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Evolution of the Higgs mode in a fermion superfluid with tunable interactions
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In this work we present a coherent picture for the evolution of Higgs mode in neutral s-wave fermion superfluids.
As the strength of attractive interaction between fermions increases from the BCS to the Bose-Einstein condensate
(BEC) regime we find that the Higgs mode in the fermionic superfluids is pushed to higher energy while at the
same time, gradually loses its spectral weight, which is because the system is tuned away from Lorentz invariance.
Furthermore, when damping is taken into account, the spectral weight of the Higgs mode is significantly broadened
due to coupling to phase mode in the whole BEC-BCS crossover.
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I. INTRODUCTION

The experimental search for the Higgs boson in particle
physics has made remarkable progress [1,2]. On the other
hand, the Higgs mode has also generated considerable interest
in condensed-matter and cold-atom systems. In the early
1980s, Raman scattering experiment revealed an unexpected
peak in a superconducting charge density wave compound
NbSe, [3], which was later attributed to the Higgs mode
[4,5]. The signal of the Higgs mode has also been ob-
served in antiferromagnet TICuCls by neutron scattering
[6], and recently in a superconducting NbN sample by
terahertz pump probe spectroscopy in a nonadiabatic excitation
regime [7,8]. In cold-atom systems, the Higgs mode has
been observed near the superfluid—to—Mott insulator phase
transition of bosonic atoms in optical lattices at integer filling
[9,10].

Theoretically, the simplest field theory where the Higgs
mode emerges is a relativistic U(1) field theory with Lorentz
invariance in the symmetry-broken phase. This occurs, for
example, in the weak-coupling BCS superconductor [11,12]
or in the Mott-superfluid transition of the Bose-Hubbard model
at integer filling [13,14]. However, in most condensed-matter
systems, Lorentz invariance emerges only with fine tuning and
the generic symmetry is usually Galilean [15]. Thus, it is an
interesting question to investigate how the Higgs mode evolves
as the system is tuned away from the Lorentz invariance point.
Moreover, in condensed-matter systems, further complications
often occur because the Higgs mode is usually coupled to
other elementary excitations, which leads to its damping
[16-19].

In this work, we investigate these issues in the context of the
BEC-BCS crossover model. In the BCS limit, the system obeys
approximate Lorentz symmetry due to particle-hole symmetry
and is expected to host the Higgs mode. In the BEC limit, it
is a condensate of molecular bosons and obeys the Galilean
invariance. Here arises the first question that we would like
to address, namely, what is the fate of the Higgs mode as
the system is tuned away from the Lorentz-invariant limit.
Second, due to tunable interactions in the BEC-BCS crossover,
interaction effects on the Higgs mode due to coupling to
collective and quasiparticle excitations can be thoroughly
investigated [20]. In the following, we shall address these two
aspects of the problem in turn.
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The paper is organized as follows. In Sec. II, we dis-
cuss the theoretical framework that we employ to address
the problem, namely, the time-dependent Ginzburg-Landau
(TDGL) formulation of BEC-BCS crossover close to the
transition temperature. We emphasize that in order to address
the Lorentz-invariant limit, we need to extend the theory
to include the second-order time-derivative term which is
usually neglected in the context of BEC-BCS crossover [21]. In
Sec. I1I, we discuss the effects of breaking Lorentz invariance
when the system approaches the BEC limit. We discuss how the
spectral weight of the Higgs mode is increasingly transferred
to the phase (Goldstone) mode. In Sec. IV, we include the
effects of damping on the spectral function of the Higgs mode
(its frequency and spectral weight). We show that in addition
to the usual broadening of the spectral function for the Higgs
mode, its frequency is also shifted due to damping. Finally, we
give a brief conclusion in Sec. V.

