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We report two theoretical discoveries for Z, topological metals and semimetals. It is shown first that any
dimensional Z, Fermi surface is topologically equivalent to a Fermi point. Then the famous conventional
no-go theorem, which was merely proven before for Z Fermi points in a periodic system without any
discrete symmetry, is generalized so that the total topological charge is zero for all cases. Most remarkably,
we find and prove an unconventional strong no-go theorem: all Z, Fermi points have the same topological
charge vz, = 1 or 0 for periodic systems. Moreover, we also establish all six topological types of Z,

models for realistic physical dimensions.
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Introduction.—Topological semimetals, such as Weyl
and some Dirac semimetals, have recently attracted a huge
research interest both theoretically and experimentally
[1-15]. As is known, topological metals and semimetals
are essentially characterized by the existence of Fermi
surfaces (FSs) with nontrivial topological charges. Several
achievements have been made for topological classification
and stability of FSs [16-19]. In particular, antiunitary
symmetries, such as the time-reversal and/or particle
symmetries (TRS and/or PHS), have recently been taken
into account for classification of FSs [18,19]. Meanwhile, it
has been noted that the TRS and/or PHS can lead to
nontrivial Z, topological charges, protecting inversion-
invariant FSs against symmetry-preserving perturbations
[18]. On the other hand, the implications of unitary
symmetries, including the inversion and rotation, have also
been explored [20-23]. These studies have deepened our
understanding of symmetry-protected topological phases
from gapped systems to gapless ones [24-26]. However,
in-depth fundamental research on topological metals or
semimetals consisting of Z, FSs is still badly awaited,
which may not only reveal a novel physics of Z, topo-
logical metals and semimetals, but also pave the way for
exploring exotic topological quantum matter.

In this Letter, we first show that any FS protected by the
above-captioned Z, topological charge can continuously be
deformed to be a Fermi point with the symmetry being
preserved [27], and the survived Fermi point is still
protected by a nontrivial topological charge [28]. Based
on this, we elucidate that it is actually sufficient to consider
only Fermi points in a d-dimensional (dD) system with the
spatial codimension d. =d —1 (to be defined later), to
exhaust all possible inversion-invariant Z, FSs. We then
generalize the well-known conventional no-go theorem,
Eq. (2), for Z Fermi points without any discrete symmetry
in a given lattice model: these points appear in pairs having
the opposite chiralities [29], so that the sum of the
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topological charges of all Z or Z, Fermi points vanishes.
For instance, in a Weyl semimetal, the net topological
charge of a pair of left- and right-handed Weyl points is
zero. As for a dD lattice model, there are N = 2 inversion-
invariant points for the Z, Fermi points, and thus the above
conventional no-go theorem may allow 2V¥~! possible
configurations of Z, topological charges. In particular,
we find and prove an unconventional strong no-go theorem,
Eq. (3), for such lattice models with Z, Fermi points, which
asserts that all of the points have the same topological
charge vz, leading to a real no-go status of the topological
states with only two possibilities. Moreover, we also
construct various Z, models in terms of Dirac and Pauli
matrices for illustration of physics, particularly including a
simple lattice model consisting of 3D (or 2D) Dirac points
that are protected by nontrivial Z, topological charges with
a spinful particle-hole symmetry.

Classification of Fermi surfaces.—We first review the
general ideas underlying the classification of FSs [16,18].
For a system H(k), choosing an S% in the gapped region of
the momentum space, one can reveal the topological nature
of the Berry connection restricted on the S¢. If its topology
is nontrivial, it is inevitable to meet gapless points when
shrinking the $% to a point in any way. This means that
the FS consisting of these gapless points is protected by
the nontrivial topology, and this d. may be defined as the
spatial codimension of the corresponding FS [30]. The
topological configurations are characterized by topological
charges. In the complex Altland-Zirnbauer (AZ) classes
[31,32], A and AIII, the topological charge is an integer
vz € Z. If the system has TRS and/or PHS, we can choose
S as the standard sphere centered at an inversion-invariant
point in the k space, and thus (k)| has also the
symmetries, noting that either TRS or PHS relates to an
inversion operation changing k to —k. The symmetries
affect the topological properties of the Berry connection on
S in two aspects. First, for some cases in the presence of

© 2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.116.016401
http://dx.doi.org/10.1103/PhysRevLett.116.016401
http://dx.doi.org/10.1103/PhysRevLett.116.016401
http://dx.doi.org/10.1103/PhysRevLett.116.016401

PRL 116, 016401 (2016)

PHYSICAL REVIEW LETTERS

week ending
8 JANUARY 2016

the symmetries, the topological charge v is always trivial
(= 0). Second, due to the restriction of the symmetries,
there are new topological configurations characterized by a
symmetry-related topological charge vz, € Z,, analogous
to topological insulators with TRS. In shrinking the S%
symmetrically to the inversion-invariant point, a nontrivial
vz, ensures topological robustness of gapless points,
namely, the FS is topologically protected by the Z, charge.

