) up-down symmetry, 'Y, = I', = I'*. We
denote the difference between the on-site energies of the two
QDs by

Se =g, — 6. 27

The geometry of the two on-site energies is categorized by
being degenerate de = 0 or not de # 0, exhibiting up-down
symmetry or not. The influences of the flux can be inspected
by generally decomposing any flux-dependent quantity, Q(¢),
into

0(¢) = 0% () + 0™ (4), (28a)
with
0% () = £0%(—¢) (28b)
representing the even “+”” and the odd “— responses to the
flux.

In Sec. IV A, we illustrate the special transient properties
of the odd components of Io[ti](t,¢) and sz'(t,¢). Subsequent
discussions reveal that they are not sensitive to left-right
asymmetry, unlike their even counterparts. In Sec. IV B, we
discuss the effects of up-down symmetry and we demonstrate
how to affect the left-right asymmetry in the time scales
as well as the magnitudes of the currents by the geometry
of the system. The case of left-right symmetry is presented
in Sec. IV C together with geometric factors that influence
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the up-down asymmetry between I1!(t,¢) and I?!(z,$). In
Sec. IVD we focus on the symmetry of the energy level
positions. This symmetry is shown to play a key role in the
relationship between the main two parts of the purely transient
components of the currents, 11/1(z,¢) and T, (,¢). Note that
the 111(t,¢)’s do not depend on the chemical potentials.
As shown in Eq. (18b), the geometric factors only enter
1.7 (t,¢) through T (t,0,¢), having nothing to do with
wp and pg. For simplicity, we set @, = ug = o = & for
inspecting TZm'(t,¢>)’s in Secs. IV B and IV C. Deviations from
U = g = Mo = &g are considered in Sec IV D.

A. Transient odd components of the tunneling currents

Below we show that the odd components of the currents are
insensitive to the left-right asymmetry in the bonds. However,
the up-down symmetry in terms of the on-site energies of the
QDs is crucial to manifest the odd components.

Substituting explicitly Eq. (A1) into Egs. (A9) and (A10)
and extracting the parts that are odd in the flux give

1= (1,¢) =2¢,1% T, sin ¢

X {Im[wbi(t)] — 58‘ b-()
Fe(9) Fe(9)

1P (1,¢) =24, T, T sin g

X { - Im|: b-) bi(t)] — 58‘ b-(1)

2
}, (29)

|

I (¢) [e(9)
(30)
and
T (0,¢) = F 45,86TH T sing
b_(t,w)? [15_(t,w)~* ]}
r R by, -
X{ ’Fgw» TR T

(€29}

In Egs. (29), (30), and (31), the ¢,’s are defined after Eq. (19),
[e(¢) is given by Eq. (A7), and b.(¢,¢) and b.(t,w) are
defined in Egs. (All) and (A12) respectively. The factor
Im[lé;(((;))bi(t)] in Egs. (29) and (30) vanishes when the
geometry of the system satisfies either

re =Tg =T (32)

or
8¢ =0 (33)

(see Appendix A 1 for a detailed derivation). The results
Egs. (29), (30), and (31) show that the following two conditions
must simultaneously hold for these odd components to be
nonzero:

sin(¢) # 0 (34
and
de #£ 0. (35)

The first condition, Eq. (34), explicitly reveals that these odd
components arise from the applied flux. The second condition,
Eq. (35), can be used to discern qualitatively if the QDs are
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degenerate or not by inspecting whether the odd components
of the currents are always zero.

Furthermore, Eqgs. (29), (30), and (31) also show that,
regardless of the symmetry of the bonds, the odd components
always obey the following symmetry:

L) = 1" (27w — ),
T (0.9 =T to2r-¢). (36

Note that Eq. (36) applies not only to the parts of the currents
that are purely transient, namely, I)(t,¢) and T, (1,¢). It is
also true for the part of the current given by AIZ™(¢) [see
Eq. (18) with Eq. (36)].

The system under consideration is a two-terminal setup.
Therefore, the steady-state currents must obey phase rigidity,
making only the even components remain [87,88]. Taking the
steady-state limit, t — oo, in Egs. (29), (30), and (31), we see
that they all vanish (see Appendix A 1). Henceforth, the effects
which arise from the odd components are exclusively transient.
The above analysis then leads us to consider the effect of
geometric symmetry for the even and the odd components
separately according to whether §¢ = 0 or ¢ # 0.

B. Up-down symmetry of the bonds, T'?, = T'%,

Here we discuss the effects of up-down symmetry realized
by Eq. (32). Given the equally strong upper and lower bonds,
the currents purely induced by occupying one QD shall also
exhibit up-down symmetry [89], namely, Il1(z,¢) = I[2(z,¢)
[see Appendix A 2 for a detailed proof using Eq. (32) only
without Eq. (33)]. Intuitively, a large asymmetry between the
magnitudes of the currents on the left and that on the right can
be realized by I'* « I'R. More interestingly, we show that
the left-right asymmetry between the times of approaching
the steady-state limit can be enhanced or suppressed by the
choices of ¢ in comparison to |I'12(¢)|.

1. Degenerate QDs

Figure 2 demonstrates the currents with up-down symmetry
in the bonds and with degenerate QD levels, §¢ = 0. In this
case, only the even components of the currents are nonzero.
The currents on the left and on the right are shown as a
function of time at various fluxes on the first two rows of
Fig. 2 [plots (al) for I1(z,¢) = I1/*/(r,¢), (a2) for T, (t.¢),
(b1) for 1M(r,¢) = 15(1,¢), and (b2) for Ty, (1,9)].

At degeneracy, the rates of approaching steady states
are governed only by the bonds. Therefore, the left-right
asymmetry in the bonds would be revealed also in the
difference between the times needed for the currents on the left
and on the right to reach the steady states. This is illustrated on
the first two rows of Fig. 2 [compare the time scales in (al) and
(a2) with those in (b1) and (b2) in Fig. 2]. When the up-down
symmetry is realized simultaneously by Eqs. (32) and (33),
Egs. (Al), (A11), (A20), (A22), (A25), and (A18) yield

1INt 4) = — rw{ ! [1 _ w}waw»t

2 ST (¢)
1 T+ Tcos @) _risry }
T2 [1 Tt }e oD
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FIG. 2. Various transient components of the currents with up-
down symmetry, I'f, =5, = 0.1 and '} = 'R = 0.9T", atdegen-
eracy 8¢ = 0. Inplots (al), (a2), (b1), and (b2) different line styles are
for different fluxes as indicated on the right. In plot (c) we show the
decay rates as a function of flux under the bonds and on-site energies
specified above. We have set ;; = g = o = & in this figure as
well as in Figs. 6 and 7. The temperature is taken to be kg7 = 0.1
for all figures, such that the thermal effects due to finite temperature
become unimportant.

The solution Eq. (37) shows that the initial-occupation-
induced currents on both sides &« = L,R commonly possess
two exponential decay terms e~ " T@V each of which is
associated with an amplitude. The corresponding decay rates
are plotted in Fig. 2(c). Equation (37) says that it is the
difference between the amplitudes witha = L and withae = R
that is responsible for the asymmetry between [ E](I,qﬁ) and

1 I[QI](t,qb). The overall factor I'* in front of the right-hand side
(RHS) of Eq. (37) is reflected on the apparent difference in the
magnitudes of the left and the right currents [see magnitudes
in Figs. 2(al) and 2(b1)]. The difference in the time scales
arises from the difference in the relative importance of the
amplitudes in front of the faster decay term eI HT@I and
the slower decay term ¢~ ['=°T@V Furthermore, the currents
on the left shown by Figs. 2(al) and 2(a2) are clearly different
for different fluxes. The currents on the right show less
visible changes for different fluxes [see Figs. 2(b1) and 2(b2)].
These asymmetric features shown by Figs. 2(al) and 2(bl)
can be derived by imposing T'® » I'" in Eq. (37) (see
Appendix B 1 a).
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In Fig. 2, one also observes a symmetry between I11(z,4)
and TZm'(t,(p) showing that sz'(t,qb) = —IN(t,¢). The in-
terpretation of Il)(t,¢) and T, (t,¢) as out-tunneling and
in-tunneling currents in Sec. III C is verified by the signs of
these quantities [see the negative signs in Figs. 2(al) and 2(b1)
and the positive signs in Figs. 2(a2) and 2(b2)]. As we show
later that as long as g = &p with either Eq. (32) or Eq. (33)
being satisfied, one can infer sz'(t,¢) from Io[t”(t,q})’s (see
detailed discussion in Sec. IV D). Therefore, in Sec. IVB
[where the discussions are all for the case Eq. (32)] only the
1(r,¢)’s are discussed.

