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Abstract—WIFI-based received signal strength indicator
(RSSI) fingerprinting is widely used for indoor localization due
to desirable features such as universal availability, privacy pro-
tection, and low deployment cost. The key of RSSI fingerprinting
is to construct a trustworthy RSSI map, which contains the
measurements of received access point (AP) signal strengths
at different calibration points. Location can be estimated by
matching live RSSIs with the RSSI map. However, a fine-grained
map requires much labor and time. This calls for developing
efficient interpolation and approximation methods. Besides, due
to environmental changes, the RSSI map requires periodical
updates to guarantee localization accuracy. In this paper, we
propose a spatio-temporal (S-T) similarity model which uses the
S-T correlation to construct a fine-grained and up-to-date RSSI
map. Five S-T correlation metrics are proposed, i.e., the spatial
distance, signal similarity, similarity likelihood, RSSI vector
distance, and the S-T reliability. This model is evaluated based
on experiments in our indoor WIFI positioning system test bed.
Results show improvements in both the interpolation accuracy (up
to 7%) and localization accuracy (up to 32%), compared to four
commonly used RSSI map construction methods, namely, linear
interpolation, cubic interpolation, nearest neighbor interpolation,
and compressive sensing.

Keywords—S-T similarity mode; WIFI fingerprinting; RSSI
map; Characteristic metrics; Interpolation.

I. INTRODUCTION

Indoor localization is the key to indoor location based
service (LBS), which is estimated to grow from a $448.6
million market in 2013 to $2.60 billion in 2018 [1]. Many in-
door positioning solutions, such as WIFI fingerprinting, WIFI
triangulation, radio frequency identification (RFID), inertial
measurement and LED lighting, have been proposed. Among
these solutions, WIFI-based RSSI fingerprinting is widely
used due to desirable features such as universal availability,
privacy protection, and low deployment cost. In addition, its
performance has been proved to be superior to another WIFI-
based method, namely, the WIFI triangulation [2]. Gener-
ally, collected WIFI signatures are sensitive to environmental
changes, leading to localization inaccuracy. [3] evaluated the
accuracy limits of current fingerprinting algorithms, showing
strong evidence that these limilations are fundamental, and
unlikely to be overcome without better models. Thus efficient
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models with high localization accuracy but low computational
complexity are desired, and constructing a trustworthy RSSI
map is critical.

RSSI map contains the measurements of received access
point (AP) signal strengths at different locations, which are
used to estimate the present location of a received RSSI. Sta-
tistical metrics, such as the average, variance, signal coverage,
etc, are calculated from RSSI fingerprints database and stored
in the RSSI map for further matching. However, the RSSI map
training phase takes large amounts of labor and time, both
for RSSI sampling and for computing. Many researchers have
discussed constructing efficient RSSI maps, both for saving
costs and improving localization accuracy. For example, [4]
deployed the color radiomap interpolation methods, and [5],
[6] periodically updated the database with auxiliary automatic
equipment. [7] proposed a compressive sensing method for
constructing the RSSI map with a small set of sampling since
WIFI signals are sparse in DCT domain. [8] achieved pre-
classification of the RSSI database by support vector machine
(SVM) based training. And [9] observed the RSS distribu-
tion has two peaks, and utilized the double-peak Gaussian
distribution metrics for RSSI database construction. Yet few
researchers focused on the S-T correlation of collected RSSIs,
which has the potential of filling up the unsampled locations
based on the S-T similarity of neighbors, thus reducing the
sampling density. In this paper we propose an S-T similarity
model in the training phase, to create a fine-grained, up-to-date
RSSI map.

This model is evaluated based on experiments in our
hadoop-2.0 based indoor positioning system test bed, peri-
odically updated with volunteer surveyed datasets. Results
show improvements in both the interpolation accuracy (up
to 7%) and localization accuracy (up to 32%), compared to
four commonly used RSSI map construction methods, namely,
linear interpolation, cubic interpolation, nearest neighbor in-
terpolation, and compressive sensing. Methods proposed in
the positioning phase are based on two traditional WIFI
fingerprinting algorithms, that is, deterministic estimation and
probabilistic estimation [10], with a median error of 1.2-2.75m
in the office environment.