Representative Z, Fermi points.—For illustration of real
physics, we address representative Fermi points of non-
trivial Z, topological charges in physical dimensions
d=1, 2, 3 [19]. As we will prove that all Z, Fermi
surfaces can be deformed to be Fermi points with unique
codimension, this actually exhausts all possibilities. There
are six nontrivial cases, which are conveniently divided
into two groups. The three model Hamiltonians in the
first group are built of 4 x 4 Dirac matrices with two
being three-dimensional and one being two-dimensional,
which are given by H = 33 k, (T + ATS), HU):* =
S5 k9 and HEH¢ = 372 kI, where o and 7 are the
two sets of Pauli matrices, the superscripts (1,2) denote
Z§1’2>, and ¢ indicates the presence of a chiral symmetry
(CS), and the subscripts are the symmetry class names [18].
The Dirac  matrices are defined as I“=
' ®1'(a=1,2,3), T*=1Q@7*and I’ =1 ® 7°, and,
correspondingly, 7 = —ic?> ® 18, C = —ic* @ ©°&, and
S=17, respectively, for TRS, PHS, and CS, where & is
the complex conjugate operator. The second group is

constructed by Pauli matrices 7,, including ’HE‘II), =
bk (Ty + A7.)s Hiy = k(1 + 447y + Aor.), and

Hoe = k(v + 437,), with T =—ir,k, € =1,k and
S = 7., where || + |4,| # 0 and 1,1, # 0.

Z, Fermi surfaces.—Remarkably, the Z, topological
charges possess a unique feature that makes them distinct
from Z ones. Namely, in contrast to Z, every such Z, Fermi
surface can be reduced as a Fermi point by symmetry-
preserving perturbations. As an example, considering a
Fermi line of the k, axis for the Hamiltonian H = k,(z, +
At,) + k.7, in a 3D k space, which is protected by a
nontrivial yzl7 in the class All, a TRS preserving perturba-
tion H' = V'k,t, can distort the Fermi line into a Fermi
point with the unit topological charge. To prove the general
result but without loss of generality, let us consider a Fermi
line in a three-dimensional k space as shown in the left part
of Fig. 1, where the Fermi line is the whole k, axis denoted
by the orange line with the red point being an inversion-
invariant point. We choose a circle with a given orientation
on the k,-k, plane and rotate it with respect to the k, axis,
respectively, for +£(z/2 — €) with e being an infinitesimal
constant, resulting in the green and blue circles. The
rotations are continuous transformations with the antiuni-
tary symmetries being preserved, which implies that the
three circles have the same topological charge. It is
observed that the green and blue circles tend to be of

FIG. 1. Opposite rotations of a circle and asymmetric shrinking
of a circle.

opposite orientations. If we consider a Z topological charge
vz, reversing the orientation of one circle leads to
vz — —vz. Thus, nonzero v, causes there to be topological
obstructions across the Fermi line, and the Fermi line is
well protected by vz. In contrast, if it is the Z, topological
charge vz, under consideration, reversing the orientation
does not change vz , since —1 = 1 mod 2. Accordingly, no
topological obstruction prevents one to move one circle
across the Fermi line, or, equivalently, the Fermi line can be
gapped by symmetry-preserving perturbations. The topo-
logical essence underlying the example lies in a fact that Z,
topological charges are defined by extensions [18,33]. Thus
for a drpg-dimensional (0 < drg < d with d as the dimen-
sion of k space) inversion-invariant FS with a nontrivial v,

on the S% [34], one can always continuously extend the S%
to a higher-dimensional sphere by crossing the FS away
from the inversion-invariant plane of the Sde namely, all
gapless points on the FS, except the inversion-invariant
point, can be gapped out without breaking the symmetries
of the system. Consequently, we have an important con-
clusion that the Z, topological charges can only protect
Fermi points, while Z topological charges may protect FSs
with any dimension.