2. Nondegenerate QDs

When the on-site energies of the QDs are not degenerate,
de # 0, then the odd components of the currents appear
when sin¢ # 0, according to Egs. (29), (30), and (31).
The time dependence of the currents relies on the time
dependence of the Green’s function G'(¢,fp). The latter,
given by Eq. (Al), has its time dependence governed by
the parameter I';(¢) defined in Eq. (A7). The condition of
Eq. (32) makes 'y (¢) = /|T'12(¢)|? — 5&2 become either real,
if |T12(¢)> > 8%, or purely imaginary, if |T'2(¢)|* < 8¢
Since the odd components satisfy Eq. (36), to focus on
the left-right asymmetry, we first discuss these two cases
of |T12(¢)]> > 8% and |T'12(¢)|*> < 8¢ separately for the
even components. The effects of nondegeneracy on the odd
components of the currents are discussed later. In all the
discussions below for §¢ # 0, associated with Figs. 3, 4, and 5,
the equality II1%(t,¢) = I121%(z,¢) under Eq. (32) is also
numerically verified.

a. Even components for 8¢ # 0 with |T12(¢)|> > 8&2. We
first demonstrate the even components of the transient currents

0e=—0.5T
I G 6“]‘1(:,4»):fZJ‘*R(r,ti))(b)

Pie —d):O
-0.2-
04- -~ ¢=n/2
-0.6- "'¢=TC
-0.8-
014 — e ([ =
O 4 8 121620 0 4 8 121620 | 9732
PRRM—)
164 ~-7 -~ —ol'(9)
129 - ~T+3I(¢)
08T~~~ Il
0.4 R TN i
0 d/n

2 -1 0 1 2

FIG. 3. The even components of the initial-occupation-induced
currents with up-down symmetry, I'f;, =T'% =0.1T and T'f =
fg = 0.9T", are shown in plots (a) and (b). Here we set §¢ = —0.5T"
such that |I"j5(¢))|> > 8¢2 and the corresponding decay rates are
plotted in (c).
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de=—4.0T
a)=r" 0 @ =1 (b
0 , 0
,, —¢=0
00271 77 -0.2-
|1 .
0044 04/ H=n/2
0081 o o
-0.084'" - ¢=n
3 -0.8
-0.1 T T T T T T T T ---4d=
01 2 3 4 5 01 2 3 4 5 ¢=3n/2

FIG. 4. The even components of the initial-occupation-induced
currents with nondegenerate QDs of on-site energy splitting, ¢ =
—4T, and with up-down symmetry, I'f, = TL, = 0.1T and T'F =
['%, = 0.9T. Different line styles are for different fluxes, as indicated

on the right.

in Fig. 3 with |['5(¢)|* > 8¢ # 0. Opening the energy
splitting between the QDs introduces another energy scale.
This suppresses the sole dominance of the bonds in the rates
of approaching steady states. Consequently, the difference
between the times required by ,{”(t,qb) and [ l[ell(t,¢) to reach
the steady-state limits displayed in Figs. 3(a) and 3(b) is not
as obvious as those shown by Figs. 2(al) and 2(b1). The same
set of left-right asymmetric bonds is used in Figs. 2 and 3. The
even component of the initial-occupation-induced current with
IT12(¢)|* > 8&% # 0 now becomes [using the same derivation
of Eq. (37) without applying Eq. (33)]

(T + T'% cos p) N [ Se T}
SU(p) SU(p)
X e*[FftSF((P)]t
de

1 (% + "% cos ) 2}
-1
* 2{ T +[6F(¢>}

2
« e—IT+HT@Nr _< 3e ) e—rz)’
ST()

where 8T(¢p) = /|IT12(¢)|? — 862 > 0 [see Egs. (A6)
and (A7)]. In Eq. (38), in addition to the two decay terms,

e~ [FET@I another exponential decay term e ' appears. This
latter term has its amplitude determined by the nondegeneracy
of the QDs’ on-site energies. Setting ¢ = 0in Eq. (38) reduces
it to Eq. (37). In the degenerate case we have learned that the

1

[11,+ — _T1o _ _
11 (1) = r(z{l

(38)

de=—0.5T de=—4.0T
M) =1 ) =10 2mp) =1 1 2n-4)
—¢=0 002 @ 003 ®
i oor] 0024,
-~ ¢=n/2 k . 0.0t/ \
0 == 0
S o=m o 01““ -0.014\
R 0,024 %/
“¢=3n/2 02—t -0.03 — T
0 4 8 12 16 20 0o 2 4

FIG. 5. The odd components of the initial-occupation-induced
currents. Plots (a) and (b) are with the same parameters used in Fig. 3

for [T'12(¢)|* > 8¢2 and in Fig. 4 for |T'15(¢)|*> < 8&?, respectively.
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choice of I'gx > I') makes the amplitude in / ,[;](t,qb) for the
slow decay term e~ ["=°*T@1 approach zero. However, when
8¢ is finite, all the amplitudes in Eq. (38) are not negligible.
This explains why the left-right asymmetry in time scales
for reaching the steady-state limits shown in Fig. 3 is not
as drastic as that shown in Fig. 2. The left-right asymmetry
in the magnitudes of the currents for de # O is still clearly
seen [compare the magnitudes of Fig. 3(a) with those in
Fig. 3(b), respectively]. This, again, reflects the overall factor
I'* in Eq. (38). The more visible flux dependence in Fig. 3(a),
in contrast to the less visible flux dependence in Fig. 3(b),
can be explained by the same reason applied to Fig. 2 (see
Appendix B 1 a). Letting ¢ 5 0 also raises the rate of the
slow decay term by varying the flux [compare the line for
I' — 8T (¢) in Fig. 3(c) to that in Fig. 2(c)]. The time required
to reach the steady-state limit is thus reduced [compare the
time scales in Fig. 3(a) to that in Fig. 2(al)].

b. Even components for 8¢ # 0 with |T12(¢)|> < 8&2. The
results of further increasing 8¢ such that |T'5(¢)|? < 8&? are
demonstrated in Fig. 4, still with ['® > ', Similar to Fig. 3,
increasing §¢ decreases the asymmetry between the time scales
while the asymmetry in the magnitudes of the left and the right
currents are unaffected. For |['2(¢)|> > 8¢2, Figs. 2 and 3
show only smooth time evolutions of / OE”*Jr(t,qﬁ), described by
exponential decays. However, for |I"j2(¢)|*> < 8&2, a steplike
feature in the time evolutions of [ E]”L(t,q&) is observed in
Fig. 4(a) for ¢ = 0 (see the red solid line) and for ¢ = 7 (see
the green dash-dotted line). Asymmetrically for / I[QH‘J“(t,(p) in
Fig. 4(b), this feature exists for all the tested fluxes. Indeed,
when |T'15(¢)|?> < 8&2 is obeyed, the even components of the
initial-occupation-induced current under Eq. (32) reads [using
the same approach of deriving Eq. (38) with the condition
IT12()* < 867

2
R (I P B s
“+T%cos¢ . se 71
(39)

where €,(¢) = /862 — |T'12(¢)|> > 0. The result of Eq. (39)

is very different from Eq. (38). In addition to the exponential
decay factor ™', time-oscillatory terms, cos [e¢(¢)t] and
sin [gg(¢)t], also appear. The steplike feature in the time
evolution is a result of the combined effect of the exponential
decay and the oscillatory terms. The asymmetry between the
left and the right currents in showing up the steplike feature in
different fluxes is explained by applying I'® > T'Z to Eq. (39)
(see Appendix B 1 b).

c. The odd components of the initial-occupation-induced
currents. The odd components of the transient currents under
the same set of parameters used in Fig. 3 are displayed
in Fig. 5(a) for |'2(¢)|* > 8e2. The parameters discussed
in Fig. 4 are shown in Fig. 5(b) for |T'12(¢)|> < 8&>. The
numerical calculations in Fig. 5 verify that the odd components
obey Eq. (36). The effects of the splitting between the two QDs’
on-site energies are well contrasted by comparing Fig. 5(a)
with Fig. 5(b). The time evolution of the odd component
of the initial-occupation-induced current under Eq. (32) and
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IT12()|> > 8&? is explicitly given by
L r R

LN 0.9) = ~tusm %)

——8esin(¢){cosh[T(¢p)t] — 1}e "

(40)
Its time dependence is thus governed by the three exponential
decay factors e "HT@I and ¢~1" and the relative ratios
between the amplitudes for these factors are independent of

either ¢ or . On the other hand, the oscillatory behaviors are
observed in Fig. 5(b), corresponding to

LTR

TPy @ ———38e sin(@){cos[e, ()] — 1},

(41)

M= (t,¢) =

for |T'12(¢)|> < 8&2. The difference between Figs. 5(a) and 5(b)
in the times of approaching steady-state limit can also be read
from Egs. (40) and (41). When |T'15(¢)|*> > 8¢, the current is
dominated by the slow decay e [T 9T @¥ in Eq. (40). However,
when |T'15(¢)|> < 8¢ the currents exhibit a single decay
factor e !', which decays faster than e~ ' =3T@V [Eq. (41)].
Therefore, the decay times exhibited in Fig. 5(a) are longer
than those found in Fig. 5(b).

C. Left-right symmetry I'; = TR
When the bonds obey left-right symmetry ['; = T'X, then

the even components follow the left-right symmetry, namely,
14 +(t b) [see later discussions around Egs. (42)

IE],+(I’¢) = Iy
and (43)] and I (t ¢) = (t ¢) [see Appendix C for a
proof without assuming up- down symmetry by Eq. (32) or
Eq. (33)]. Note that the relation between the odd components
of the left and the right currents is subjected to Eq. (36) for
whatever setting of the bonds.
Below we show that the up-down asymmetry between

m(t ¢) and [ m(t ¢), in terms of their time scales for
approaching the steady-state limit, can be enhanced by the
asymmetry ['; « T', for both degenerate §¢ = 0 and nonde-
generate §e # 0 cases.

1. Degenerate QDs

In Fig. 6 we plot the time evolutions of the purely
transient components of the currents under T'; = I} with
de = 0. For an initial charge in QD1 (or QD2), the immediate
out-tunneling is taken through the upper bonds (or the lower
bonds). Therefore, when up-down asymmetry is present in
the bonds, the times for IL1(¢,¢) and I!?(t,¢) to reach the
steady-state limit as well as the magnitudes of these currents
would also show such asymmetry. From Fig. 6, we see that
the up-down asymmetry of the bonds is clearly revealed in the
difference between Il1(¢,¢) and 1!%(¢,¢) [compare Fig. 6(a)
with Fig. 6(b) both in time scales and magnitudes].