The merits of our proposed model are twofold. First, it
allows asymmetric computational complexity for the RSSI
map training phase and the positioning phase. The RSSI



map training phase is relatively complicated yet can be out-
sourced to high performance computation clusters. Thus both
the accuracy and time efficiency can be guaranteed for the
positioning phase which matches live RSSIs with the trained
RSSI map. Second, taking advantage of the S-T correlation,
the RSSI map can be interpolated and updated with fairly
high quality and low sampling density. This model is efficient
for the volunteer-enabled RSSI survey where the locations
are randomly selected, compared to traditional interpolation
methods and compressive sensing.

The rest of this paper is organized as follows. Section
IT illustrates the mathematical expression of the model, and
defines five characteristic metrics. Section III focuses on the
training phase and builds a trustworthy RSSI map based on
the S-T similarity model. Section IV describes the positioning
phase and WPS deployment. Section V introduces the perfor-
mance evaluation. Finally, Section VI concludes the paper and
suggests future work.

II. BASIC CHARACTERISTIC METRICS FOR THE S-T
SIMILARITY MODEL

This section introduces the S-T similarity model and its
mathematical expression. We use S; ;, to represent the col-
lected signal strength at calibration point ¢, from the jth
AP, at discrete timestamp t;, where ¢ = 1,2,...,M; j =
1,2,...,N; k=1,2,3...

N; indicates the number of APs detected at Cell
i, and t; represents the kth sampling timestamp. Thus
the data stream can be expressed in a three-dimensional
data format. We assume the whole tested area is divided
to M identical cells, and [; represents the coordinate
of Cell 4, ie., the center of Cell 7. Thus we can use
{Siutr Sisgo,trr s Sigitar Sivgastar 5 Sijuti Sig s }
to represent the RSSI stream from N; APs at calibration
point /;, flowing into the system with sequential timestamp.
Similarly, {Si, 1, Sisjitrs - s Singitas Siajitar o » Siv gt
Siy.ite,--- ; denotes another RSSI stream, representing the
signal strengths for a specific AP at all calibration points.
Based on these RSSI streams, we define five characteristic
metrics in the S-T similarity model, to classify, observe, and
filter RSSI values.

A. Metric 1: Spatial Distance

The spatial distance of location i, and ¢5 can be represented
as:

S’patml_dist(il,ig) = H lil — liQ
M

I, where i1,i0 €
1,2

g Ly ooy

B. Metric 2: Signal Similarity

The similarity of signal j; and j2, with timestamp t
bounded by a time window [tpegin,tend] at all the locations
can be represented as:

Sig_similarity(j1, jo)

M d 2
. \/Ei:l Zzibegin (Si7j17tk - Si7j27tk)

number of ti in [tpegin, tend)

,  where i €
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Fig. 1: Classification of signals from 25 APs into 7 clusters.
(a) Signals from 25 APs collected with 19 timestamps. (b-
¢) 7 classified signal clusters. Thee temporal distance between
sampled RSSIs is not necessarily uniform.

1,2,...,M; J1 € 1,2,...,Ni1; and Jo € 1,2,...,Ni2; tr €
[tbeginatend]

In the training phase, signal strength S; ;. at t; may
be comprised of a set of n samplings {S}’j’tk,Szj’tk,
ey ST}, where n=1,2,3.... In this case S; j, takes the
average value of n samples. This metric is designed to cluster
AP signitures which behave similarly or almost the same, thus
to reduce duplication. We classify similar signals into the same
cluster if the pairwise similarity metrics among a group of
signals are within the smallest 10% signal similarity metrics.
Fig. 1 illustrates the classification results, with signals from 25
APs categorized into 7 clusters.



