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Abstract. We consider Cheeger Inequalities for general edge-weighted
directed graphs. Previously the directed case was considered by Chung
for a probability transition matrix corresponding to a strongly connected
graph with weights induced by a stationary distribution. An Eulerian
property of these special weights reduces these instances to the undi-
rected case, for which recent results on multi-way spectral partitioning
and higher-order Cheeger Inequalities can be applied.
We extend Chung’s approach to general directed graphs. In particular,
we obtain higher-order Cheeger Inequalities for the following scenarios:
(1) The underlying graph needs not be strongly connected.
(2) The weights can deviate (slightly) from a stationary distribution.

1 Introduction

There have been numerous works relating the expansion properties of an undi-
rected graph with the eigenvalues of its Laplacian [3, 1, 9]. Given an undirected
graph with non-negative edge weights, the weight of a vertex is the sum of the
weights of its incident edges. Then, the expansion ρ(S) of a subset S of vertices
is the ratio of the sum of the weights of edges having only one end-point in S to
the sum of the weights of vertices in S. The celebrated Cheeger’s Inequality [6, 1]
relates the smallest expansion of a subset of vertices having at most half the sum
of vertex weights with the second smallest eigenvalue of the corresponding nor-
malized Laplacian. Recently, there have been extensions to the case where the
expansions of k disjoint subsets are related to the k-th smallest eigenvalue [13].

The notion of expansion can be extended to directed graphs, where the weight
of a vertex is the sum of the weights of its out-going edges. Then, the expansion
of a subset S is defined with respect to the sum of the weights of edges going
out of S. Chung [8] considered the special case for a probability transition ma-
trix whose non-zero entries correspond to the edges of a strongly connected
graph. The weights of the vertices are chosen according to the (unique) station-
ary distribution, and the weight of an edge is the probability mass going along
the edge under this stationary distribution. Under this specific choice of weights,
Chung has proved an analogous Cheeger’s Inequality [8] for directed graphs.

In this paper, we explore how this relationship between expansion and spec-
tral properties can be extended to more general cases for directed graphs. In
particular, we consider the following cases.
1. The directed graph is not strongly connected.



2. The weights of vertices deviate (slightly) from the stationary distribution.
As we shall explain, each of these cases violates the technical assumptions

that are used by Chung to derive the Cheeger Inequality for directed graphs.
We explore what expansion notions are relevant in these scenarios, and how to
define Laplacians whose eigenvalues can capture these notions.

1.1 Overview of Chung’s Approach [8].

All spectral arguments rely on some symmetric matrix, which has the desirable
properties of having real eigenvalues and an orthonormal basis of eigenvectors.
For an undirected graph (with non-negative edge weights), its normalized Lapla-
cian is a symmetric matrix. To apply spectral analysis on directed graphs, one
should consider what the natural candidates for symmetric matrices should be
and whether they have any significance. We explain the importance of the tech-
nical assumptions made by Chung in the analysis of the transition matrix P
associated with the random walk on some directed graph G(V,E).
(1) Choice of Weights. Suppose φφφ : V → R+ is a stationary distribution of
the transition matrix P. Then, the weights are chosen such that each vertex u
has weight φ(u), and each (directed) edge (u, v) has weight φ(u) ·P (u, v), which
is the probability mass going from u to v in one step of the random walk starting
from distribution φφφ.

Suppose the starting vertex u of a random walk is chosen according to distri-
bution φφφ. The expansion of a subset S has the following meaning: conditioning
on the event that u is in S, it is the probability that the next step of the random
walk goes out of S.

This notion of expansion can be defined with respect to any distribution on
the vertex set V , but the edge weights induced by a stationary distribution has
the following Eulerian property: for any subset S of vertices, the sum of weights
of edges going out of S is the same as that of edges going into S.

Hence, one can consider the underlying undirected graph such that each
undirected edge has weight that is the average of those for the corresponding
directed edges in each direction. Then, because of the Eulerian property, for
any subset S, its expansion in the directed graph defined with respect to the
out-going edges is exactly the same as its expansion defined with respect to
the undirected graph (with edge weights defined above). Therefore, it suffices
to consider the normalized Laplacian of the undirected graph to analyze the
expansion properties of the directed graph.
(2) Irreducibility of Transition Matrix. This means that the underlying
directed graph with edges corresponding to transitions with non-zero probabili-
ties is strongly connected. Under this assumption, the stationary distribution is
unique, and every vertex has a positive mass.

If the directed graph is not strongly connected, a strongly connected compo-
nent is known as a sink if there is no edge going out of it. If there is more than
one sink, the stationary distribution is not unique. Moreover, under any sta-
tionary distribution, any vertex in a non-sink has probability mass zero. Hence,
Chung’s method essentially deletes all non-sinks before considering the expan-
sion properties of the remaining graph.
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In this paper, we explore ways to consider expansion properties that involve
the non-sinks of a directed graph that is not strongly connected.