Setting T = T® =T, and 8¢ = 0 [Eq. (33)] in Eq. (A1)
and substltutmg it further into Eq. (A10) yield

IDEi](t,qb) _ If[i](¢)e—[r+5r(¢)]t + Is[i](¢)e—[F—8F(¢)]t
+ 1 (e, 42)
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FIG. 6. Various transient components of the currents with left-
right symmetry, ['f; = 'R = 0.1T" and '}, = 'R = 0.9T, at degen-
eracy §¢ = 0. Different line styles are for different fluxes as indicated
on the right of plot (c).

for i = 1,2 and here 8I'(¢) = /IT'12(¢)|2 + '3, where T,

is defined in Eq. (A2). The subscript f in If[”(q&) refers to
“fast” decay term and, conversely, the subscript s in /1(¢)
refers to “slow” decay term. The explicit expressions of the
amplitudes in Eq. (42) are given by Eq. (B3) in Appendix B 2 a.
These amplitudes do not depend on « and consequently
11t,¢) = 18)(t,¢). Similar to Eq. (38), Eq. (42) also shows
the three decay factors, e '@V and =17 commonly
possessed by Il1(¢,¢) and I!%(¢,¢). With large asymmetry
between the upper and the lower bonds, [} < [, I1(z,¢)
is governed by the amplitude for the slow decay term while
the amplitudes for different decay factors are comparable in
I2)(t,¢) (see Appendix B 2 a for more details).

In the present case with ¢ =0 and u, = ¢;,, we have
S(t,p) = —1(1,0) + 12(1,0)1/2 (see more detailed dis-
cuss10ns in Sec. IV D). The up-down asymmetry in the bonds
is also revealed by comparing Fig. 6(c) with Fig 6(a) and
Fig. 6(b). Since |IM(1)] < [112(1)], we see that T, (¢) and

—1121(#)/2 have about the same magnitudes.

—e

2. Nondegenerate QDs

The time evolutions of the purely transient components
of the currents under left-right symmetry T'Z =% with
nondegeneracy d¢ # 0 are demonstrated in Fig. 7. With
de # 0, the up-down asymmetry in terms of the difference
between the times needed by Il1(¢,¢) and I[?!(t,$) to reach
the steady-state limit is still obvious [comparing the time scales
in Figs. 7(al) and 7(b1) with those in Figs. 7(a2) and 7(b2)].
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FIG. 7. Various components of the transient currents with left-right symmetry, 'Y, = TR = 0.1I" and T'}, = TR, = 0.9T", at nondegeneracy
de = —2T . Different line styles are for different fluxes, as indicated on the top. The parts that are even in the flux are shown in plots (al), (a2),
(a3) and the corresponding odd parts are shown in plots (b1), (b2), and (b3).

This is unlike the cases discussed in Sec. IV B. In this former
discussion, letting d& # 0 has reduced the difference in the
times to reach the steady-state limit between [ E](t,q)) and

15(1,4) induced by the asymmetry in the bonds I'* « I'X.
The asymmetry between I11(z,¢) and 1/2(¢,¢p) dueto T} < T,
is not reduced by letting é¢ # 0, as shown by Fig. 7.

Setting I'; = T'¥ =T, in Eq. (A1) and substituting it into

Eq. (A10) yield
11+ ,¢) = It[i](¢)e—[r+sr(¢)]t + 1) T—oT @
o ’ k
+ I(Eé}:(¢)e_rt COS[Sg(¢)t] + [[Elsl(qb)

x e T sin[eg ()11, (43)
for i = 1,2 in which the superscript 4+ denote the component
that is even in the flux ¢. The subscripts osc and oss in 11l (¢)
and 1l1l(¢) stand for oscillation as cosine and oscillation as
sine, respectively. The details of the amplitudes in Eq. (43)
are found in Eq. (B5) and setting §¢ = 0 reduces Eq. (43)
to Eq. (42). Analysis of these amplitudes shows that §¢ # 0
does not affect the dominance of the slow decay term in
1M(2,¢) caused by 'y « Ty [see the first paragraph after
Eq. (B7)]. Similar to the discussions in Sec. IV B, the nonzero
de gives rise to oscillatory contributions as the last two terms
of Eq. (43). More interestingly, the large asymmetry between
the upper and the lower bonds can also render an asymmetry in
the manifestation of these oscillatory terms. Figure 7(al) for
I+ (¢,¢) displays spike features that can only arise from the
contributions of oscillatory terms. However, in Fig. 7(a2) for
121+ (¢,¢) this time-dependent feature is suppressed, showing
only smooth monotonic time evolutions. Detailed explanations

of how the amplitudes for the oscillatory terms are affected by
the asymmetry I'; < I, is found in the second paragraph after
Eq. (B7) in Appendix B 2 b.

The odd components of the initial-occupation-induced
currents are given by

7 INDN i go(p) £ e _
112 (t,¢) = + T l(d);z Lo Sm¢<——g 5 e THr@l
8
i 58(¢)2:F de o IT=r @)

+ e T {£8e cosleg (¢)1]

— 8I'(¢) Sin[sg(¢)t]}>, (44)
where the upper sign is for I/ ~(z,¢) and the lower sign is
for 112~ (¢,$). The asymmetry between the odd components,
IOEI]"(t,qﬁ) and 1&2]"(&(;5), is seen by comparing Fig. 7(bl)
with Fig. 7(b2). Consistent with the even part, Fig. 7(b1) shows
longer times to reach the steady-state limit for I\''=(z,¢),
while Fig. 7(b2) shows much shorter times to reach the steady-
state limit for 71>/ ~(¢,¢). Moreover, the oscillatory behavior
in Fig. 7(b1) for 111~ (z,¢) is suppressed, while in Fig. 7(b2)
clear oscillatory time evolutions are displayed for I()[[z]"(t,qb).
How the asymmetry between the upper and the lower bonds
renders asymmetries in the amplitudes between I~ (¢,¢) and
121 =(z,¢) is explained in Appendix B 2 c.

The time evolutions for sz"Jr(t,(p) and sz"i(t,@ are
displayed in Figs. 7(a3) and 7(b3), respectively. Without any
up-down symmetry, I'Y; # 'S, and 8¢ # 0, as we will discuss
later in the following subsection, sz'(t,d)) is not definitely
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related to I[1(z,¢) and I/%(z,¢). Figures 7(al), 7(a2), and

7(a3) show that the sign of sz ’+(t,¢) is positive, while the
signs of 1IN+ (z,¢) and 1)z, qb) are negative. The intuitive
interpretation of I'l(z,¢) and T, (t,¢) as out-tunneling and
in-tunneling currents is thus w1tnessed also for up-down asym-
metry with I'Y, # 'S, and 8¢ # 0 by the even components.
For the odd components, Figs. 7(bl), 7(b2), and 7(b3) show
that the sign of sz’i(t,(p) is opposite to that of Il (z,¢)
and IE]"(t,qﬁ). As revealed by Egs. (29), (30), and (31), the
signs of the odd components are largely determined by the
direction of the flux, manifested by the overall common factor
sin ¢. Further comparison of the even : and the odd components
in terms of the relation between T, (,¢) and Il(z,¢)’s is
discussed later.

D. Symmetry of the energy level positions

The symmetry of the energy level positions is characterized
by the positions of the chemical potentials relative to the
on-site energies of the QDs. Here we show that this symmetry,
combined with the geometric up-down symmetry, provides
a link between T, (t,¢) and Il(r,¢)’s. We further show
that such a connect1on can be used to reveal the different
mechanisms underlying the even and the odd components of
these transient currents.

By Eq. (18b), we see that both the geometry of the
system and the energy configuration involving the chemical
potentials determine the transient current, I (t ), obtamed
under initial empty QDs. These two factors enter I (t b)
via the two distinct terms 7. (f,w,¢$) and the Fermi func-
tions in Eq. (18b). Note that the transmissionlike function,
’Z;(”(t,a),qﬁ), given in Eq. (18f), does not depend on the
chemical potentials It is the Fermi function in Eq. (18b)
that makes T, (t ¢) depend on the chemical potentials of
the reservoirs. The role played by the symmetry of the energy
level positions in I ™(t,¢) can be manifested when we have
geometric up- down symmetry, realized by either Eq. (32) or
Eq. (33), leading to (see Appendix C for a detailed proof)

7;(+)(t’80 + C(),¢) = 7;(-‘_)([980 - wvd)) (45)

If further the chemical potentials (or the on-site energies of the
QDs) obey the symmetry,

Ko = &g (46)
(allowing also p; # ), then the integral in Eq. (18b) with
the use of Eq. (45) becomes (see Appendix D for detailed
derivation)

1" (1,¢) = ! / h d—w7;<+>(t,w,¢>. (47)

2 J_ o 21
Following from Eq. (47), an equality among I ™, ),

11M(2,¢), and I[?1(z,¢) can be established (see Appendlx D
for details):

I, (t.¢) = —1117(t,9). (48)

This result, Eq. (48), holds for arbitrary fluxes under the
symmetry of the energy level configuration, Eq. (46), and the
existence of symmetry between the upper and the lower paths,
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given by Eq. (32) or Eq. (33). We have mentioned the numerical
observation of Eq. (48) in Secs. [IVB and IV C 1 at zero bias.
In what follows we proceed to discuss the deviations from
Eq. (46) and the case of (u; # [g.