C. Metric 3: Similarity Likelihood

For the each signal sequence from the jth AP at the ith
calibration point, we utilize the histogram representation of
Si j.t, and let

£ = number of S, ¢, falling into the mth BIN
" number Of ty in [tbegin;tend]
denote the frequency of RSSI observations failling into the
mth BIN among all the samples within the time win-
dow [tpegin, end] Here the BINs are m,q, disjoint RSSI
intervals ranging from [min,ss;, maz,ssi], m € Z and
m € {1,2,...,Myqz}. Thus the frequency vector f =
(f1, f2, s fm,...) Will represent the RSSI probability distri-
bution, which can be rewritten as the probability mass function

(pm.f):

fm = p([Siju) = center value of mth BINJi,j),
Si,j,t;C - minrssi—‘

BIN width

To get precise RSSI pmf, large RSSI training datasets
are needed. Researchers have also proposed ways to fit the
Gaussian-derived distribution function [11] with a relatively
small RSSI training datasets by fetching the statistical mean
S, ; and standard deviation &; ;.

where [S; ;1] = s t € [toegin, tend-

We define two representation format for metric 3 to
measure the similarity likelihood of two RSSI streams,

{Si17j17t17Si17j2»t17"" Sihlez’SilJz,h 7"'7Si17j17tk1 7Si11j27tk1 )

and {Si27j1 it 3S1'27j2,t1 ye9in,g1,t2 900, 52, b2 TILEA Jistky
Sizdarthy ...}, collected at location 4; and iy:
Lik?vlihood_similarity(il, i)
st _ - . .
Hj:l p([Siluj} - [Siz,j}|12a.])’ where iy,i2 €

1725“-7M;j S 172a---7Ni2; tkla tk}z S [tbegin;tend]

Log_likelihood_similarity(iy, i)

N; = = . . ..
= 22 log(p([Siy,;] = [Si4lli2,5)), where i1,iz €
1,2,....M;5€1,2,... Ni2§ Uy, thy € [tbegin;tend]

Here p([Si, ;] = [Si,.;l]i2, j) represents the pm f of RSSI
stream from the jth AP collected at location 7o, compared to
RSSI at location 4;. Fig. 2 shows the observed relationship
between the similarity likelihood and the spatial distance in
terms of a selected calibraion point, compared with all other
calibration points. Statistical RSSI pmf are used for metric
calculation. We observe the largest three values of similarity
likelihood corresponding to low spatial distances.

D. Metric 4: RSSI Vector Distance

The spatial RSSI difference of two selected locations i;
and 79 can be represented as the average Euclidian distance of
two RSSI streams, same as the above section, collected at the
corresponding locations, 71 and %9:

RSSI_vector dist(i1 ,12)

= \/Z 117] Siy J)

N’LQ? tkl 3 tkg [tbeginv tend]

, where 11,19 € 1,2,...,M; j €

The RSSI vector distance is a useful metric to differentiate
different calibration points. When comparing this metric in one
selected calibration point with all the other points, we observe
that the lowest five RSSI vector distance values correspond to
low spatial distances. Fig. 3 shows an example.
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Fig. 2: An example of statistical relationship between
Log_likelihood_similarity and Spatial_dist at a Test Loca-
tion. X-axis: the spatial distance with all the calibration points,
Y-axis: the corresponding Log_likelihood_similarity, based
on pmf.
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Fig. 3: An example of statistical relationship between

RSSI_vector_dist and Spatial_dist at a Test Location. X-
axis: the spatial distance with all the calibration points, Y-axis:
the corresponding RSSI vector difference.

E. Metric 5: Signal S-T Reliability

Given a time window [tpegin,tena), the RSSI stream
{56t Siagitns o s Sy itas Siz gitas s Siv gt Sin gt }
for a fixed AP can be illustrated as an averaged signal spatial
distribution, as shown in Fig. 4. For the spatial distribution of
an arbitrary AP, a dot appearing at one position means that
this AP can be detected at this position. The sizes of the dots
indicate the RSSI values, with larger dots representing stronger
signal strengths. And the color is used to classify RSSI values.

In order to filter untrusted RSSI values, we define the
metric of reliability based on the S-T correlation of a certain
signal:

Re = Sig_st_re(i1,i2)

= (Rei, ..., Rej, ..., Ren, ), where ii,iz € 1,2,...,M;j €
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Fig. 4: The spatial distribution of 3 randomly selected APs inside
an office.
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Fig. 5: Illustration of the S-T similarity model.