II. TIME-DEPENDENT GINZBURG-LANDAU THEORY

Close to the superfluid transition temperature, the BEC-
BCS crossover can be conveniently formulated in terms of
a Ginzburg-Landau energy functional. To include the effects
of temporary fluctuations, time-dependent terms are required
[21]. For our purposes, it is necessary to include the second-
order time-derivative term. Let us then write the action as

2
S = /dtd3x[¢*<—iu8, + v — v r>¢ + 1—)|¢|4:|,
2m* 2
(1)

where ¢ is the Ginzburg-Landau order parameter. The var-
ious parameters u,v,r,b, and m* can be computed along
BEC-BCS crossover in terms of the chemical potential u,
temperature 7', and interaction parameter { = 1/(kgas), where
as is the s-wave scattering length. In this work, we use the
Nozieres—Schmitt-Rink (NSR) [22] scheme to compute these
parameters, as detailed in the Appendix. The coefficients
of the time-derivative terms u = u’ 4+ iu” and v = v’ + V"
are complex in general. The real parts u’ and v’ describe
the propagating behavior of the Cooper pair field, while the
imaginary parts #” and v” describe its damping due to coupling
to the fermionic quasiparticles. A plot of various parameters
is given in Fig. 1. We note the following features:
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FIG. 1. v'A¢/u’ and u”/u’ as functions of the parameter ¢ =
1/kras, where kr is the Fermi wave vector and a; is the s-wave
scattering length. In the inset we show v” Ay /u” as a function of ¢.

(i) Consider the real parts ' and v’ in the BEC-BCS
crossover. In the BCS limit, u'/v'Ag — 0 because of the
approximate particle-hole symmetry in the weak-coupling
BCS theory, while Ag = 4/r/b is the mean-field value of
the order parameter. As a result, the system acquires an
emergent Lorentz invariance, and one expects the emergence
of Higgs mode, together with the standard phase (Goldstone or
Anderson-Bogoliubov) mode for neutral fermion superfluid.
In the BEC limit, however, v'Ag/u’ ~ Ao/|p] < 1, and we
can neglect the v’ term. This leads to a Galilean-invariant
neutral boson theory, for which only the Bogoliubov mode
exists.

(ii) The damping terms (1”) become important as one moves
to the BCS side because of the decreasing fermionic excitation
gap, and as a result, a stronger coupling of the pairing field
to the quasiparticle excitations. This corresponds to a finite
lifetime of Cooper pairs at finite temperature. We will show
that the damping u” term itself will generate a considerable
effect for the appearance of the Higgs mode different from
that in a pure Lorentz invariance theory. In the BEC limit, the
imaginary parts vanish within the NSR. On the other hand,
we find that whenever they are nonzero, v’ Ag/u” <« 1 for the
entire crossover regime and we shall thus neglect the v” term
altogether in the following discussion.

III. EVOLUTION OF THE HIGGS MODE FROM THE BEC
TO BEC LIMIT WITHOUT DAMPING—EFFECT OF
BREAKING LORENTZ INVARIANCE

To investigate the evolution of the Higgs mode as the
system is gradually tuned from its Lorentz-invariant BCS
limit towards the Galilean-invariant BEC limit, we shall first
neglect the damping terms in Eq. (1) and study the transfer of
spectral weight between the Higgs and phase modes. In the
symmetry-broken state, we can write the order parameter ¢ =
Ao + 8, +i8,, where §, and §,, describe amplitude and phase
fluctuations, respectively. In terms of §, and §,, and with u” =
v” = 0, we can write the action equation (1) in the Fourier
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Space as

do &’k . -1
S_/ I nyp e G, Q)

with ®(w,k) = [64(w,K),8,(w, k)], and the kernel G is given
by

—iu'w

’, 2 L
g_1:<—va) + & + 2r iv'w >, 3)

—vaw? + &

where & = k*/2m*. Then the amplitude-amplitude correla-
tion function can be easily calculated as

Gaa(@.K) = (8a(@, k)84 (-, —K))
—vw? + &k

T W20 + (V0 + E)(—V@? + &+ 2r)
“4)