1. Zero bias p, = pg

Note that Eq. (48) holds for both of the cases u; = u, and
M, 7 Mg. Atazero bias I (t ¢) = 1,(t,¢) and the observed
currents are purely tran51ent For clarity, we first numerically
demonstrate Eq. (48) with t; = uy = p in Figs. 8 and 9 for
the even and the odd components, respectively. We define

Al (t,0) =T, (t,¢) — [ 1“”](r¢)} (49)

to quantify the deviation from Eq. (48), due to asymmetry in
geometry or energy level positions. The roles played by the
up-down symmetry in terms of the energy splitting between
the upper and the lower QDs is demonstrated in Figs. 8(al)
and 8(bl). The importance of the symmetry of the energy
level positions, characterized by the deviation of wy from
€0, is exemplified in Figs. 8(a2) and 8(b2) for the bonds
exhibiting up-down symmetry and in Figs. 8(a3) and 8(b3)
with degenerate QDs. In the calculations for Fig. 8, we have
verified that T, T(t,¢) > 0, while 1215 (1, ¢) < 0, ensuring
the identification of the former as the in-tunneling and of the
latter as the out-tunneling currents. The results in Figs. 8(al)

AL (1,4) (al) Al(t,¢) (b1)
0.00 == 0.04} 1 Se=0
—001} / 04/ \‘ e
0028 yi 0.03¢ . -3 =Tl
~0.03} 0.02f/ T de=-2T
N '\
—0.04p / 0.01t \\\
-0.05¢\ - R o
0.00 20,
0 5 10 15 0 2 4 6 8 1012 14
(a2) (b2)
0.04f [ \ o ~. fo=¢o__
0.03 I‘/_\‘\ O'ISI' \ Hp=&9+T
0.02(1/ \\\ 0.10/ \\\\ Ho=€p+2T
0.01¢ “\ 0.05 N o _p
0 NS 0.00 ~ Fp=l
0 2 4 6 8 2 4 6 g 0e=-2
(a3) (b3)
i 0.20 i e
0.15 =80 _
ook \‘ 0.15}, \. Ho=EtT
. A s T T
1’ \\ 0.10f \\\ Ho=&p+2T
N = =
0.05 g 00sf N 09,
0 —- — i 88=0

.00 0.00
0 2 4 6 8 1012 14 0 2 4 6 8 1012 14

FIG. 8. The difference between in-tunneling and out-tunneling
currents, quantified by the even component of Eq. (49), AIf(,¢).
Here we take ¢ = /2. In plots (al) and (b1), the bonds are ['F; =
0.2,TR =0.6, 'L = 0.7, and T'X = 0.5. Different line styles there
correspond to different §¢, as shown on the right of (b1). In plots (a2)
and (b2), the bonds are 'Y, =5, = 0.1T" and TR =% =0.9"
and and the on-site energies are §¢ = —2I. Different line styles there
correspond to different positions of i, as indicated to the right of
(b2). In plots (a3) and (b3), we set degenerate QDs with the setting of
unequal bonds used in (al) and (b1) for all the curves. Different line
styles here are for different positions of 1, as shown on the right of
(b3).
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Al (1,9)=Al(12n-¢) (@
0 = 0.00
-0.005 \.\\ // -0.01 7

\\ /" -0.02) | /
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FIG. 9. The odd components of Al,(t,¢) [plot (a)], and its
composition currents, T, (¢,4) [plot (b)] and 1['*?(z,¢) [plot (c)], at
¢ = /2 with other parameters used in Figs. 8(a2) and 8(b2).

and 8(b1) show thataslong as ¢ = 0, regardless of the settings
of the bonds, the in-tunneling and the out-tunneling currents
are equally strong [see the red solid lines which remain at
zero all the time in Figs. 8(al) and 8(b1)] given that g = &.
In both Figs. 8(a2) and 8(b2) and Figs. 8(a3) and 8(b3) the
relative position of 1 to £y has been varied. We show that only
when there exists a common energy symmetric point for states
in the reservoirs and those in the QDs can the in-tunneling
and the out-tunneling dynamics be symmetric to each other
[see the nonvanishing dashed lines in Figs. 8(a2), 8(b2), 8(a3),
and 8(b3) in contrast to the red solid lines]. Note that although
in Fig. 8 we have only shown the results for one value of the
flux, the above conclusion holds for all fluxes.

The corresponding odd components of Eq. (49), along with
the underlying currents, T, (t,¢) and I\'*?)(z,¢), are shown
in Fig. 9. By Fig. 9(a), we show for the odd components
how the deviation from the symmetry of Eq. (46) deviates
1. (t,¢) from —I+2)(z,¢9)/2. In Figs. 9(b) and 9(c), we see
how variation in p,, actually only changes sz'(t,¢), leaving
11721z, ¢) unaffected, as ensured by Eq. (14). The higher the
W is away from g, a larger part of 7P (¢,w,¢) is effectively
included in the integral of Eq. (18b) whose upper bound is
governed by u,, (at low temperature). The maximal attainable
magnitude of TZm'(t,qs) in the transient process thus grows with
the deviation of u, from gy [see the changes of the lines in
Fig. 9(b)]. More interestingly, Figs. 9(b) and 9(c) exemplify
the special properties of the odd components of the currents. It
shows that sz"i(t,qb) can be negative while Io[tl+2]”(t,¢) can
be positive [see also Figs. 7(bl), 7(b2), 7(b3) for sz"_(t,(j))
showing negative values while L'+~ (z,¢) showing positive
values]. This is unlike their even counterparts where the signs
of the currents are consistent with the in-tunneling and the out-
tunneling processes. The distinction between the mechanisms
for the even part and the odd part of the transient currents can
be further revealed without the restriction of zero bias.

2. Finite biases p; # pg

At a finite bias, the directly observable current I.™(¢,¢)
contains both T, (,¢), which obeys Eq. (48), and AIS™ (z,¢)),
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which is not involved in Eq. (48). It is thus very interesting
to see how the symmetry embedded in Eq. (48) can be
manifested also at a finite bias from the directly observable
current I;™(t,¢). Below we show that directly from the even
and the odd components of /,(z,¢), Eq. (48) can be revealed.
Complementarily, with the aid of Eq. (48) the distinct effects
of the even and odd responses of the currents to the flux can
be manifested.

Indeed, interchanging the left and the right bonds, the
current components on the two sides are directly related to
each other as

—em.,+ —em.,t

IV () =410 (,0) Lok (50a)
and

AIE™E(t,0) = FAL™ (1,0)| L, (50b)

where & is the opposite side of o and -|; _, z indicates that the
quantity - on the RHS of Eq. (50) is evaluated by interchanging
the left and the right bonds, TS <> T'X, from those used in the
left-hand side (LHS) of the same equation. The superscripts
+ and — denote the even and the odd flux-dependent parts of
these quantities. The result, Eq. (50), is a direct consequence of
the geometric properties of the system [90]. It does not require
any symmetry among the bonds and it holds with no regard to
the positions of ¢y and pg. By Eqgs. (14) and (18), the current
that starts with initially fully occupied QDs is

L) ytymmiy=t = Loy (1,0) + AIT™(1,0) + [FH(1,9).
1)

To see how the symmetry, Eq. (48), manifests itself, we
substitute Eq. (48) into Eq. (51), yielding

LD ==t = —Ty .9) + AL (1,9). (52)
Combining Eq. (52) with Eq. (50), we are led to a new relation

+ + <
LD ymman=1 = Fla OO G mmay=o-  (53)

The result of Eq. (53) does not require the breaking of the
directly observable current I (¢,¢) into a purely transient part
and a part that would have remained in the steady-state limit.
The physical quantities on both sides of Eq. (53) can be directly
obtained from /,(¢,¢). The LHS of Eq. (53) is the current on
lead o with the QDs being initially fully occupied, which is
dominated by the out-tunneling process in the transient regime
and vice versa for the RHS, where initially the QDs are empty.
For the even components, the two sides of Eq. (53) differ by a
sign. This reflects the sign difference of the in-tunneling and
the out-tunneling currents. In contrast, for the odd components,
there is no such a sign difference.

We demonstrate Eq. (53) numerically in Fig. 10 witheV =
ur — g # 0. Heed that, at a finite bias, the breaking of the
equality Eq. (53) when Eq. (48) does not hold is a purely tran-
sient phenomenon. In the steady-state limit the purely transient
components vanish, T, (t — 00,¢) = 0, II'*2(1 — o00,¢) =
0,leadingto [,(t — o0,¢) = AI{™(t — 00,¢),and Eq. (50b)

immediately becomes Eq. (53). One can see in Fig. 10(al)
L<R

+ _ o+ :
that - =IOy, y)=nya=1 = Tk G P )=nyip—0 andin
. — — L<R

Fig. 10a2) that I, (), y=nsur=1 = 1o C Py =m0
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I (6,0, ty=ns =0 (LEIH)=(0.1 10 0.9)r
______ +IL J¢g:‘l](0t0) f’lz(ol‘()) 1 (r FR) (0 s 1)
Ho=&9 _ (al) Ho=gp+T"  (bl)
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FIG. 10. The even and the odd components of the directly
observable currents that start at different initial occupations. The
applied bias is eV = 0.5T" and the flux is taken at ¢ = 7 /2. The
plots (al) and (a2) are with uy = &y, while the plots (b1) and (b2)
are with wo = g9 + I'. In all the plots we have let 'Y, = 'y = I'?,
with e = —2I". The red solid lines in (al) and (b1) are for the even
component I,‘{(t,([))lnl(m):nz(m)zo, while those in (a2) and (b2) are for
the odd component 7 (#,¢)1,,, ;0)=ny(o)—0 €Valuated with (TE TR =
(0.1,09)I". The black long-dashed lines in (al) and (bl) are for
the even components, —Izr(t,d))lnl(,0)=n2(,0)=,, and those in (a2) and
(b2) are for the odd components, I; (t,¢) |"]([U):n2 (0)y=1" evaluated with
interchanged bonds as (I'“,'®) = (0.9,0.1)I". The green dash-dotted
lines are drawn to indicate the zero value. One sees that in the
long-time limit, the even components (al) and (bl) are away from
zero while the odd components (a2) and (b2) overlap with zero.

confirming the symmetry behind Eq. (48). In Figs. 10(b1)
and 10(b2), in which we have raised wo away from &g, then
Eq. (53) is only transiently broken. However, both sides of
Eq. (53) for the even part can remain nonzero to the steady
states, depending on the bias applied (see captions of Fig. 10).
This testifies that the effect caused by the symmetry behind
Eq. (48) is exclusively transient.