1,2,..., N5t € [tbeginatend]

The jth element Re; is defined as the S-T reliabiltiy for
differentiating two locations, based on the signal from the jth
AP. In this formula, 75 is the reference point for comparision.

Sivs — S

|| 1:]. . 2] || > 90%_CI
U(Z27])

1, otherwise

Constant,
Rej =

where 90%_C1I represents the 90% con fidence interval.

Basic idea of this metric is to add a constant weight to the
signals falling out of the confidence interval, when comparting
the RSSI vector difference and similarity likelihood of two
locations. Thus two relatively remote locations have more
probability to have higher RSSI vector difference and lower
similarity likelihood.

FE S-T Similarity Model

The S-T similarity model for interpolating and updating the
RSSI map is illustrated with Fig. 5 as an example. We assume
that the state of an unsampled point A can be estimated by
its neighbors N (A, R,t;) = {N1,N2, N3, N4} within the
distance of R at time ¢;. RSSI at A is spatio-temporally cor-
related with RSSI at each neighbor, for example, %\Il, via two

factors: 1) the inverse spatial distance

Spatial_dist(A, N1)’
and 2) the similarity factor Siml between N1 and all the
other neighbors { N (A, R, t;) — N1}. We define the weight of
correlation W(A,N1) to be the product of the above mentioned
factors:
1

WA, N1) = Spatial_dist(A, N1)

Likelihood_similarity(N1, Nx)

=l Rssi_vector_dist(N1, Nx) x Sig_st_re(N1,Nz)’

xSiml, where Sim1l

and Nz € {N(4, R, t;) — N1}.

Finally the RSSI at unsampled point A can be represented
as:

ZNxeN(A) RSSI(Nz,ty) « W(A, Nx)

ZNzeN(A) W(A,Nz) ’
indicating that the uncertain RSSIs are most influenced by its
nearest neighbor which shares the highest similarity with other
neighbors.

RSSI(A,t;) =

This model also enables periodic updates of RSSI map
once the update of RSSI is detected. Detection includes both
the update at a sampled calibration point and at an unsampled
calibration point.

III. RSSI MAP TRAINING

Algorithm 1 RSSI Map Creation

Require:

e RSSIT map at ty;

e k-element input RSSI stream at the same location
{Silvjhtl7Si17j27t1""’si17j17t27Si17j27t2""’Silajlatkl’

Si17j27tk17"' >
e k-element input RSSI stream from the same AP

{Si27j1,t1 ) Si27j27t1’ i) SiQ:jl;t2 aSi27j27t27 "'7Si2,]’1775k2’

G252ty 1 0 I
e i € the calibration points SET{C},j € 1,2,...,N,,
k=1,2,3..;
e the unsampled calibration points SET{A};
e the interpolated calibration points SET{B};
Ensure:

I: Classify the RSSI into groups based on the
Sig_similarity metric. Represent the classified RSSI
stream by {Siljlxtl’ i1,d2,t0 0 Pingitar Pingste)
..,Si17517tk178i17327tk1,...}, where i € SET{C},j €
1,2,...,N;, k=1,2,3...;

2: for timestamp = begin;
timestamp + + do

timestamp < end;

3. if the new sampled point i € SET{A} then

4: Put this point in SET{C} and drop it from
SET{A}, SET{B}.

5:  end if

6:  Calculate Metric 1-5 defined in Section II for each i €

SET{C},

7. while SET{A} is not empty do

8: Find the neighbors of each unsampled point within a
distance of R;

9: Calculate the weight of correlation W between the
point and each neighbor;

10: Interpolate the RSSI statistics with the S-T similarity

model, and put the point into SET{B}.
11:  end while
12: end for
13: return RSST;

This section introduces how to create a trustworthy RSSI
map based on the S-T similarity model. The training process
faces two challenges. First, the system needs to decide the
size of the RSSI streams used for creating the RSSI map,
i.e., to choose the time wWindow [thegin, tena). With too short a
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window, the RSSI characteristic metrics may not be precise
enough. But too long a window also causes performance
degradation, since the historical RSSI may not reflect the
current characteristics of WIFI signals due to environmental
changes. Mostly we choose te,q to be the most-recent RSSI
tuples, which are detected as an RSSI update at a certain
calibration point. Then the problem goes to selecting the
starting timestamp %44, Second, for an unsampled calibration
point, the range containing its neighbors should be just the
right size. Too large a range will increase computational
complexity, while too small a range may skip the interpolation
of some areas. We iterate and choose the time window and
region size parameters which give the best performance.

