Fragmentation and rehabilitation of urban forests in relation to new town development

European Forum on Urban Forestry 2015 Brussels, 9-13 June 2015

C Y Jim

Department of Geography, University of Hong Kong geog.hku.hk/staff_FT_jim.html hragjcy@hku.hk

. Introduction

Research context

Enhancing urban forest in the course of urbanization Strategy

Planned synergy: between nature and city
Town plan: sympathetic to pre-urbanization ground truth
Urban green infrastructure: inherited (remnant or relict) and created
Geometry of forest cover: pattern and distribution
Proximity and accessibility: between city (people) and nature
Distribution and connectivity: peri-urban and intra-urban forests

Aims

- ➢Quality of life and environment
- Ecosystem services
- Sustainable and smart cities
- Compact cities: more critical concern and need
- Compact cities: more physical and institutional constraints

Study objectives

Effects of new town development on urban forest

- Case study: Tai Po new town in Hong Kong
- Track changes before and after urbanization
- ➤Map spatial pattern and distribution of forest
- Assess forest condition and performance
- Explore factors and processes leading to modifications
- Apply findings to nature conservation in new town development and urban growth in developing countries

Hong Kong: Contrast between City and Countryside

Ш

City contrasting with countryside

Extremely compact city

Ultra-compact and vertical city High building density High population density High road & vehicular density High human-land ratio Limited open and plantable space

Scenic, bucolic & serene countryside

Comprehensive & extensive protected-area system

Co-existence of protection, normal economic activities, recreation and tourism

New town in former rural and undeveloped land

Tai Po New Town: location

In New Territories (rural hinterland)

nabilitaton of urban forests

Tai Po old market towns (1945 map)

Tai Po location: aerial photo

Tai Po: oblique aerial view

IV Forest Canopy Changes

Evaluation of peri-urban and intra-urban forest cover

Macro-scale forest canopy cover

Scope

➢Pre-urbanization (3 phases) and post-urbanization (2 phases) periods from 1950s to 2000s

Reconstruction of forest cover in landmark years

Size, shape, continuity and fragmentation of forest patches

➤Town core area (intra-urban) and hinterland envelope (peri-urban)

Data sources

Large-scale sequential aerial photographs
Topographic maps of different years
Land use maps
Government documents and records
Field studies

Forest canopy changes through time

	Tree canopy cover		
		Change between	Change from
Year	Area (km ²)	periods (%)	1956 (%)
Pre-new-town scenario			
1956	3.7	-	100
1969	8.5	+129.7	129.7
1978	9.0	+5.9	143.2
Post-new-town-scenario			
1986	7.7	-14.4	108.1
1998	15.5	+101.3	318.9

Forest canopy changes in configuration

Forest canopy changes in distribution pattern

v Synopsis of findings

Initial drop followed by significant enhancement

After 30 years of intensive new town development

- ➤ ~3 times increase against 1956 baseline
- ~1.5 times increase against 1979 (initiation of new town)
- Maturity and stability: town plan and fabric, greenery cover

New town area at 3500 ha

- Total urban forest cover at 1550 ha (44.3% of new town area)
- Peri-urban forest alone at 1220 ha
 - ➢ 34.9% of new town area
 - ➢ 78.9% of total urban forest area

Critical contribution of urban fringe slope

- Green belt
- Conservation area (country park and SSSI)

/ Jim: Fragmentation and rehabilitaton of urb

Enhanced urban-forest attributes and functions

Geometric aspects

- ➢Coverage
- Patch size
- Patch connectivity (linkage)
- Patch coalescence (aggregation)
- Tree size and biomass volume

Ecological and landscape aspects

- Vegetation structural complexity
- Species richness and diversity
- Ecological value
- Ecosystem services
- Landscape and scenic quality

Main losses and fragmentation of pre-urbanization vegetation Former farmlands in lowlands

- ➢Few trees were preserved in new-town fabric
- >Un-accommodating grade raising to form development land

Lower slopes at town fringe

Earth fill borrow areas (can be rehabilitated)Urban incursion (permanent loss)

CY Jim: Fragmentation and rehabilitaton of

Successful green infilling

Human input

- Afforestation in urban-fringe slopes
 Enrichment planting in simple or degraded forests (assisted succession)
 Planting in urban parks and greenspaces
 Planting at roadsides
 Natural process
 Forest succession
 Continued growth of inherited trees
 Urban-forest configuration
- Penetration and permeation of forest in urban matrix
- >Allocating planting spaces with appropriate size, shape and location
- ➢More tree cover than previous rural landscape

Ecological engineering of afforestation

Two-stage ecological-engineering approach to afforestation >Harsh initial site conditions: eroded skeletal soil, moisture and nutrient deficit, hot and dry microclimate, windy exposure >Start with exotic pioneer species: resistance to drought, fire, nutrient deficiency; nitrogen-fixing; fast-growing; high survival rate >Seedling planting method: rather than direct seeding >Silvicultural input: initial watering and weeding; thinning **Fast establishment** of woodland cover >Nursing crop: trigger self-sustaining improvement in nutrient-capital accumulation, water-holding capacity, and microclimate conditions **Replacement of weaklings**: enrichment or fill planting by native equilibrium species; natural seed rain from proximal source areas Simple exotic-pioneer floristic to diverse relay native floristic >Enhance forest restoration: pace, quality and diversity

大学和教育中,我们是我们们的生活,我们们是你是我们的生活,我们们就是我们们的生活的。""你们是我们们就是我们的生活,我们是我们们就是我们的生活,我们不能能。""我

The End Thank You

Questions and Comments are Welcome