V. CONCLUSION

In summary, we have identified several effects which
are uniquely present in the transient regime for the AB
interferometer with two QDs.

(1) The odd components of the currents arise as a purely
transient effect [see the definition of even and odd components
in Eq. (28)]. The fixed relation between the odd components
of the currents on the left and on the right, given by Eq. (36)
for whatever bonding geometry, witnesses the intrinsically
transient effect brought up by the flux-induced interference.

(2) The geometric asymmetry of the interferometer is mani-
fested by the asymmetry between individual even components
of transient currents. This contrasts the steady-state limit,
where the current on the left is always related to that on
the right by I, (t — 0o0,¢) = —Igr(t — 00,¢) for whatever
distributions of the bonds, on-site energies, and chemical
potentials. The currents purely induced by initially occupying
either the upper or the lower QD do not survive in the
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steady-state limit. This restricts the detection and utilization
of up-down asymmetry of the bonds in the steady-state limit.

Specifically, we find that the left-right asymmetry in the
times of approaching the steady-state limit, caused by 't =
'R, can be reduced by a larger up-down asymmetry of the
QDs’ on-site energies. In contrast, the nondegeneracy of
the two QDs’ on-site energies does not affect the up-down
asymmetry in the times of approaching steady-state limit,
caused by I'; # I',. These results suggest a way to modulate
the anisotropy of transient transport by the combination of
tuning the on-site energies between the two QDs and the
relative strengths among the bonds.

(3) The two main purely transient components of the total
tunneling currents, namely, sz'(t,d)) and I1'+21(,¢), manifest
the underlying symmetry among the energy levels in a unique
way. This is given by Eq. (48), which holds when the system
obeys the symmetry of the energy levels as Eq. (46) with the
up-down geometric symmetry given by Eq. (32) or Eq. (33).
The distinct mechanisms underlying the even part and the
odd part of the transient currents can be revealed by the aid of
Eq. (53). Both sides of Eq. (53) are directly observable at finite
biases. The even component, whose existence does not rely on
nonvanishing flux, unlike the odd component, clearly reveals
the distinction between the in-tunneling and the out-tunneling

transient processes carried out by T, "(t,4) and 110F(2,),
respectively.

In the steady-state limit, the geometry of the interferometer
and the energy level positions still affect the current, according
to the Landauer formula [86] [see also Eq. (19) as a
reproduction]. The former factor determines the transmission
line shape. The latter determines the transport window, whose
overlapping with the transmission fixes the current at finite
biases. Therefore, the effects of interferometer geometry had
been focused on the transmission. This is exemplified in
studies such as the extractions of transmission phases [91-93]
and Fano resonances [94,95]. While various purely transient
components of the currents readily vanish in the steady-state
limit, the strategies of manipulating the steady transport
properties via interferometer geometry are distinct from those
for steering the transient ones.

The above transient results are obtained under the wideband
approximation, which allows no bound states. If the system
possesses bound states, then the stationary currents can depend
on the initial occupations of the QDs [26]. The effects
associated with the initial-occupation-induced currents are
expected to remain not only in the transient regime. The
wideband approximation is appropriate near the band center,
where the density of states is flat. For the level-broadening
functions other than the wideband approximation, the specific
line shape of the band on each of the leads should be taken
into account for the geometric symmetry. The density of
states in each of the leads should also be considered as a
part of the factors that determine the symmetry of the energy
level positions. This could affect the relationship between the
in-tunneling and the out-tunneling currents.

Although our calculations are based on a specific in-
terferometer, our analysis, in the following senses, is not
restricted to this particular example. First, the separation
of the tunneling current into the two contributions that are
respectively independent and dependent of initial occupations
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in the central scattering region, namely, Eq. (14), is a result of
the general Hamiltonian Eq. (1) and the initial state Eq. (3).
It holds regardless of the number of reservoirs. Second, the
separation of a purely transient component from the tunneling
current starting from empty central scattering region, given
by Eq. (18), is common to any two-terminal device. This can
be generalized to multiterminal setups by rewriting the Fermi
functions in Eq. (11c) [and henceforth appear in Eq. (14b)
and Eq. (14c)] into the sum of the average of all Fermi
functions and the deviation from it. Third, the interpretation of
the transient components of the currents as the in-tunneling
and the out-tunneling currents are based on an intuitive
understanding of the corresponding situation described by
these components. Such an interpretation is not limited to
this specific interferometer. Fourth, the manifestation of the
asymmetry of the bonds through the asymmetry in the transient
currents is intuitively anticipated. This is also applicable to
other transport systems.

We now comment on the possible influences of Coulomb
interactions in the QDs on our three main results, listed in the
beginning of this section. For point 1, the odd components are
purely transient because of the existence of phase rigidity [87].
When phase rigidity is broken by inelastic scattering in the
nonlinear response regime [96], the odd components can also
appear in the steady-state limit. However, owing to the very
need of having nonzero odd components by nonzero flux,
we still expect that the association of the odd components
with the bonding geometry remain distinct from that of
the even components. For point 2, since the transport is
mediated through the bonds, the asymmetry among different
components of the transient currents is directly associated
with the asymmetry among the bonds, not the Coulomb
interactions. This is consistent with the expectation for the
distinction between dependencies of the transient even and odd
components on the geometric symmetries, as raised in point 1.
Therefore, our analysis of the noninteracting QDs, based on
the generic effects of the geometric symmetry (asymmetry) of
the interferometer, would still be useful for the case of having
interactions. For point 3, due to the effects of the interactions
on the density of states, we anticipate that the relationship
between transient in-tunneling and out-tunneling current might
become more complicated. The present study already revealed
some intricacies of the transient transport in association with
the symmetry exhibited in the density of states. This could
serve as a starting point to further investigate the case with
interactions. With a proper choice of the material, tuning a

J
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sufficiently high carrier concentration can suppress Coulomb
repulsions via the screening effect.

We have pointed out how the transient components of the
tunneling currents can be extracted from directly observable
currents. Given the feasibilities of preparing various electron
occupations in QDs in experiments [4,21-23] and performing
time-resolved current measurements [ 1-5], our theoretical re-
sults are relevant to experimental tests. Various examples have
demonstrated how to infer the parameters of the underlying
electronic structures from the transient currents. These include
the Fermi level positions in pulsed scenarios [11-13], the
interdot hopping strengths in arrays of coupled QDs [97],
the spin-sensitive energy splittings [98,99], and difference
in frequency between two driving fields [100]. The corre-
spondence between the symmetry (asymmetry) of geometric
factors of the system and the symmetry (asymmetry) among
different components of the transient currents discussed here
also provides a way to infer the symmetry (asymmetry) of the
parameters of the interferometer. The transient existence of the
odd components is a direct probe of the nondegeneracy of
the QDs and the nonzero flux. Quantum electronics has taken
the advantage of the temporal coherence of electron tunnelings
for making switches. Here we have shown that the transient
current at a terminal can be separated into distinct components
and these different components show distinguishable char-
acters. The transient current at one terminal can also differ
nontrivially from that at the other terminal. They can all be
modulated by tuning the geometry of the system. In addition
to the switches, the diversified ways of these different transient
currents could potentially be exploited as alternative resources
for operating electronic devices.
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APPENDIX A: EXPLICIT SOLUTIONS UNDER WIDEBAND APPROXIMATION
By the use of Egs. (24) and (17a) in Egs. (6) and (7), the retarded Green’s function, as the first line of Eq. (10b), is found to be

G’ (1,10) = AT (@)c, (t,¢) + A (P)e_(1,0), (Ala)
where
N i [TE55E] £Tu(.6)/ Te@)
__r s _ Alb
4@ 2<i1“21(x,¢)/ Log)  [1 ] (A
and
Cy(t,p) = e 1E0Ee@)/21—10) o~ (TET @) —10)/2 (Alc)
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The total broadening and the asymmetry between the broadenings of the two QDs are characterized by

I'=@n+T2)/2, T'y=T11—Tn)/2, (A2)
with
M= Y T% (A3)
a=L,R

for i = 1,2. The indirect tunnel coupling between the two QDs via the leads is

Ti(x.¢) = e ¥/ (Fe'?? + T e 72, (A4)
where
X =¢L+¢r (AS)
is the gauge phase and I3 (x,¢) = [['12(x,¢)]*. The time dependence of the retarded Green’s function is characterized by
8T(¢) = Rel'g(¢), &¢(¢) = ImD'y (), (A6)
where
To(@) = VT + Ty +ide)? (A7)

is a complex quantity whose real part gives the difference in decay rates and the imaginary part shows the phase difference
between the time evolving amplitudes c (¢,¢) and c_(t,¢) in Eq. (A1). Note that |T"j5(¢))|> = |T'12(x.¢)|? is independent of x.
Under the wideband approximation, we can simplify Eq. (14d) to

Igcc'(t7¢) — iTr[raGr(t,to)G<(t0,t0)Ga(t07[)]’ (A3)
and Eq. (18) with
'];(i)(t7a),¢) — Tr(ra{i[ér(t,a)) _ Ga(t,(l))] _ Gr(l‘7a))(ra :i: r&)éa(t,a))})s (A9a)
where
G () = [ dee ™G (1,7),  GUtw) = f dre G (L.0). (A9D)

Here 7F)(t,w,¢) = T*)(t,w) are the transmissionlike functions defined in Eq. (18) with the additional argument ¢ emphasizing
its flux dependence. The current induced by an initial occupation on level i, Eq. (22b), becomes

1(t.¢) = —[G"(1.0OT* G' (t.10));i- (A10)
The solution Eq. (A1) reduces to those used in Ref. [61] by setting I'Y; = I'%, fora = L,R.