Algorithm 1 illustrates the process of creating a trustworthy
RSSI map, to construct a fine-grained and up-to-date RSSI
map. Metrics 1-5 defined in Section II are measured. Pefor-
mance evaluation of this RSSI map is shown in Section V.

IV. THE POSITIONING PHASE AND SYSTEM
DEPLOYMENT

To verify the performance of RSSI map training, we
implement the overall localization scheme on our WIFI po-
sitioing system (WPS) deployed at Chow Yei Ching Building
of the University of Hong Kong. This section gives a brief
introduction of the positioning phase based on two traditional
methods: deterministic estimation and probabilistic estimation
[10], as well as the system deployment.

1) Deterministic estimation: Given the measurement vector
y and location x, the deterministic method assumes y to be a
non-random vector. The main objective is to find the nearest
calibration point l;, i.., Zynin_dist(x,i) = li» Where || y —.5; ||
gets the minimum among all the available +.

2) Probabilistic estimation: The probabilistic estimation
assumes the measurement vector y to be a random vector.
The idea is to compute conditional pdf p(z|y) of location
x give the measurement vector y. By which we can achieve
the estimated location with the maximum-likelihood estimation

Tmazimum_likelihood = li-

Fig. 6 illustrates the deployment framework of a Hadoop-
2.0 based WPS. It consists of three subsystems, i.e., the
smartphone app, the local server system, and a Hadoop-2.0
cluster for periodical update of RSSI database. The smartphone
app is built on the Android system, serving as the user
interface. It is designed with two functions: 1) submitting
RSSI streams to the SQL database and 2) querying locations
from the local server. The local server, built on J2EE7-based
Java platform, is scalable and flexible to deploy localization
algorithm by providing user-customized query APIs. The RSSI
database stores the RSSI map and interacts with the smarphone
uploaded RSSIs indexed by S-T information. It also interacts
with the external Hadoop-2.0 cluster to handle large numbers
of incoming RSSI streams based on Mapreduce. In this way
the RSSI map can be periodically updated. The cluster also
measures the RSSI statistics, detect the abnormalities, and
extract key RSSI information for RSSI map interpolation. Then
it sends the well-trained RSSI map back to the database. Corre-
sponding to the RSSI training phase and the positioning phase,
proposed S-T similarity model are implemented respectively in
the cluster and the local server.

V. PERFORMANCE EVALUATION
A. Experimental Setup

Testing area is located at the 8th floor of the Chow Yei
Ching Building at the University of Hong Kong (HKU), with
an area of 36 18 m?. We divide the area into 1 m? cells based
on the layout, with each center representing the location of the
cell. RSSIs were collected from all the calibration points where
the pedestrians could pass. Performance evaluation of proposed
S-T similarity model is at two levels. First, the interpolation
of RSSI map accuracy is verifed at the sampling percentage of
20%, 40%, 60%, 80%, and 100%, compared to four commonly
used methods: linear interpolation, cubic interpolation, nearest
neighbor interpolation, and compressive sensing. The sampled
datasets at a certain percentage are randomly selected to imitate
the case where volunteers collect and update RSSIs. Second,
we evaluate the median and maximum localization errors based
on the constructed RSSI map to verify the effectiveness of the
S-T similarity model.
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The difference between our proposed model and the four
baseline methods is, we interpolate the RSSI map based on S-
T similarities and S-T metrics which are related to localization
accuracy. While the other four interpolation methods focus on
the linear or non-linear correlations among cells.

Here we give a brief introduction of four other RSSI map
construction methods:

1) Linear Interpolation: This method fits the regular 2D
grid using linear polynomials. The fitting process is to inter-
polate functions of two variables (eg, z and y), firstly in one
direction, and then the other.

2) Cubic Interpolation: This method achieves smoother
surface than corresponding surfaces obtained by using a third-
degree polynomial specified in Hermite form [12].