1.2 Our Contribution

The contribution of this paper is mainly conceptual, and offers an approach to
extend Chung’s spectral analysis of transition matrices to the scenarios when the
underlying directed graph is not strongly connected, or when the vertex weights
do not follow a stationary distribution. On a high level, our technique to handle
both issues is to add a new vertex to the graph and define additional transition
probabilities involving the new vertex such that the new underlying graph is
strongly connected, and the expansion properties for the old vertices are also
preserved in the new graph. Therefore, Chung’s technique can be applied after
the transformation. We outline our approaches and results as follows.
(1) Transition matrix whose directed graph is not necessarily strongly
connected. Given a transition matrix P corresponding to a random walk on a
graph G(V,E) and a subset S ⊆ V of vertices, we denote by P|S the submatrix
defined by restricting P only to the rows and the columns corresponding to S.

It is known [7] that the eigenvalues of P are the union of the eigenvalues of
P|C over all strongly connected components C in directed graph G. An impor-
tant observation is that as long as the strongly connected components and the
transition probabilities within a component remain the same, the eigenvalues of
P are independent of the transition probabilities between different strongly con-
nected components. This suggests that it might be difficult to use spectral prop-
erties to analyze expansion properties involving edges between different strongly
connected components.

Therefore, we propose that it makes sense to consider the expansion proper-
ties for each strongly connected component separately. If C is a sink (i.e., there
is no edge leaving C), then P|C itself is a probability transition matrix, for which
Chung’s approach can be applied by using the (unique) stationary distribution
on C.

However, if C is a non-sink, then there is no stationary distribution for P|C ,
because there is non-zero probability mass leaking out of C in every step of the
random walk. For the non-trivial case when |C| ≥ 2, by the Perron-Frobenius
Theorem [10], there exists some maximal eigenvalue λ > 0 with respect to the
complex norm, and unique (left) eigenvector φφφ with strictly positive coordinates
such that φφφTP|C = λφφφT. When φφφ is normalized such that all coordinates sum to
1, we say that φφφ is the diluted stationary distribution of P|C . It is stationary in
the sense that if we start the random walk with distribution φφφ, then conditioning
on the event that the next step remains in C (which has probability λ), we have
the same distribution φφφ on C.

Hence, we can define the expansion of a subset S in C with respect to the
diluted stationary distribution φφφ. Given a vertex u ∈ C and a vertex v ∈ V (that
could be outside C), the weight of the edge (u, v) is φ(u) ·P (u, v). Observe that
the sum of weights of edges going out of u is φ(u). Hence, the expansion of a
subset S in C are due to edges leaving S that can either stay in or out of the
component C.
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In order to analyze this notion of expansion using Chung’s approach, we
construct a strongly connected graph on the component C together with a new
vertex v0, which absorbs all the probabilities leaking out of C, and returns them
to C according to the diluted stationary distribution φφφ. This defines a probabil-

ity transition matrix P̂ on the new graph that is strongly connected with various

nice properties. For instance, P̂ has 1 as the maximal eigenvalue with the corre-
sponding left eigenvector formed from the diluted stationary distribution φφφ by
appending an extra coordinate corresponding to the new vertex with value 1−λ.

One interesting technical result (Lemma 1) is that the new transition matrix

P̂ preserves the spectral properties of P|C in the sense that the eigenvalues of

P̂ can be obtained by removing λ from the multi-set of eigenvalues of P|C and
including 1 and λ − 1. In other words, other than the removal of λ and the
inclusion of 1 and λ − 1, all other eigenvalues are preserved, even up to their
algebraic and geometric multiplicities.

Hence, we can use Chung’s approach to define a symmetric Laplacian for P̂,
and use the recent results from Lee et al. [13] on higher-order Cheeger Inequalities
to achieve an analogous result for a strongly connected component in a directed
graph. In particular, multi-way partition expansion is considered. For a subset
C of vertices, we denote:

ρk(C) := min{maxi∈[k] ρ(Si) : S1, S2, . . . , Sk are disjoint subsets of C}.

Theorem 1. Suppose C is a strongly connected component of size n associated
with some probability transition matrix, and the expansion ρ(S) of a subset S of
vertices within C is defined with respect to the diluted stationary distribution φφφ
as described above.

Then, one can define a Laplacian matrix with dimension (n + 1) × (n + 1)
having eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1 such that for 1 ≤ k ≤ n, we have

λk

2 ≤ ρk(C) ≤ O(k2) ·
√
λk+1.

(2) Vertex weights deviate from stationary distribution. Given a tran-
sition matrix P, recall that in Chung’s approach, the expansion is defined with
the careful choice of setting each vertex’s weight according to a stationary distri-
bution. We consider the case when the vertex weights φφφ : V → R+ can deviate
from a stationary distribution of P.