1. Properties of the odd components
In Egs. (29), (30), and (31), we have defined
bi(t.9) = slei(t.¢) £ c-(1.9)] (A1D)
and
t
bi(t,w) = / dte" " Op, (1,9). (A12)
o

The condition Eq. (32) makes I',(¢) of Eq. (A7) become either purely real or purely imaginary. The condition Eq. (33) ensures
that I, (¢) is purely real.
When I',(¢) is real, then by Eq. (Alc)

cr(t,p)ct(1,9) = e, (A13)
and, consequently,
+ * —I't
Im[ba,@ b, ¢)} _ Imle, (1) (1.9)]/2 _ Imle™"1/2 Al
Lg(#) Le() Le()
When I',(¢) is purely imaginary, denoted as I',(¢) = ig4(¢b), where £,(¢) is real, then
|Ci(t’¢)|2 _ |ef{iso+%[l":l:iag(¢)]}t|2 — T, (A15)
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and consequently we have

b_(1.9) ] { illes @) — le_(1,0)I7] }
I b* (1, =1 - =0. Al6
m[ Fyg) -9 =m ) (A10)
Therefore, we conclude that whenever Eq. (32) or Eq. (33) holds, we are led to
b_(1.9) , B
Im[ ) b+(t,¢)} =0. (A17)

The result of Eq. (31) under the condition Eq. (32) reduces to the transient breaking of phase rigidity we found in Ref. [61] for
the current I, (¢,¢) starting from empty QDs with up-down symmetric bonds.

Ast — o0, c (t,¢) in Eq. (Alc) approaches zero [so does b, (¢,¢) in Eq. (A11)] and therefore the expressions in Egs. (29)
and (30) also approach zero. By explicitly substituting Eq. (Alc) into Eq. (31) and taking t — oo, the result also vanishes. This
shows that the odd components are nonzero only in the transient regime.

2. Prove I'V(¢,¢) = 11%(¢,¢) when T¢, =T,
Under the condition Eq. (32), the currents induced by initially occupying one QD, Eq. (A10), become

1) = —1(|G1, )] + |G, (0 + 2Re{e G5, ([ Gl (0] ) (A18)
and
%) = —T%(|GL0” + |Go@)|” + 2Re{e G, [Go 1]}, (A19)
where G;'j(t) =[G’ (t,19)];; fori,j € {1,2}. From Eq. (A1), we have
, ) b_(t,9) - . b_(t,¢)
Glolt) = lFlz(x,fﬁ)T;;, Gy (1) = ’Flz(X’¢)T$’ (A20)
and therefore
1G] =G5 0] (A21)
On the other hand, Eq. (A1) with Eq. (A11) gives
. s || [b_a,«p) R }
G = |b.(t. F) — 28¢l b (t.9) |, A22
|G| = [bi(t.9))* + 8¢ %) em| = %) *(1,9) (A22)
and
b_(t.9)|’ [b(mb) }
GL,(0| = |bo(t,0) + 56> 28¢l b (1,0) |. A23
G50 = 1b1(t,) + 8¢ Ty | T 2em| T b (A23)
Applying Eq. (A17) to Eq. (A22) and Eq. (A23) then yields
G @] = |G50)|". (A24)
Utilizing Eq. (A17) to the last terms of Eqgs. (A18) and (A19), we find
2
Re{e'® Gy (0)[G;, (0]} =@T* +T° cosqb)Re|:b(t’¢) bi(t,q))} +¢,%8e sinq)' b-.d)f _ Re{e G, ([ Go(1]'}.
[e(h) Ty ()

(A25)
Substituting Egs. (A21), (A24), and (A25) into Eqs. (A18) and (A19) results in I11(z,¢) = 112(z,9).

APPENDIX B: LIMITS OF LARGE ASYMMETRIES

1. Large left-right asymmetry under up-down symmetric bonds
a. Degenerate QDs e =0

Here we present more detailed discussions of the initial-occupation-induced currents under degeneracy with up-down
symmetry in the bonds, with large left-right asymmetry. To reveal the left-right asymmetry, we have let 'R > I't in
Fig. 2. Setting a = R (therefore, & = L) in Eq. (37) with ' > ' we find 6I'(¢) ~ I'? by Egs. (A6) and (A7) and
(TL4T X cos ¢)

subsequently @) R COs ¢, %(L;)OW ~1, T 4+68T(¢p) <2 and 0 < T — 8T (¢) < I'. Under such circumstances,
the initial-occupation-induced currents, Eq. (37), become approximately
1(t,¢) ~ —TH{ (1 — cos ¢)e TT@N 4 L(1 4 cos g)e THT@N - 111, ¢) & —[Re M HT@N, (B1)
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The amplitude for the slow decay term e~ [' =3I @I ip | I[QI](t,qb) becomes very small and the amplitude for the fast decay term
e~ [THT@I remains finite. The dynamics of / 1[3]](t,¢) is dominated by the fast decay term as shown by the last line of Eq. (B1).
On the other hand, setting @ = L in Eq. (37) leads to comparable amplitudes for both of the exponential decay terms [see the first
two lines of Eq. (B1)]. After the fast decay term becomes effectively zero, the slow decay term still remains visible for / E](t,qb)
and dominates its approach to steady states.

At large left-right asymmetry Eq. (B1) also reveals two distinct situations in terms of the dependence on the flux. The
amplitude in / ,[el](t,qb) is independent of the flux while the amplitudes in / E](l‘,(ﬁ) are clearly flux dependent via cos ¢. The decay
rates, plotted in Fig. 2(c), only weakly depend on the flux. They do not alter the main flux-dependence given by the amplitudes.
Besides, the red solid lines for ¢ = 0 in Figs. 2(al) and 2(a2) show a particular fast saturation, in comparison to other lines for
other values of the flux. Indeed, setting ¢ = 0 in Eq. (37) further reduces it to

1M, =0) = -1, (B2)

The initial-occupation-induced current Io[tl](t,cﬁ) at ¢ = 0 saturates to its steady-state value with a maximal rate 2I" attainable
from I 4 §T"(¢) by varying ¢, as shown by Fig. 2(c).

b. Nondegenerate QDs ¢ # 0

The steplike feature and its asymmetry between the left and the right currents shown in Fig. 4 are detailed here. For / E”(r,(p)
one sees that the curves for different flux cross at some points of time [see Fig. 4(a)]. For ,[;]’Jr(t,(t)), different values of the
flux follow similar evolution trajectories exhibiting steplike features [see Fig. 4(b)]. The currents on the left and on the right
differ, besides the overall factor I'* in Eq. (39), only by the factor I'* 4+ I'* cos ¢ in the amplitude in front of the oscillating
term sin [e4(¢)?]. Applying I'* <« I'® to Eq. (39) with & = L leads to I'* + I'® cos ¢ ~ ' cos ¢. In Fig. 4(a), the values of the
lines with ¢ = /2 and ¢ = 37 /2 (the overlapping blue dashed and the brown short-dashed lines) are between the values of the
lines at ¢ = O (the red solid line) and ¢ = 7 (the green dash-dotted line) at times that these different lines do not cross. This
coincides with the dominance of I'? cos ¢ in the amplitude before sin [e4(¢)t], showing cos(¢p = 0) > cos(¢p = 7/2) = cos(¢p =
3m/2) > cos(¢p = m). This signifies that the term sin [e,(¢)¢] is important for this feature. Note that the left-right asymmetry
' « 'R yields go(¢) ~ /&2 — (I'R)? and therefore the main dependence on ¢ relies on the amplitude I'® cos ¢. The crossing
points correspond to the times satisfying sin [g,(¢)?] = 0. On the other hand, applying ' « T'® to Eq. (39) with @ = R yields
I'* + ' cos ¢ ~ 'R, Therefore, the steplike feature of 1 II;H(t,qﬁ) in Fig. 4(b) appears for all these values of flux since the
amplitude before sin [g,(¢)?] is not as sensitive to ¢ as it is in the case of ] E]'J”(t,qb).

2. Large up-down asymmetry with left-right symmetry
a. Degenerate QDs
The amplitudes in Eq. (42), obtained with left-right symmetry and degenerate QDs, explicitly read

Ty ([1£Ty/8T(@)1> (A _ _
1) = -5 (R OE s (0 & Paor ) £ 11 ). (B3a)
_ (1 —=[Ty/8T(®))* (1 +cosg) - _
%W@=—n{ “ - qu[wﬁ+nmﬂ, (B3b)
and
0 ([1FT4/8T(@))> (A _ _
@) = -3 (FEEOE 4 D e T 1 ), (B30)
_ [1—=[Ty/8T(@) ( _ _
nﬁm=—n{ L @”—(;zyﬁnf—nmﬂ (B3d)

In Eq. (B3a) and Eq. (B3c) the upper (lower) sign is for the f (s) amplitude. The up-down asymmetry can be manifested by
applying I'; <« I'; to Egs. (42) and (B3). This leads to T'y &~ —T'y, §T'(¢p) ~ I'; and, consequently,

I
1) ~ ——-(1 = cos ¢), (B4a)
1M(g) ~ —%(1 + cos @), (B4b)
M) ~ o, (B4c)
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and
1:*2
[2] 1
I7(¢) ~ ——(1 + cos qb)ﬁ (B4d)
2
r 24207
1P(g) ~ _—2[2+(1 +cos¢)1_—212:|, (Bde)
2 I
_ M4+n,r
12(¢) ~ Ty(1 + cos ¢)11‘“—212' (B4f)