Straightforward calculation yields the spectral function of the
Higgs mode as

Aga(@,K) = —%Imgaa(a) +i8,K)
= AL (K)S(@ — 0 (K) + A_(K)S(w — o_(K)).
)

It consists of two & peaks at mode frequencies w. (k) given by
2 2 14 2
_bbr u? \/ ot

2
e — +2v/2 ﬁ‘f“h}—m‘i‘ﬁ@k-ﬁﬁ), (6)

and the spectra densities at wy are given by

_ v’wi — Ek
A+(k) - 2U/2(1)+((1)3_ _ (,()2_)’ (7)
a2
Ay = =t ®)

N 220 (0} — 0?)’

In the BCS limit, v'Ag > u’ and solutions can be approx-
imated as w_(k) =~ k/+/2m*v" and w, (k) >~ /(& + 2r)/V’;
the first being the phase (Goldstone) mode with linear
dispersion and the second is the Higgs mode, with Higgs

gap w.(0) = /2r/v' = ,/2bA}/v'. Using the facts that v’ =
7B2¢(3)v(er)/167* and b = 78%¢(3)v(er)/87? in the BCS
limit (see Appendix), one finds w,(0) = 2A(, as expected
for a Lorentz-invariant theory. Here 8 = 1/kpT is the in-
verse temperature, {(n) is the Riemann ¢ function, and
v(er) = (2m)* /2 /e /An? is the density of state at the Fermi
energy €r.

On the other hand, in the BEC Ilimit, one finds
that u' > v'Ag, and w_(k) = /&(&k +2r)/u’ is the
phase (Bogoliubov) mode while the other mode w, (k) =
\/2§k/v’ +2r/v 4+ (u'/v')* has a gap ~ |u|, of order of
binding energy of the molecule in the BEC limit. The existence
of the gapped mode is a reflection of the fact that our bosonic
field ¢ is a composite of two fermions and disappears in the
infinite binding limit where only the phase (Bogoliubov) mode
exists as it should.

In between these two limits, Lorentz invariance is broken
and the coupling between the amplitude and phase degrees

033641-2



EVOLUTION OF THE HIGGS MODE IN A FERMION ...

0 0.5
k&
(a2)
10°
s 10°
~
1
1073
0 2
w/Ag w/Ag w[Ag

FIG. 2. Spectral function A,,(k,w) in the absence of damping
term. A, (K,w) as a function of k (in units of 1/£) and w (in units
of Ay) for three different interaction strengths ¢ = —1/(kra;), ¢ =7
for (a), ¢ = 3 for (b), and ¢ = 1 for (c), corresponding to different
gaps Ag/Epr = 1075, Ag/Ep =4 x 1073, and Ag/Er =7 x 1072,
respectively. (a2)—(c2): A, (K,w) as a function of w for k = 0.1/&
(purple dashed line) and k = 0.01/& (blue solid line). 7/T. = 0.9
and § is taken as 107*A,.

of freedom becomes stronger, as characterized by the off-
diagonal term iu'w in Eq. (3). We note that for low-energy
excitations such as the long-wavelength phase mode, this
coupling is small (w — 0), but for the gapped Higgs mode, it
provides significant mixing of the amplitude and phase. Such
mixing is clearly illustrated in Figs. 2(a)-2(c), where we plot
the spectral function A,,(k,w) for three representative values
of ¢ (corresponding to different Ay/Er). Two features can be
noticed immediately. First, the Higgs gap increases beyond
2A¢ of the BCS limit as the interaction strength increases.
Second, there is increasing spectral weight transfer from the
gapped Higgs mode to the gapless mode. One can, in fact,
show explicitly that

Ay 4v'r? ©)

A wr Jk2)2m (K2 2m* + 2r)
which indicates the gradual increasing of the mixing between
phase and amplitude degrees of freedom.