Suppose each vertex is assigned a positive weight according to φφφ. Then, the
following parameter measures how much φφφ deviates from a stationary distribu-
tion:

ε := 1−min
u∈V

φ(u)∑
v∈V φ(v) · P (v, u)

.

A smaller value of ε means that φφφ is closer to a stationary distribution. In
particular, if ε = 0, then φφφ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1 − ε).
We add a new vertex v0 to absorb the extra ε probability from each existing
vertex. Then, we define the transition probabilities from v0 to the original ver-
tices carefully such that each original vertex u receives the same weight φ(u)
after one step. In other words, we can append a new coordinate corresponding

to v0 to φφφ to obtain a stationary distribution φ̂φφ for the transition matrix P̂ of
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the augmented random walk. Moreover, for each subset S ⊂ V of the original

vertices, the new expansion ρ̂(S) with respect to φ̂φφ and P̂ can be related to the
old expansion ρ(S) as follows: ρ̂(S) = (1− ε) · ρ(S) + ε.

Therefore, we can apply Chung’s approach to P̂ and φ̂φφ to construct a symmet-
ric Laplacian matrix, whose eigenvalues are related to the expansion properties
using the results by Lee et al. [13].

Theorem 2. Suppose n vertices have positive weights defined by φ : V → R+,
and ε ≥ 0 is the parameter defined above. Then, there exists a symmetric Lapla-
cian matrix with dimension (n+1)×(n+1) and eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤
λn+1 such that for 1 ≤ k ≤ n, we have λk

2 ≤ (1−ε) ·ρk(V )+ε ≤ O(k2) ·
√
λk+1.

In Appendix A, we show that if we allow a self-loop at the new vertex v0
with negative weight, we can slighlty improve the left hand side of the inequality
in Theorem 2.

1.3 Related Work

Since the Cheeger’s Inequality [6] was introduced in the context of Riemannian
geometry, analogous results have been achieved by Alon et al. [1, 3] to relate the
expansion of an undirected graph with the smallest positive eigenvalue of the
associated Laplacian matrix. The reader is referred to the standard textbook by
Chung [9] on spectral graph theory for a more comprehensive introduction of
the subject.

As far as we know, the only previous attempt to apply spectral analysis
to directed graphs was by Chung [8], who reduced the special case of directed
instances induced by stationary distributions into undirected instances. On a
high level, our approach is to reduce general directed instances into instances
induced by stationary distributions.

Recently, for undirected instances, Lee et al. [13] extended Cheeger’s Inequal-
ity to relate higher order eigenvalues with multi-way spectral partition. This re-
sult was further improved by Kwok et al. [12]. Since Chung’s approach [8] made
use of the Laplacian induced by an undirected instance, the higher order Cheeger
Inequalities can be directly applied to the cases considered by Chung.

The reader can refer to the survey on spectral partitioning by Shewchuck [15],
who also mentioned expansion optimization problems with negative edge weights.
Other applications of spectral analysis include graph coloring [4, 2], web search [11,
5] clustering [14], image segmentation [16, 17], etc.

2 Preliminaries

We consider a graph G(V,E) with non-negative edge weights w : E → R+. In
most cases, we consider directed graphs, but we will also use results for undi-
rected graphs. Note that a vertex might have a self-loop (even in an undirected
graph).
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For a subset S ⊆ V , ∂(S) is the set of edges leaving S in a directed graph,
whereas in an undirected graph, it includes those edges having exactly one end-
point in S (excluding self-loops). Given the edge weights, vertex weights are
defined as follows. For each u ∈ V , its weight w(u) is the sum of the weights of
its out-going edges (including its self-loop) in a directed graph, whereas in an
undirected graph, the edges incident on u are considered.

The expansion ρ(S) of a subset S (with respect to w) is defined as:

w(∂(S))

w(S)
=

∑
e∈∂(S) w(e)∑
u∈S w(u)

.

In this paper, we use bold capital letters (such as A) to denote matrices and
bold small letters (such as φφφ) to denote column vectors. The transpose of a matrix
A is denoted as AT. For a positive integer n, In is the n × n identity matrix,
and 0n and 1n are the all zero’s and all one’s column vectors, respectively, of
dimension n, where the subscript n is omitted if the dimension is clear from
context.
Undirected graphs. Suppose W is the symmetric matrix indicating the edge
weights w of an undirected graph of size n, and Φ is the diagonal matrix whose
diagonal entries correspond to the vertex weights induced by w as described
above. Then, the normalized Laplacian of W is L := In −Φ−

1
2 WΦ−

1
2 .