However, a new question arises from the above dis-
cussions, namely, a Fermi point in a dD k space might have
more than one spatial codimension for Z, topological
charges. Explicitly, for possibly different d.’s in the range
of 0 <d. < d—1,if any §% has a nontrivial vz,, the Fermi
point is protected topologically. For instance, in the above
Fermi line case, the left gapless point at the inversion-
invariant point is indeed protected by a nontrivial vz,
because, as shown in Fig. 2, shrinking any inversion-
invariant circle symmetrically will eventually meet gapless
points as topological defects in the k space. Nevertheless,

S
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FIG. 2. Symmetric circles enclosing a Z, Fermi point.
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we can show that, due to the hierarchy among topological
charges, it is sufficient to consider only the spatial codi-
mension d. =d—1 for Z, Fermi points [30], with
technical details being presented in the Supplemental
Material [35].

Lattice models.—We now turn to consider lattice models
with multiple topological Fermi points in the Brillouin zone
(BZ). As we will see, the local topological charge for each
Fermi point may have global implications in the whole BZ.
To construct all relevant lattice models in physical dimen-
sions, we merely need to directly replace k, by sin k, in the
representative continuous Dirac models, so that the coarse-
grain expansion around each inversion-invariant point in
the resulting lattice model is the corresponding Z, Fermi
point. We will see that this is actually a complete con-
struction for lattice models with Z, Fermi points, which is
ensured by our unconventional strong no-go theorem,
Eq. (3). We now work out an interesting 3D model of
Dirac points in detail to see its physical meaning clearly,
which reads Hp (k) = 22:1 sin k,I"%, or, in the real space,

3
HD :ZZitW}+eaGa ®T]l//j+H.C., (1)

j a=l1

where y; = (c ?T’ iy, chyocf)l and 1 denotes the hopping
coefficient. It is found that the TRS 7' = —io?& is just the
standard spinful one and the CS I'> = 73 represents the
sublattice symmetry between sublattices A and B, which
may be regarded as fundamental symmetries of the lattice
system, while the spmful PHS denotes a combined sym-
metry C =T5T = —ic* @ k. Perturbations preserving
the combined PHS, such as Asin kI, may be added to
break the TRS and CS, meanwhile the topological pro-
tection of Dirac points still survives, but with the topo-
logical class bemg loosened from Z(l) in the class CII
with CS to Z( in the class C w1th only the PHS. In
addition, a relevant 2D lattice model for Z<2 Vin the class CII
may readily be obtained by a dimension reduction of
Eq. (1), namely, a is summed over 1 and 2. It is noted
that the Z, topological charges for Fermi points addressed
here are associated with the antiunitary TRS or PHS, which
are essentially different from those protected by the unitary
spatial symmetries studied recently [9,10], leading to
distinct implications to the stability against disorders [36].

No-go theorem.—At this stage, we look at the conven-
tional no-go theorem for chiral Fermi points in a lattice
model in terms of topological charges. A chiral Fermi point
is just a Fermi point with a Z topological charge v, = £1
in the class A, where + corresponds to the left- or right-
handed chirality. In a (2n + 1)D lattice model, the first
Brillouin zone (BZ) is topologically a (2n+ 1)D torus
T?"+!. We consider a finite number of Fermi points
distributing on the 7?**!. For the jth Fermi point, we
can choose a 2nD sphere S?” in its neighborhood enclosing
only the Fermi point, and evaluate its topological charge

v; € Z whenever an orientation for the S?” is given. Since
the BZ T2"*! is an orientable manifold, the orientation can
be defined globally, i.e., for a given j; and viewed from all
of the other Fermi points, the S%l encloses them with an
opposite orientation. Since the szg‘ can be continuously
deformed to be the collection of the all other sz.”’s with
J # Jo- it is found that v; = =} i#j,Vj» Or, equivalently,

Zyj =0, (2)

recalling that reversing the orientation reverses the topo-
logical charge. The surgeries that make a torus into a sphere
are presented in the Supplemental Material [35].

A Fermi point with topological charge |v| > 1 can
always be continuously deformed to be a collection of
unit Fermi points with the total topological charge being v
[16]. Since a unit Fermi point cannot be divided further, it is
more stable than the ones with |v| > 1 [37]. Thus Eq. (2)
just implies that a lattice model has stably pairs of left- and
right-handed Fermi points, which is just the conventional
no-go theorem [29]. Equation (2) also holds for the class
AlIIl with a chiral symmetry in even spatial dimensions,
where a Fermi point may have a Z topological charge that
depends on the chiral symmetry. Consequently, Eq. (2) is a
more appropriate way to state the no-go theorem for
lattice models in the complex classes A and AIIl [37].
In addition, as for the Z Fermi points of the other eight real
symmetry classes [18], it is also noted that Eq. (2) is
still valid.