IV. EFFECTS OF DAMPING ON THE HIGGS MODE

Due to the presence of the damping term, the time-
dependent Ginzburg-Landau theory is not a pure Lorentz-
invariant U(1) theory. Thus, at finite temperature, even in the
BCS limit, the peak of Higgs excitation w, (k) will broaden
as a result of damping. To calculate the equilibrium spectral
weight in the presence of damping, we need to introduce
the so-called Langevin force n(z,x) [23], which satisfies the
following conditions:

(n(@' . xm(t,x)) = (" (" X" (2,)) = 0, (10)

* (@ X m(t,x)) = 2u"kg T8t — ')8(x — X)). (11)
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FIG. 3. Spectral function A,,(k,w) in the presence of damping
term. A, (K,w) as a function of & (in unit of 1/£) and w (in unit of
Ay) for three different interaction strengths ¢ = —1/(kray),; =7
for (a), ¢ =3 for (b), and ¢ =1 for (c), corresponding to dif-
ferent Ag/Er = 107, Ag/Er =4 x 1073, and Ag/Er =7 x 1072,
respectively. (a2)—(c2): A (K,w) as a function of w for k = 0.1/&
(purple dashed line) and k = 0.01/& (blue solid line). 7/T. = 0.2
and § are taken as 107*A,.

Including the corresponding terms in the action as S; =
i dtd’x(¢*n + ¢n*), we obtain the equations of motion for
3, and §, by setting 9(S + S;)/38, =0 and 9(S + S.)/
08, = 0:

(—vo’ + & +2r)8, —iuws, +n' =0,  (12)

(—va)z—i-ék)éip—l—iuwSa—i—n”:O, (13)

where 1’ and n” are the real and imaginary parts of the
Langevin force n, respectively. The spectral functions for
the amplitude fluctuation is given by using the fluctuation
dissipation theorem [23],

2
2m*

: + |ua)|2)
o) (-2 + 5+ 2r)[°

2m*
u”a)(| _ Ua)2+ k2

u”a)(i —vw? +

“ 2| — (ww)? + (—ve? +

2
s |7+ luowl?)

C 22 (w? — @) (@ — @) — 2iu'u"w?|?

(14)

where the eigenmode frequencies are given by

> Sk +r u/z _ u//2
Wy = ’ 7]
v 2v

r2 (u/2 _ u//2)2 M/Z _ u//z
= o T G+, (19)

By comparing Fig. 3 (with damping) with Fig. 2 (without
damping), one can see three important features brought about
by the damping term:

(i) The spectral weight transfer is enhanced. For instance,
for { = —7, there is almost no spectral weight transfer in
the absence of damping [Fig. 2(a)], while in the presence

+
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of damping, for very small k < 1/&, A,,(k,w) exhibits a
clear peak at the energy of the phase mode. For small &g
the spectral weight on the phase mode can be calculated as
Aga(@—,K) ~ u” /8u?@_. Different from the case without a
damping term, we see that in the case with a damping term the
spectral function has a weight proportional to u” on the phase
mode. A similar enhancement of spectral weight transfer can
also be easily seen in Fig. 3(b) for ¢ = —3.

(i) For k « 1/, the eigenmode frequencies can be

approximated as
21‘%'](
O 16
w 20 + u/z _ u//2 ( )

_ \/2v/r +u?—u? 2 +2u?—2u”
wy = +

& (17)

v/2 v/(zv/r + u/z _ u//Z)

It is straightforward to see that at the BCS limit the location
of the Higgs peak is substantially reduced from /2r/v’" to
V2r /v — u"?/v'%, as shown for { = —7 and —3 in Figs. 3(a)
and 3(b), respectively.

(iii) As k starts to deviate from zero, the Higgs mode quickly
loses its identity due to strong hybridization with the phase
mode. For instance, even for k = 0.1/&, as displayed by the
purple dashed line in Figs. 3(a2) to 3(c2), no sharp peak feature
is observed in A,,(k,w). And for ¢ = —1, no sharp peak exists
even for k = 0.01/&.