Multi-way partition expansion is considered in Lee et al. [13] by considering
the following parameter. For C ⊆ V and positive integer k, denote

ρk(C) := min{maxi∈[k] ρ(Si) : S1, S2, . . . , Sk are disjoint subsets of C}.
The following fact relates the eigenvalues of L with the multi-way partition

expansion with respect to W, which may contain self-loops.

Fact 1. (Higher Order Cheeger’s Inequality [13]) Given a symmetric matrix W
indicating the non-negative edge weights of an undirected graph, suppose its nor-
malized Laplacian L as defined above has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
Then, for 1 ≤ k ≤ n, we have: λk

2 ≤ ρk(V ) ≤ O(k2) ·
√
λk.

Chung’s approach [8] to transition matrices. Given a probability transition
matrix P (which is a square matrix with non-negative entries such that every
row sums to 1) corresponding to a random walk on vertex set V , and non-
negative vertex weight φφφ, one can define edge weights w : V × V → R+ as
w(u, v) := φ(u) ·P (u, v). (Observe that these edge weights induce vertex weights
that are consistent with φφφ.)

One interpretation of Chung’s approach is that the vertex weights φφφ are
chosen to be a stationary distribution of P, i.e., φφφTP = φφφT. Hence, the edge
weights w satisfy the following Eulerian property : for any subset S ⊆ V , we
have w(∂(S)) = w(∂(S)), where S := V \ S.

We can define edge weights ŵ for the (complete) undirected graph with vertex
set V such that for u 6= v, ŵ(u, v) = 1

2 (w(u, v) +w(v, u)), and each self-loop has
the same weight in ŵ and w.

Because of the Eulerian property of w, it is immediate that for all S ⊆ V ,
w(∂(S)) = ŵ(∂(S)), where ∂(S) is interpreted according to the directed case
on the left and to the undirected case on the right. Moreover, for all u ∈ V ,
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w(u) = ŵ(u). Hence, as far as expansion is concerned, it is equivalent to consider

the undirected graph with edge weights given by the matrix Ŵ, for which the
(higher-order) Cheeger Inequalities (as in Fact 1) can be readily applied.

Chung’s approach can be applied to any stationary distribution φφφ of P, but
special attention is paid to the case when P is irreducible, i.e., the edges cor-
responding to non-zero transition probabilities form a strongly connected graph
on V . The advantages is that in this case, the stationary distribution is unique,
and every vertex has non-zero probability.

In Section 3, we consider how to extend Chung’s approach to the case where
the underlying directed is not strongly connected. In Section 4, we consider the
case when the edge weights φφφ deviate (slightly) from a stationary distribution.

3 Directed Graphs with Multiple Strongly Connected
Components

In a directed graph, we say that a strongly connected component C is a sink, if
there is no edge leaving C. Otherwise, we say that it is a non-sink.

Even if the underlying directed graph of a given transition matrix is not
strongly connected, Chung’s approach [8] can still be applied if one chooses the
vertex weights according to some stationary distribution.

However, under any stationary distribution, the weight on any vertex in a
non-sink component must be zero. If we consider expansion using weights in-
duced by a stationary distribution, essentially we are considering only the sink
components. In this section, we explore if there is any meaningful way to con-
sider expansion properties involving the non-sink components. As we shall see,
it makes sense to consider the expansion properties of each strongly connected
component separately.

3.1 Motivation for Considering Components Separately

Suppose P is a probability transition matrix corresponding to a random walk
on some direted graph G(V,E). Given a subset C ⊆ V , let P|C be the square
matrix restricting to the columns and the rows corresponding to C.

It is known [7, Theorem 3.22] that the eigenvalues of P are the union of the
eigenvalues of P|C over all strongly connected components C in a directed graph
G. An important observation is that as long as the strongly connected compo-
nents and the transition probabilities within a component remain the same, the
eigenvalues of P are independent of the transition probabilities between different
strongly connected components. For instance, the figure below depicts a directed
graph, where the edges are labeled with the transition probabilities. Observe that
each vertex is its own strongly connected component.
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The transition matrix is:

P =


0 a 1− a

0 0 1

0 0 1

 ,

whose eigenvalues are {0, 0, 1}, which are independent of the parameter a. This
suggests that it might be difficult to use spectral properties to analyze expan-
sion properties involving edges between different strongly connected components.
Hence, we propose that the expansion of each connected component should be
analyzed separately.

3.2 Defining Expansion via Diluted Stationary Distribution

Observe that if a strongly connected component C is a sink, then the transition
matrix P|C has a stationary distribution, and we can apply Chung’s approach.
However, if C is a non-sink, then not every row of P|C sums to 1, and so P|C
has no stationary distribution.