2

In Eq. (B4) for the part of I1'(z,¢), the two amplitudes for the fast and slow decay terms, I'/(¢) and I!'(¢), respectively,
given by Egs. (B4b) and (B4a), are comparable to each other. However, for I[?!(t,¢), the large up-down asymmetry has led
to |IS[2](¢)| < |1f[2](¢)| [comparing Eq. (B4d) with Eq. (B4e) under f’l / [—‘2 <« 1]. Therefore, IOEZ](t,qb) is governed by the fast
decay term e~ " T @I showing a faster approach to the steady-state limit [see the time scales of Fig. 6(b)], in contrast to the
slow approach exhibited by I()El](t,¢>) [see the time scales of Fig. 6(a)]. Furthermore, the factor (1 + cos ¢) in Eqgs. (B4d), (B4e),
and (B4f) are all multiplied by numbers that scale with I_‘1 / fz « 1. Comparing Egs. (B4a) and (B4b) with Egs. (B4d), (B4e),
and (B4f) with I_’l / [—’2 <« 1 then explains why IOEI](t,¢) [of Fig. 6(a)] shows a clear flux dependence, while 10[(2](t,¢) [of Fig. 6(b)]
does not.

b. Nondegenerate QDs for the even components

The amplitudes in Eq. (43) for I[1:*(¢,¢), obtained with left-right symmetry but nondegenerate QDs, are explicitly given by

2
2 ITg(@)
_ (1= 1lrg@)*  (1+cos¢) - _ }
1MN@) = -T g - [2)? + Talyl}, B5b
osc (@) 1{ > O [(T2)" 4+ Tyl (B5b)
and
(1 + cos qb)
I3)(@) = {Im[rg(¢)] G e g(¢)} (B5¢)
The amplitudes for 7121*(¢,¢) are given by
2
1) = D <{1 + [rg(#)1> F 2Re[rg(#)]} n a+ cos;}ﬁ){(fl)z L F\[ST() T Fd]}), (B5d)
2 ITe ()]
L—|rg@)I>  (1+cosg) - -
e { s RCHS } BS
osc(¢) 2 |F (¢)|2 [( 1) 1 d] ( e)
- (1 +cos¢)
Gﬁwz—n{—mm@n—7iﬂwrlg@ﬁ (B5t)

In Egs. (B5a) and (B5d) the upper (lower) sign is for fast (slow) decay term. The notation r,(¢) is defined by

'y +ide
= B6
re(®) es) (B6)

The up-down asymmetry induced by I} < I3, leading to 'y & —I'5, T'y(¢p) = [y — ig,(¢), and consequently ry(¢) ~ —1,
has rendered the amplitudes Eq. (B5) to

M) ~ f — (14 cos ¢)F—2 (B7a)
2 I3 +8e2]

1M(g) ~ ——‘(1 + cos ¢)_—% (B7b)

f 2 2+ 6862

15(9) ~ 0, (B7c)

%wwwmm+ww>2ﬁf (B7d)
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and
_2
1P(¢) ~ ——(1 + cos ¢) 882 : (B7e)
I I? 4200,
Py~ -=12+0 L B7
i (@) 2[ + (1 + cos ¢) e (B7f)
24 1T,
12(g) ~ TH(1 + cosqs)m, (B7g)
1[2] 168
(@) ~ —T(1 + cos ¢)W- (B7h)

Similar to the discussions in Sec. IV C 1 and Appendix B 2 a, Eq. (B7) shows that when 'y « Ty, then [112(¢)| < |If[2] @),
while Ism(qﬁ) and If[l](¢) are comparable. Figure 7(al) for IO[[l](t,qﬁ) for t < ST'~! shows more visible variations with the flux in
contrast to Fig. 7(a2) for I[?!(¢,¢). This is also explained by Eq. (B7) using similar reasonings already described in Sec. IV C 1.

The up-down asymmetry in terms of showing the spike feature or not is explained in the following. Comparing Eq. (B7d)
with Egs. (B7a) and (B7b), we find that the amplitude for the oscillation I!!/(¢) is comparable to the amplitudes for pure decays

0ss

11M(¢) and 11'(@) in 11"+ (2,4). However, for I*M(z,¢4), by comparing the amplitudes for oscillations Eqs. (B7g) and (B7h)
with the dominant amplitude for the pure decay Eq. (B7f), we find that |I2/(¢)| < [I7(¢)| and |I2/(¢)| < |17)(#)] due to the
asymmetry T'; < T',. Henceforth, the oscillatory feature can be manifested before it is fully damped in I/!*(¢,¢), as shown by
Fig. 7(al). However, the amplitudes of oscillations are negligible in comparison to the pure decays in I!**(¢,¢), as shown by

Fig. 7(a2).

c. Nondegenerate QDs for the odd components
Applying T'; « T'; to Eq. (44) results in

1= (1,¢) v ———¢, sing, {—8ee T TN 4 o~T[5¢ cos(8et) + T, sin(8er)]}, (B8)

|F (¢>)|2

and

127(t,0) v ——— ¢, sin p{—8ee TN 1 o T[5¢ cos(8et) — T, sin(Set)]). (B9)

|F ((15)|2
Comparing Eq. (B9) with Eq. (B8), we find that 7[> ~(,¢) does not have the slowest decay term e~ 2T@ a5 [1U-=(z ¢) does.
This explains why I[!'~(¢,¢) approach the steady-state limit also much slower than 1[?:~(z,¢) does, as in the case for the even
components.

The decay factor that damps the oscillations, the second term of Eq. (B8), is given by e, It decays faster than ¢~ =3T@1
Therefore, the oscillation has been damped before a period is visible while the slow decay has not completely vanished. In Eq. (B9),
the pure decay factor is given by e '@V \which decays faster than the damping of the amplitudes for the oscillations, e,
This describes the visible oscillations whose amplitudes decay with time as seen in Fig. 7(b2) for Io[f]”(t,qb).

APPENDIX C: PROPERTIES OF THE EVEN PART OF THE TRANSIENT TRANSMISSIONLIKE FUNCTION 7, (¢,®)

The purely transient component of the current that depends on the chemical potentials of the reservoirs, 7.7 (t,¢), is given
by Eq. (18b). The transmissionlike function under the wideband approx1mat10n can be explicitly analyzed by Eq (A9) with the

aid of Eq. (A1). Below we show that when l_“iLi = f‘i’f holds, then I (t ¢) = (t ¢). We also prove that when Eq. (32) or
Eq. (33) holds, then Eq. (45) is satisfied.

Explicitly, without assuming any symmetry among the bonds or the on-site energies of the QDs, Eq. (A9) for 7P (,w) can
be written as

TH(t0) = (T, (t.0) + T3 (t.0)), (Cla)
where
T (t0) = TG (1,0) — G( o)) = T, (t0) + T, (o), (C1b)
in which
T (t.0) =2(0 + Th)Relby (1,0)] + 2(Ff, — Th)Relry(9)b_(1,0)] (Clc)
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and

(Cl1d)

T (t.w) = 404 [T, + T cos R [b(t"”)]

Ie ()
The second term in Eq. (Cla) reads

T (t.w) = —Tr{T*[G (t.o)T" + TFG(t.0)]} = T3 ) (t.0) + T3 (t.0), (Cle)

2
}uS(t,w)F}

+ 2Ty, — [‘ZZ)Re[E+(t,a))r;‘(¢)l;i(t,w)] +4|F12(¢)|2Re[b+(t w) Eizd,a)))])

fo _ fa 3 @) |7 -
L M- Ts) . ) ((rll —Fzz){|b+(t,w)|2+ [lrg(¢)|2— ' Ff((f) }Ib_(t,w)lz}

in which

(T, +T5,)
2

- r
T3 (tw) = ((Fn + Fzz>{|b+<r,w)|2 + [|rg<<z>>|2 + ’ %)

+2(T'11 4+ To)Relby (1,0)r 3 (@)b* (1,0)] + 4T 12(9) P[5 (t,0)| Re[ri((";)) ) (CIf)

and

T (t,w,¢) = 2% (%, + T cos ¢) [ 1641, b (@)
a2 f @) =21, + +(t,0)* + (T11 + Ta)Re| by (t,0)———

&) |
o)

' — '»)Re| £

+{( i) e[rg<¢>}+‘rg<¢>

Here b (t,w) are defined in Eq. (A12), supplemented by Egs. (A11) and (A1) and r¢(¢) is defined in Eq. (B6). Equations (C1b)
and (C1f) are all even in the flux ¢. The only part that is odd in the flux comes from the last term of Eq. (Cle), namely,
T(+) (1,0,8). This odd term has already been discussed in Sec. IV A, given by Eq. (31), as Ta(;r} (t,w,0) = ’Z;(“"(t,w,qﬁ).

In this appendix we show only its even part, ’Ta(; }’L(t w,P), glven by Eq. (Clg). Taking ', = I'® in Eq. (C1) one obtains

Tt w.9) = TSV (1,w.¢) and therefore T, (1,.¢) = Ty (t.¢) by Eq. (18b). -
Next we discuss the symmetry property of 77 (¢,w,¢) in terms of its distribution in w, which is determined by b_ (t,w).

Under the condition that Eq. (32) holds, the second term of Eq. (Clc), the first term on the second line and the last two lines of
Eq. (C1f) all vanish. Therefore, as long as Re[b..(t,w)], |b(t,w)|*, and Re[b..(t,») ”f:,fi;‘;)

8
then Eq. (45) is satisfied for both the even and the odd components (the same set of functions is involved for the odd component).
Note that when Eq. (32) holds, then I'¢(¢) is either purely real or purely imaginary. Therefore, we only have to discuss the above
functions under these two cases of I';(¢) being purely real and purely imaginary.

On the other hand, when Eq. (33) holds, then I'¢(¢) is purely real and consequently r,(¢) also becomes real [see Eq. (A7) and
Eq. (B6)]. When Eq. (33) holds but with T'%, # 'S, then the quantities Re[h(t,w)], |b.(t,0)|", and Re[b. (t,w)b* (t,w)] have
to be symmetric with respect to w = &g in order that Eq. (45) is fulfilled.