V. CONCLUSIONS

In summary, we have investigated the evolution of the Higgs
mode in the BEC-BCS crossover for a neutral Fermi superfluid.
A time-dependent Ginzburg-Landau (TDGL) theory with
a second-order time derivative is derived. By computing
explicitly the parameters in the TDGL theory with NSR, it
shows how the theory gradually loses its Lorentz invariance
and changes from a relativistic theory in the BCS side to a
nonrelativistic theory with Galilean invariance in the BEC
limit. We further include the damping terms in the TDGL
theory, which reflects the composite nature of the pairing
field ¢.

Within the TDGL formulation and coupled with micro-
scopic NSR calculation, we obtain the following conclusions
regarding the appearance and characterization of the Higgs
mode:

(i) In the BCS limit, the existence of the Higgs mode is
guaranteed by the Lorentz invariance. Towards the unitary
regime and BEC side, as the system gradually loses the Lorentz
invariance, the Higgs mode is pushed to very high energy
and its spectral weight is increasingly transferred to the phase
mode.

(i1) On the BCS side, a damping term arises due to coupling
between the Cooper pair field and the fermionic quasiparticles.
This damping term strongly couples the Higgs mode to the

J

_ s | < . ) v
S[AA] = /dtd‘X{A[—mat—i—vat -
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gapless phase mode in the neutral superfluid, which enhances
the spectral weight transfer and washes out features of the
Higgs mode, especially at finite momentum.
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APPENDIX: TIME-DEPENDENT
GINZBURG-LANDAU THEORY

A time-dependent Ginzburg-Landau theory can be con-
structed for the entire BEC-BCS crossover in the vicinity
of T, [21,24]. The partition function takes the form Z =
J Do o le S0 21, with

_ _ V2
S[Ve, Yol = / drd3x{w0 (a, - —— u) Vo

2m

—g%%wm}, (A1)

where v, are Grassmann fields and g is the contact interaction
between fermions of opposite spins. u is the chemical poten-
tial, which is determined by requiring the number density to be
equal to n. To investigate the fluctuation effects in the Cooper
channel, we use a Hubbard-Stratonovich transformation to
decouple the interaction term in the Cooper channel and then
integrating out the fermions. We obtain an effective theory for
the bosonic field A(z,x), which represents the Cooper pair
field. Straightforward calculations yield the partition function
in terms of field A as

_ 1 .
Z:fD(A,A)exp [——/drdx|A|2+lndetG1},
g

(A2)
where

R —+ T 4 A
G ' = ( m v (A3)
A _8r ~oam T 1%

is the Gorkov Green function.

In the vicinity of the phase transition, the gap parameter
A is small and an expansion in terms of A becomes possible.
Including both the spatial and time derivatives (after Wick
rotation) and retaining the parameter A up to the fourth order
we obtain an effective action as

2

b -
—r|a+ 2AAAAYL, A4
2m* r} *3 } (A4
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where u = u' 4+ iu” and v = v’ + iv” are complex in general and all the parameters can be expressed in terms of microscopic
parameters as

7B
167 n & @n+1)? - Yo, (A
m3/2
(L o), A6
. ﬁnﬁm () (A6)
Yy Z - o(—w) |, (AT)
3272 w2 —~ 2n + 1)3 4/ 1]
V' = _ﬁi@(u), (A8)
32427 Vil
11 [ &k [1-2NG) | T "
2m* ~ 2m ) @n)? 82 Ay 66 )
om &k [1—2N@E) |
~ma ) @y { 2% 2_61(} (10
[ &k [1-2N(&) | BNEJINE) — 1]
@y { w0 } (A

In the above equations, N (&) = 1/[exp(B&) + 1] is the Fermi distribution function and & = €, — u with €, = k?/2m. Function
®(2u) is the heaviside step function. Explicitly, the parameter b is the result of a one-loop calculation with four fermion
propagators:

= Z [ ! L (A12)
I Q) (—iw, +k2/2m — w)? (iw, + k2/2m — p)*’

The other parameters u,v,Til*, and r are all derived from the inverse vertex function I'"!(w, k), which after the standard
renormalization by replacing g with the two-body scattering length as is given by

m qu{]_N(Eq_ﬂ)_N(Ekq_M)_i}

I Ny k) = ——— — :
4may 2n)3 —iw, + €q + €k—q — 214 2¢q

(A13)

To derive the time-dependent Ginzburg-Landau equation, we first analytically continue the vertex function to real frequency
iw, — o+ i0". This procedure generates a time-dependent term with the parameters # and v. The detailed derivation is as
follows:

The frequency-dependent part of I'"!(w,K) is

m Pk [ 1—2N(e — ) 1 B
o (2n)3{ _} 0.0, (Al4)

I (w,0)—T7'0,0) = — B
(,0) 0,0) —w—in+2e — 21 2e

Then we expand it in a series of small w as

d*k 1 —2N(ex — ) , [ d’k 1 —2N(ex — )

I'{(,0) = T7'(0,0) ~ — - . Al5
@O=T00="e | ooy Ga—2u—mp ] @oy Ga—2u—iny (A1
We define the parameters as u = [ (g::; % and v= [ (g;';z % They both can be calculated by contour
integration,
Pk 1—2N(ex —p)  viep) / el 2= 2N(e — 0
u = =
) 2ex — 2M —iny?*  4/er (€ —p—in)?
1 —2N(z —
_ Ver) / f ( M)’ (A16)
4‘/€p2 (z —pm—in)?
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TABLE 1. Asymptotic behaviors of the parameters in the time-
dependent Ginzburg-Landau theory in the BCS and BEC limits.
Parameters BCS limit BEC limit

’ TV(ER)
u 0 8Veriul
u” v(eF)SkLT 0

’ _Tv(ep) Tv(er)
v Tortisr S ) NG
v’ _V(GF)aszTeF 0

1 1 Tv(ep)e 1 7mv(er)
2m* 2m 12712(;(3;)2 <@ 2m 16«/@’\[\

wv(er) 1
r v(ep)In z\/ifa(ﬁas —/2[ul)
Tv(er) mwv(er)

b 872(kpT)? 5(3) 32 Jer i

FIG. 4. The contour c in the calculation of Eq‘ (A16). The dots
(+) denote the first-order poles z, = u + % and the cross (x)
denotes the second-order pole z, = u + ni.

J

where ¢ denotes the contour in Fig. 4. There are infinite first-order poles z, = u + (2”;# and one second-order pole z, = u + ni.
The contour integration can be evaluated in the summation of the residuals as

WG LN :
/dZ«/_—_m)z o {n;x, A e p—mip (z —p—mip TN 4 [ﬁ<1 explB(z — )] + 1>“

o zﬂf T+ @n+ Dri/Bu p

_ 2m[ Z 1) + */ﬁi]‘ (A17)

n=—o0o

VIFnFDri/Bi

12 is purely imaginary due to the symmetry of the z,, pole locations with respect to the

NiezeEs e 12041 2_sgn
horizontal axes. Then it can be written as Zn__oo W \/_ 2i Yy +°° \/ (G (2311/?5 Fosene

u is calculated as

_emy?| 2v2BV1ul i \/ Y1+ @n+ () = senw )
"~ l6n? b 2n + 1)

Calculation shows that Y 7>°

. Hence, the parameter

{Me(—m + i?\/mm . (A18)

n=0

In the same manner, the parameter v can also be calculated as shown in Egs. (6) and (7). We should note that while the expressions
for u and others look different from the standard expression, as given in Ref. [24], they in fact reduce to the same expressions.
We found that this form is more convenient to use the above expression when dealing with higher-order time-derivative terms.

In the BCS and BEC limits all the parameters can be analytically derived as shown in Table 1.
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