However, since C is a strongly connected component, by the Perron-Frobenius
Theorem [10], P|C has a unique maximum eigenvalue λmax ≥ 0 with algebraic
and geometric multiplicity 1 such that every other eigenvalue (which might be
complex) has magnitude at most λmax. Moreover,the associated eigenvector of
λmax has positive coordinates and is unique up to scaling. Suppose φφφ is the
(left) eigenvector which is normalized such that the coordinates sum to 1, i.e.,∑
u∈V φ(u) = 1 and φφφTP|C = λmaxφφφ. We say that φφφ is the diluted stationary

distribution of P|C , because the distribution on vertices in C is diluted by a
factor of λmax after one step of the random walk.

We use the diluted stationary distribution φφφ as vertex weights to define ex-
pansion ρ(S) for S ⊆ C. Observe that the weight of edges leaving component C
also contributes to the expansion.

3.3 Augmenting Graph to Achieve Stationary Distribution

Suppose the component C has size n, and has λmax < 1. In order to use Chung’s

approach, we construct an augmented graph Ĝ consisting of the component C
and an extra vertex v0. For each u ∈ C, all the original probabilities leaking
out of C from u are now directed to v0. For the new vertex v0, the transition
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probabilities from v0 to vertices in C are given by the diluted stationary dis-

tribution φφφ. Hence, the augmented graph Ĝ is strongly connected. We write
A = P|C ∈ Rn×n, and µ = 1n −A1n ∈ Rn. The new transition matrix is

B =

A µ

φφφT 0

 ∈ R(n+1)×(n+1).

Given a square matrix M, its determinant is denoted as |M|, and eig(M) is
the multi-set of its eigenvalues, which are roots of the polynomial |λI−M| in λ.
We first show that the matrix B preserves the spectral properties of A.

Lemma 1 (Spectral Preservation). We have eig(B) = eig(A) − {λmax} +
{1, λmax − 1}. Furthermore, if an eigenvalue λ ∈ eig(A) − {λmax, λmax − 1}, it
has the same geometric multiplicity in A and B.

Proof. To prove the first part, it suffices to show that for all λ ∈ R,∣∣∣λIn −A
∣∣∣ (λ− 1)(λ− (λmax − 1)) =

∣∣∣λIn+1 −B
∣∣∣ (λ− λmax),

because both sides are polynomials in λ of degree n + 2. Hence, they must be
equivalent polynomials if they are equal for more than n+ 2 values of λ.

If λ = 1, then the right hand side is zero because B has eigenvalue 1; similarly,
if λ = λmax, the left hand side is zero because A has eigenvalue λmax.

For λ 6= 1, λmax, we have:

∣∣∣λIn+1 −B
∣∣∣ =

∣∣∣∣∣∣λIn −A −µ

−φφφT λ

∣∣∣∣∣∣ ·
∣∣∣∣∣∣In 1n

0T
n 1

∣∣∣∣∣∣ (1)

=

∣∣∣∣∣∣λIn −A (λ− 1)1n

−φφφT λ− 1

∣∣∣∣∣∣ (2)

= (λ− 1)
∣∣∣λIn −A− (λ− 1)1n(λ− 1)−1(−φφφT)

∣∣∣ (3)

= (λ− 1)
∣∣∣λIn −A + 1nφφφ

T

∣∣∣ , (4)

where (1) follows because the second determinant is 1. Moreover, (2) follows from
|X| · |Y| = |XY|. Equation (3) follows from the identity that for invertible H,∣∣∣∣∣∣E F

G H

∣∣∣∣∣∣ = |H| · |E− FH−1G|.
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Similarly, using |X| · |Y| = |XY| repeatedly, we have

∣∣∣λIn −A + 1nφφφ
T

∣∣∣ (λ− λmax) =

∣∣∣∣∣∣In −1n

0T
n 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣λIn −A + 1nφφφ

T 0n

φφφT λ− λmax

∣∣∣∣∣∣
=

∣∣∣∣∣∣ In 0n
−φφφT

λ−λmax
1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣λIn −A −(λ− λmax)1n

φφφT λ− λmax

∣∣∣∣∣∣
=

∣∣∣∣∣∣λIn −A −(λ− λmax)1n

0n λ− λmax + 1

∣∣∣∣∣∣
=
∣∣∣λIn −A

∣∣∣ (λ− λmax + 1).

This completes the proof of the first part. To show that the geometry mul-
tiplicities of a common eigenvalue λ 6= λmax, λmax − 1 are equal, we show that
x←→

(
x
0

)
is a bijection between A and B’s corresponding right eigenvectors.

Since λ 6= λmax is an eigenvalue of A, if x is a corresponding eigenvector,
then φφφTx = 0, because λmaxφφφ

Tx = φφφTAx = λφφφTx. Hence, B
(
x
0

)
= λ

(
x
0

)
.