Unconventional strong no-go theorem.—We now pro-
ceed to consider Z, Fermi points at inversion-invariant
points in a BZ. For a given invariant point in a dD BZ, we
choose an inversion-invariant S¢~! to enclose it in its
neighborhood. Then the S9~! can also be continuously
deformed in an inversion-invariant way to be a collection of
inversion-invariant S%~'s, where every one of the other
invariant points is enclosed by one of S¢~'s. An example of
a 2D square BZ is shown in Ref. [35]. Thus Eq. (2) holds
also for Z, Fermi points. For Z, Fermi points with the
charge —1 = 1 mod 2, Eq. (2) merely indicates that there
are an even number of nontrivial Z, Fermi points. In
general, there are 2V~ = S"V2 €21 pogsibilities for the
total N = 2¢ inversion-invariant points, where C% is the
number of distinct ways to choose 2n ones among N
elements. For example, in the 3D model, Eq. (1), with eight
nontrivial Z, Fermi points, one might expect that by adding
certain symmetry-preserving terms, a pair of Fermi points
would be gapped while the others still exist, which is
allowed by Eq. (2). However, it turns out that all such trials
should fail. As we will show later, there actually are only
two possibilities for Z, Fermi points, namely, these
topological charges vz, at inversion-invariant points are
all nontrivial or trivial,
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FIG. 3. Sphere reductions in inversion-invariant subspaces.

Upper and lower parts correspond to 2D and 3D cases, respec-
tively.

VZZ.I == UZZ,j = c = I/ZZ.N =0 or 1, (3)

where vz, ; is the topological charge of the jth inversion-
invariant point. This strong no-go theorem, Eq. (3), for Z,
Fermi points serves as one of our main results.

The essential reason lies in the hierarchy of topological
charges, which has been used for demonstration of the
sufficiency of the aforementioned spatlal codimension [35].
We shall first prove Eq. (3) for Zg ) topologlcal charges,
and then deduce it readily for the Z( )" ones. For clarity,
we first work out a simple example of a 2D square lattice as
shown in the upper part of Fig. 3, where each color refers to
an independent inversion-invariant point. We consider the
V(Zl - of the red point at the center, which is enclosed by a
standard circle S'. The green line through the point is an
inversion-invariant line that intersects the S' on S° con-

sisting of two blue square points. It is observed that the

Zf) topological charge u(zzz)’r on the S° is equal to v(le),r,

U(ZZZ)J = U<le).r due to the hierarchy of Z, topological charges,

because H(k)|g is a symmetric continuation of H(k)|s.
The green line is actually a circle as shown in the upper-
right part of Fig. 3, on which there is also the other
inversion-invariant point in dark blue. The dark blue point

is also enclosed by the S°, implying that V(ZZZ,b = U(ZZZ)J,

where 1/(222)’ , 18 the Zéz) topological charge of the point. Then

we find 1/<le)_ b= U(ZZZ)JJ, through continuously extending the

S to an inversion-invariant circle enclosing only the dark-
blue point in the 2D BZ. Thus vy, + %), =0 on the

inversion-invariant green line. Since there are many other
ways to choose the inversion-invariant line, where each
gives such an equanon we can have three independent
equations of Z<2 ) topological charges to prove Eq. (3). For

example, apart from the green line, we can choose an
inversion-invariant horizontal line and a diagonal line.
The 2D example can be generalized to any dimensions
readily. In any (d — 1)D inversion-invariant sub-BZ SBZ¢
of a dD BZ with a being the sub-BZ index, an S(¢-1

(1)

enclosing a Z,’ Fermi point is reduced to be a §~) that

has a Zgz) topological charge 1/(222) = u<212>. Since restricted on

the SBZ¢, the S(¢~2) can continuously be deformed to be
the other S(¢?s enclosing the rest of the inversion-

invariant points on the sub-BZ, leading to

2 2
ZjeSBZ"U<Zz),j:0, namely, a Zg)

SBZ¢. Extending continuously each S$%2 into S9!

in the whole BZ, we obtain a Zgl)

Z l/<le)~j =0,

jESBze

no-go theorem on

no-go theorem on SBZ*,

for all SBZ“. 4)

A 3D cube example is shown in the lower part of Fig. 3 to
illustrate the general result of Eq. (4). Since there are
always N — 1 independent choices of the inversion-invari-
ant sub-BZ contributing N — 1 independent equations of
Eq. (4), we have proved the strong no-go theorem of Eq. (3)

for Zgl) topological charges to be the only two solutions of

Eq. (4). The Zgz) part of Eq. (3) can also be deduced by

noticing that a Zgz) system can always be regarded as

a subsystem of a Zgw system [35].

In summary, we have not only revealed unambiguously
that Z, topological charges can only protect Fermi points,
but also proved the unconventional strong no-go theorem
for Z, Fermi points. Moreover, relevant lattice modes have
also been established.
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