3) Nearest Neighbor (NN) Interpolation: This method ap-
proximates the value of a non-given point according to the
proximal point.

4) Compressive Sensing: This method [13] takes advantage
of the sparsity of RSSI in DCT domain, thus reconstructing a
fine-grained RSSI map with small set of sampled calibration
points.

B. Interpolation Accuracy

Fig. 7 illustates the interpolation accuracy at different sam-
pling percentages. We randomly select 20%, 40%, 60%, 80%;,
and 100% of all the surveyed calibration points. Interpolation
accuracy is measured by comparing the estimated RSSI values
at unsampled points with the real RSSI values. Estimation
accuracy for one unsampled point is counted if the estimated
RSSI is within a 0.9 confidence level of real RSSI. We choose
the 0.9 confidence level instead of the signal-noise-ratio (SNR)
since the RSSIs are not stable and fluctuate over time.

It is revealed the interpolation accuracy of our proposed
model is superior to four other RSSI map construction meth-
ods, when the sampling rate is over 40%. Compressive sensing
model gains relatively high accuracy at a 20% sampling rate
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Fig. 8: Comparision of localization accuracy (median error) at
different percentages of sampled data for interpolation.
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Fig. 9: Comparision of interpolation accuracy (maximum error)
at different percentages of sampled data for interpolation.

yet is not quite productive when the sampling rate gets higher.
This is because compressive sensing is efficient only with geo-
logically sparse signals. S-T similarity model is more efficient
for randomly selected sampling based on the S-T correlation.
Statistics show the accuracy to be 79.89% at a 60% sampling.
This is compared with a maximum accuracy of 72.25% based
on four other methods, indicating an improvement of nearly
7% interpolation accuracy.

C. Impact of Constructed RSSI Map on Positioning Accuracy

To evaluate how the constructed RSSI map helps the
localization, we compare positioning accuracy between the S-T
similarity model and four other methods.

Fig. 8 shows the median localization error under the deter-
ministic estimation and the probabilistic estimation. Results
show a decend trend of median error when the sampling
rate increases, with our proposed model corresponding to the
lowest errors. For the deterministic estimation, we achieve a
median error of 1.2-2.75m when the sampling rate is over 40%.
This is about a 32% improvement comparing to a minimum
median error of 1.2-4.02m achieved by other RSSI construction
methods. The probabilistic estimation results show relatively
higher median errors when the sampling rate is below 60%,
for the original data is not enough to obtain an accurate pmf.
However, when the sampling rate is higher than 80%, the
median error tends to be smaller compared to deterministic
estimation, reaching a minimum median error of 1.15m. We
note that there is an exception by using the cubic interpolation,
where the positioning accuracy is not accurate at all. This



is because the smoother function changes the pmf in the
interpolation phase.

Fig. 9 shows the maximum localization error under the
deterministic estimation and the probabilistic estimation, which
acts as the upper bound of localization accuracy. Based on the
S-T model, we can achieve a maximum error within 4.5m by
deterministic estimation and 4.6m by probabilistic estimation,
when the sampling rate is higher than 80%. The maximum
error performance under the sampling rate of 60% is not quite
good, since the amount of sampled datasets is not enough for
generating pm f function, and thus any wrong interpolation
will lead to a large maximum localization error.

VI. CONCLUSION AND FUTURE WORKS

In this paper we propose an S-T similarity model for
WIFI-based RSSI fingerprinting. The model defines five S-T
correlation metrics for construct a trustworthy RSSI map with
the RSSI streams. We employ the model in the training phase
of RSSI fingerprinting, to create a fine-grained and up-to-date
RSSI map. The model is deployed in our WIFI positioning
system, and both the interpolation accuracy and positioning
accuracy are evaluated. We observe improvements in both the
interpolation accuracy (up to 7%) and localization accuracy
(up to 32%), compared to four commonly used RSSI map
construction methods.

The future work will continue to focus on the real-time
update of the RSSI map, enabled with streaming technologies,
to handle vast number of data streams. MapReduce tasks,
as well as complex event processing will be executed in
the computing cluster to enhance the real-time processing
capability.
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