Conversely, suppose
(
x
y

)
is an eigenvector of B with eigenvalue λ, where

x ∈ Rn and y ∈ R. We have{
Ax + µy = λx

φφφTx = λy
or

{
(λI−A)x = µy

φφφTx = λy.

Then, φφφT(λI−A)x = (λ− λmax)φφφTx = (λ− λmax)λy.
But we also have φφφTµy = φφφT(1−A1)y = (1−λmax)y. Since the two quantities

are equal, this implies that λ = 1, λmax − 1 or y = 0. By assumption, λ 6=
1, λmax− 1, and so the only possibility is y = 0, then Ax = λx. This shows that
λ has the same geometric multiplicity in A and B.

3.4 Higher-Order Cheeger Inequalities for Component

Given a non-sink component C, we have described how to add an extra vertex v0
to construct an augmented graph Ĝ with transition matrix B. Observe that B

has stationary distribution φ̂φφ = (φφφ, 1− λmax), where φφφ is the diluted stationary
distribution of A. Hence, it follows that for all S ⊆ C, the old expansion ρ(S) is
the same as the new expansion ρ̂(S) in the augmented graph.

Therefore, we can apply Chung’s approach [8] and the spectral analysis by Lee
et al. [13] to obtain the following lemma, which is a restatement of Theorem 1.

Lemma 2 (Cheeger Inequalities for Component C). Suppose Φ̂ is the
diagonal matrix whose diagonal entries are coordinates of the stationary distri-

bution φ̂φφ of B. Moreover, suppose the normalized Laplacian L of the symmetric

matrix 1
2 (Φ̂B + BTΦ̂) has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1. Then, for all

1 ≤ k ≤ n, λk

2 ≤ ρk(C) ≤ O(k2) ·
√
λk+1.

10



Proof. We use the following inequality from [13]:
λk

2 ≤ ρ̂k(Ĝ) ≤ O(k2) ·
√
λk.

Observe that if S ⊆ C does not contain the new vertex v0, then S has the
same expansion ρ(S) = ρ̂(S) in both graphs.

From k+ 1 disjoint subsets in the augmented graph Ĝ, we can get at least k
subsets of C by removing the one containing v0. Hence, we have

ρk(C) ≤ ρ̂k+1(Ĝ) ≤ O((k + 1)2)
√
λk+1.

On the other hand, k disjoint subsets in C are also disjoint in Ĝ. Therefore,

we have ρk(C) ≥ ρk(Ĝ) ≥ λk

2 , as required.

4 Vertex Weights Deviate from Stationary Distribution

In this section, we consider a transition matrix P whose underlying directed
graph G(V,E) (where n = |V |) is not necessarily strongly connected. Moreover,
each vertex has a positive weight given by a vector φφφ ∈ Rn that is not necessarily
a stationary distribution of P. We wish to analyze the expansion with respect to
P and φφφ using spectral techniques. As in Section 3, we shall add an extra vertex

v0 to form an augmented graph Ĝ.
We measure how much φφφ deviates from a stationary distribution by the fol-

lowing parameter:

ε := 1−min
u∈V

φ(u)∑
v∈V φ(v) · P (v, u)

.

A smaller value of ε means that φφφ is closer to a stationary distribution. In
particular, if ε = 0, then φφφ is a stationary distribution.

Our idea is to first scale down all probabilities in P by a factor of (1−ε). We
add a new vertex v0 to absorb the extra ε probability from each existing vertex.
Then, we define the transition probabilities from v0 to the original vertices care-
fully such that each original vertex u receives the same weight φ(u) after one
step.

For each vertex u, the weight mass it obtains from vertices V through the
scaled-down P is (1 − ε)

∑
v∈V φ(v)P (v, u). Hence, the new vertex v0 needs to

return mass weights to vertices in V given by the vector m := φφφ− (1− ε)PTφφφ,
whose coordinates are non-negative by the choice of ε. Normalizing by mT1n =
εφφφT1n, we have the vector µ := m

εφφφT1n
of transition probabilities from v0 to

vertices in V .
The transition matrix of the augmented graph Ĝ is

P̂ =

(1− ε)P ε1n

µT 0

 .

Observe that Ĝ is strongly connected, and its stationary distribution can

be obtained by normalizing the vector φ̂φφ = (φφφ, εφφφT1n). In other words, we can
append a new coordinate corresponding to v0 to φφφ to obtain a left eigenvector

φ̂φφ with eigenvalue 1 for matrix P̂.

11



Moreover, for each subset S ⊆ V of the original vertices, the new expansion

ρ̂(S) with respect to φ̂φφ and P̂ can be related to the old expansion ρ(S) as follows:
ρ̂(S) = (1− ε) · ρ(S) + ε.

Hence, we can apply Chung’s approach to P̂ and φ̂φφ to construct a symmetric
Laplacian matrix, whose eigenvalues are related to the expansion properties using
the results by Lee et al. [13]. The following lemma is a restatement of Theorem 2,
and its proof uses the same argument as in the proof of Lemma 2.