We define

2
— |rg<¢>|2}|5<r,w>|2). (Clg)

] are symmetric with respect to w = &,

éL(t,w) = / dre'c,(t,4), (C2)
0

where ¢ (7,¢) is given in Eq. (Alc). The w-dependent terms in Eq. (C1) and Eq. (31) that are relevant to the present discussions
for Eq. (45) are conveniently expressed in terms of ¢ (f,w) as

164 (£, )2 + |E_(t, ) & 2Re[E4(t,w)& (t,0)]

bo(t.0))* = 1 — : (C3)
2 ~ 2
Relb, (1.0)b" ()] = 1t LN = y o)l (C4)
~ & |64 (1) 2 —|E_(t.0)* . ifTy(¢) = ST (¢h),
RC[M] o . 1 §(@ ¢ (C5)
Ti(¢) TR, M T(@) = ieg(@).
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1. The cases for I'y;(¢) = 6T'(¢)
When I', (¢) is real, then by Egs. (Alc) and (C2), we have

e TN (0 — gg) sin[(w — e9)r] — {[T" £ 8T($)]1/2}e” MM 2 {cos[(w — go)r] — 1}

Cx(f,w) = 5 5
(0 —&0)* +{[I" £T()]/2}
_ ie’lri‘sr("’)"/z{[l“ £ 8T (¢)1/2} sinl(w — e0)t] + (@ — eo){e” T2 cos[(w — go)r] — 1} (C6)
(@ — g0)* + {[I" £ 8T ($)1/2}? ‘
Consequently,

Re[¢i(t,60 + w)] = Re[C1(t,60 — w)], Im[Ci(t,60 + w)] = —Im[C1(t,60 — w)]. (C7)

Using Eq. (C7), we find that 1E4(t,w)|* = {Re[éx(t,@)]}? + {Im[¢+(t,w)]}>  and Re[é(f,w)¢* (t,w)] =
{Re[é,(¢,w)]Re[C_(t,w)] + Im[¢4(t,w)[Im[¢_(f,w)]} are both symmetric in @ with respect to w = g;. Therefore, by
Egs. (A12), (A11), (Alc), and (C2) with Eq. (C7), it is found that Re[b.(t,w)] is symmetric in w with respect to w = gy. By
Egs. (C3), (C4), and Eq. (C5) with Eq. (C7), we find that bo(t,w)* and Re[b, (t,w)b* (t,w)] are both symmetric in w with
respect to = &g. This finishes the proof of Eq. (45) for the case that Eq. (32) holds with |T"j5(¢)|> > 8&2 and the case Eq. (33)
holds, leading to I'y(¢) being real.

2. The cases for I',(¢p) = ie ()
When I',(¢) is purely imaginary, then by Eqgs. (Alc) and (C2), we have

Cx(t,0) = Ci[Qu(w), 1] + i Co[ Q1 (), 1], (C8)
where
. e T2Q, (w) sin[Q4(w)t] — (T/2){e T/? cos[Q4(w)t] — 1}
CilQx(w).1] = S.(@r 1 1T/2F : (c9)
and
e T2 /2] sin[Q4(w)t] + Qi (w){e T2 cos[Q(w)t] — 1}
CalQ4(@).1] = (—1) Lt /T (C10)
in which
Qi(w) = o — [g0 = £4(¢)/2]. (C1D)
One immediately sees
Ci(w,t) =Ci(—w,t), Ciw,t)=—Cr(—w,1). (C12)

We examine the symmetric property of the function Re[l;+ (t,w)] = C1[Q24(w),t] + C(R2_(w),t). Evaluating it at &g & w yields
Re[b (1,60 + )] = Cilw — £4($)/2,1] 4 Cilw + £4($)/2,1] (C13)
and
Re[b (1,60 — )] = Cil—0 — £,($)/2,1] + Ci[—w + £4($)/2,1] = Cilw + £4($)/2,1] + Cilw — £,($)/2,1]. (C14)
We have applied Eq. (C12) in Eq. (C14) to obtain the last line. Comparing Eq. (C13) with Eq. (C14), we certify
Re[h,(t,e9 — w)] = Re[b, (1,60 + w)]. (C15)
Next we examine the quantity
&,(1,0)° + 12 (1,0)* = CHQ4(),1] + C3[Q4(0),1] + CTQ(w),1] + C3[Q(w),1]. (C16)
Evaluating it with &9 & w yields

|64 (t,e0 + @)* + [E_(t,80 + 0)|* = CT® — £4(9)/2,t] + Cilw — £,(9)/2,t] + Cilw + £,(¢)/2,1] + C3lw + £4(¢)/2,1]
(C17)

and
|61 (t,80—w) > +]E_(t,60 — )|* = Ci—w—e4(#)/2,t] + C3[—® — £4($)/2,1+Ci[—w + £4($)/2,t] + Ci[—w + £4($)/2,1]
=Cllo + &,(9)/2,t] + Cilw + e4($)/2,1] + Cilw — £4($)/2,t] + Cilw — e4($)/2,1].
(C18)
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The last two lines of Eq. (C18) are obtained using Eq. (C12). Comparing Eq. (C17) with Eq. (C18), we find
641,80 + ) + |e- (1,80 + @) = |84(1.80 — )| + |8 (t.20 — w)|*. (C19)
A similar approach is applied to
Re[¢4(1,0)¢" (1,0)] = C1[Q4(0),1]CI[Q-(w),1] + Co[ Q1 (@),1]C[Q2-(w),1], (C20)
yielding
Re[.(1,60 + ) (1,60 + w)] = Cil® — £4(¢)/2,1]1C1[w + £4(9)/2,1] + Colw — £4(9)/2,11Colw + £4(¢)/2,1]  (C21)
and
Re[4 (1,60 — w)C2(1,60 — w)] = Ci[—w — £5($)/2,1]C1[—w + £4($)/2,1] + Col—w — £5($)/2,1]1Co[ —w + £4($)/2,1]
= Cilw + £,($)/2,11C1 [0 — £4($)/2,t] + (=1’ Calw + £,($)/2,11Calw — £,(¢)/2,1]. (C22)
Consequently,
Re[4 (7,60 + w)C-(1,60 + w)] = Re[C1.(t,60 — w)E™ (1,80 — )] (C23)
By the same token, for
Im[&4 (7,0)¢2 (1, ®)] = Co[Q4(0),1]C1[Q-(w),1] — C1[Q1(@),1]1C[Q2-(w),1], (C24)
we have
Im[¢(,80 + @)E-(t,80 + )] =Calw — £4(¢)/2,11C1[w + £5(#)/2,t] — Cilw — £4($)/2,11Cow + £4($)/2,1], (C25)
Im[&4 (7,60 — w)EE(1,60 — w)] = Col—w — £5(9)/2,1]Ci[—w + £4(#)/2,1] = Ci[—w — £4(9)/2,1]Co[—w + £4($)/2,1]
= —Cow +£4(9)/2,1]C1[w — £4(9)/2,1] + Cilw + £4(9)/2,1]Caw — €4(h)/2,1],  (C26)
and therefore
Im([¢,(t,60 — ) (1,80 — w)] = Im[C,(t,60 + W) (1,80 + w)]. (C27)
Using Egs. (C19), (C23), (C27), and (C3) and the case for I',(¢) = ig (¢b) in Eq. (C5), we thus conclude that |l3i(t,a))|2 and

Relb, (1,w) 582
case that Eq. (32) holds with IT12(p)|* < 8e2, leading to 'y (¢p) = g4 ().

) ] are also symmetric in w with respect to @ = &y. This with Eq. (C15) completes the proof of Eq. (45) for the

APPENDIX D: DERIVATIONS OF EQS. (47) AND (48)

Using the zero-bias assumption f; (@) = fr(w) = 1/[e®#/kT 4 1] = f(®), where ® = w — [19, and the property

f@)+ f(-o)=1, D)
the integral in Eq. (18c) can be rewritten to
—em +00 B +00 1 +00
o= [ def@ren = [ dof@r oo =5 [ doTV0ws. o

provided that ’Z;H')(t,a),qb) is symmetrically distributed around w = o = &g [see Eq. (45)]. This then derives Eq. (47) at zero
bias.
A similar derivation of Eq. (47) can be extended to the case with a finite bias under the condition g = 9. The integral

expression for the zero-bias current, TZm'(t,qb), in Eq. (18c¢), can be rewritten at zero temperature to ffozo dof (w)?}f“(r,w,qﬁ) =
e +%( :OOJrev/z— :)°_ev/2)]dw’];(+)(t,w,¢), where eV = u; — jug. Obviously, when T/ P(t,w,¢) is symmetrically dis-
tributed around @ = 119, we again have T, (1,¢) = ff;o do f(@)TP(tw,9) =1 fj;o doTM(t,w,).

Substituting Eq. (A9) to Eq. (47) leads to

Fem. 1 *dow (+) 1 a o ' r a
1, (t,9) = —/ — 7,7 (t,w)y==Tr|I'* - T f dtG' (z,t0)T G“(19,7) |, (D3)
2 —00 27T 2 f

where T' = I'" 4 'R Note that the flux is embedded in the off-diagonals of I'®.
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On the other hand, with Eq. (A10), the combined contributions from initially occupying each of the QDs read
17(t,¢) = —Ti[T“G" (1.10)G“ (10,)]. (D4)

The initial current at t =ty from sz'(t,d)) is directly seen by sz'(to,cb) = %Tr(I“") > (0 and similarly for the initial
current from I1'+2(tg,¢) = —Tr[T%] < 0. This, in turn, gives I, (f9,¢) = —111*?(ty,¢). By the use of Eq. (A1), which
satisfies —idG'(t,ty)/0t + (¢ —iT' /2)G" (t,tp) = O for t > 1y, one then finds from Eqgs. (D3) and (D4) that 872m'(t,¢)/8t =

— 20172z, ¢)/91. This then derives Eq. (48).
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