Lemma 3. Suppose Φ̂ is the diagonal matrix whose diagonal entries are coor-

dinates of φ̂φφ as defined above. Moreover, suppose the normalized Laplacian L of

the symmetric matrix 1
2 (Φ̂P̂+ P̂TΦ̂) has eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn+1.

Then, for all 1 ≤ k ≤ n, λk

2 ≤ (1− ε) · ρk(V ) + ε ≤ O(k2) ·
√
λk+1.

References

[1] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
[2] Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable

graphs. SIAM J. Comput., 26(6):1733–1748, 1997.
[3] Noga Alon and V. D. Milman. lambda1, isoperimetric inequalities for graphs, and

superconcentrators. J. Comb. Theory, Ser. B, 38(1):73–88, 1985.
[4] Bengt Aspvall and John R Gilbert. Graph coloring using eigenvalue decomposi-

tion. SIAM Journal on Algebraic Discrete Methods, 5(4):526–538, 1984.
[5] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hyper-

textual web search engine. Computer Networks, 56(18):3825–3833, 2012.
[6] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems

in analysis, 625:195–199, 1970.
[7] W.K. Chen, H.A. Lauwerier, and W.T. Koiter. Applied Graph Theory: Graphs and

Electrical Networks. North-Holland Series in Applied Mathematics and Mechanics.
Elsevier Science, 2014.

[8] Fan Chung. Laplacians and the cheeger inequality for directed graphs. Annals of
Combinatorics, 9(1):1–19, 2005.

[9] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997.

[10] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, 1990.

[11] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

[12] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan Oveis Gharan, and Luca Tre-
visan. Improved cheeger’s inequality: analysis of spectral partitioning algorithms
through higher order spectral gap. In STOC, pages 11–20, 2013.

[13] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral
partitioning and higher-order cheeger inequalities. J. ACM, 61(6):37, 2014.

[14] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis
and an algorithm. In NIPS, pages 849–856, 2001.

[15] Jonathan Richard Shewchuk. Ladies and gentlemen, allow me to introduce spec-
tral and isoperimetric graph partitioning. 2011.

[16] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[17] David Tolliver and Gary L. Miller. Graph partitioning by spectral rounding:
Applications in image segmentation and clustering. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 1053–1060, 2006.

12



A Lower Bound Improvement for Theorem 2

We show that the lower bound in the inequality in Theorem 2 can be slightly
improved if we allow a self-loop with negative weight at the new vertex v0 in the
augmented graph described in Section 4.

Following the notation from Section 4, for b ≥ 0, we define the following
transition matrix:

P̂b =

 P(1− ε) ε1n

µT(1 + b) −b

 ∈ R(n+1)×(n+1).

In particular, P̂0 = P̂. The corresponding left eigenvector with eigenvalue 1

is φ̂φφb = (φφφ, εφφφ
T1n

1+b ). Without loss of generality, we can normalize φφφ and assume

φφφT1n = 1. Denoting Φ̂b as the diagonal matrix with entries derived from φ̂φφb, the
Laplacian is

Lb := I−
Φ̂

1
2

b P̂bΦ̂
− 1

2

b + Φ̂
− 1

2

b P̂T
b Φ̂

1
2

b

2
.

We use λk(b) to denote the k-th smallest eigenvalue of Lb. Observe that for
any subset S of original vertices, the expansion ρ̂(S) is independent of b, and we
still have ρ̂(S) = (1− ε) · ρ(S) + ε.

It can be checked that the lower bound in the inequality of Fact 1 still holds
when vertices can have negative-weighted self-loops, as long as the weight of
a vertex remains non-negative. Therefore, we still have the following modified
inequality from Lemma 3:

λk(b)

2
≤ (1− ε)ρk(V ) + ε.

We next show that for each 1 ≤ k ≤ n, the function b 7→ λk(b) is increasing.
Moreover, as b tends to infinity, we can show that these eigenvalues converge to
the eigenvalues of some n× n matrix L∞.

Lemma 4 (Converging Eigenvalues). For 1 ≤ k ≤ n, the eigenvalue λk(b)
is an increasing function of b, and as b tends to infinity, it converges to the k-th
eigenvalue λk(∞) of following n× n matrix:

L∞ = I− 1

2
Φ̂−

1
2 [(1− ε)(Φ̂P + PTΦ̂) + ε(

(φφφ+ µ)(φφφT + µT)

2
)]Φ̂−

1
2 .

Proof. The Rayleigh quotient of Lb for f : V ∪ {v0} → Rn+1 is:

Rb(f) =

∑
u,v φ̂b(u)P̂b(u, v)|f(u)− f(v)|2∑

u φ̂b(u)|f(u)|2

=

∑
u,v φ(u)P̂ (u, v)|f(u)− f(v)|2∑
u6=v0 φ(u)|f(u)|2 + ε

1+b |f(v0)|2
,

13



which is an increasing function of b.
Recall that λk(b) = minf1,...,fk maxf∈span{f1,...,fk}Rb(f), where the mini-

mum is over all mutually orthogonal f1, . . . , fk with respect to the inner product
〈f, g〉w :=

∑
u w(u)f(u)g(u). Since for each f , Rb(f) is an increasing function

of b, it follows that λk(b) is also an increasing function of b.
Next, we show the convergence of λk(b) as b tends to infinity. Consider the

following:

lim
b→∞

Rb(f) = lim
b→∞

∑
u,v φ(u)P̂ (u, v)|f(u)− f(v)|2∑
u 6=v0 φ(u)|f(u)|2 + ε

1+b |f(v0)|2

=

∑
u,v φ(u)P̂ (u, v)|f(u)− f(v)|2∑

u 6=v0 φ(u)|f(u)|2

=

∑
u,v 6=v0 φ(u)P̂ (u, v)|f(u)− f(v)|2 +

∑
u6=v0(φ(u)ε+ εµ(u))|f(u)− f(v0)|2∑

u6=v0 φ(u)|f(u)|2

=

∑
u,v 6=v0 φ(u)P̂ (u, v)|f(u)− f(v)|2∑

u6=v0 φ(u)|f(u)|2
+
ε
∑
u6=v0(φ(u) + µ(u))|f(u)− f(v0)|2∑

u 6=v0 φ(u)|f(u)|2

The first term is∑
u,v 6=v0 φ(u)P̂ (u, v)|f(u)− f(v)|2∑

u6=v0 φ(u)|f(u)|2

=

∑
u,v 6=v0(φ(u)P̂ (u, v) + φ(v)P̂ (v, u))f(u)2 −

∑
u,v 6=v0(φ(u)P̂ (u, v) + φ(v)P̂ (v, u))f(u)f(v)∑

u6=v0 φ(u)|f(u)|2

=(1− ε) 〈f,J f〉
〈f, Φ̂f〉

,

where
J = Φ̂ + diag(φφφTP)− (Φ̂P + PTΦ̂).

Note that in the second term,∑
u6=v0

(φ(u) + µ(u))|f(u)− f(v0)|2

=
∑
u6=v0

(φ(u) + µ(u))f(v0)2 − 2f(v0)
∑
u6=v0

(φ(u) + µ(u))f(u) +
∑
u6=v0

(φ(u) + µ(u))f(u)2

=2(f(v0)−
∑
u 6=v0(φ(u) + µ(u))f(u)

2
)2 −

(
∑
u6=v0(φ(u) + µ(u))f(u))2

2
+
∑
u6=v0

(φ(u) + µ(u))f(u)2

≥
∑
u6=v0

(φ(u) + µ(u))f(u)2 −
(
∑
u 6=v0(φ(u) + µ(u))f(u))2

2

=〈f,Hf〉
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where

H = Φ̂ + M− (φφφ+ µ)(φφφT + µT)

2
.

Hence,

lim
b→∞

Rb(f) ≥ 〈f, ((1− ε)J + εH)f〉
〈f, Φ̂f〉

.

By taking g = Φ̂
1
2 f , we have

lim
b→∞

Rb(f) ≥ 2
〈g,L∞g〉
〈g, g〉

,

where

L∞ =
1

2
Φ̂−

1
2 ((1− ε)J + εH)Φ̂−

1
2

= I− 1

2
Φ̂−

1
2 [(1− ε)(Φ̂P + PTΦ̂) + ε(

(φφφ+ µ)(φφφT + µT)

2
)]Φ̂−

1
2 .

This directly implies that limb→∞ λk(b) ≥ λk(∞). On the other hand, we
choose f1, . . . , fk ∈ RV−v0 such that

λk(∞) = max
f∈span{f1,...,fk}

R∞(f).

We define:

f ′i =

{
fi(u) u 6= v0∑

(φ(u)+µ(u))fi(u)
2 u = v0

We have λk(∞) ≥ maxf∈span{f1,...,fk}Rb(f ′) ≥ λk(b). As b tends to infinity, we
have λk(∞) = limb→∞ λk(b).

The following corollary is an improvement of Lemma 3, because the eigen-
values of L∞ are greater than those of L0.

Corollary 1. For the original graph G(V,E) with transition matrix P and ver-

tex weight φφφ, suppose ε is defined as in Section 4. Then, (1−ε)ρk(V )+ε ≥ λk(∞)
2 ,

where λk(∞) is the k-th smallest eigenvalue of matrix L∞ as defined in Lemma 4
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