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Abstract

This paper is concerned with the H∞ and H2 optimization problem for inerter-based dynamic
vibration absorbers (IDVAs). The proposed IDVAs are obtained by replacing the damper
in the traditional dynamic vibration absorber (TDVA) with some inerter-based mechanical
networks. It is demonstrated in this paper that adding one inerter alone to the TDVA
provides no benefits for the H∞ performance and negligible improvement (less than 0.32%
improvement over the TDVA when the mass ratio less than 1) for the H2 performance. This
implies the necessity of introducing another degree of freedom (element) together with inerter
to the TDVA. Therefore, four different IDVAs are proposed by adding an inerter together with
a spring to the TDVA, and significant improvement for both the H∞ and H2 performances is
obtained. Numerical simulations in dimensionless form show that more than 20% and 10%
improvement can be obtained for the H∞ and H2 performances, respectively. Besides, for
the H∞ performance, the effective frequency band can be further widened by using inerter.

Keywords: Inerter, dynamic vibration absorber, H∞ optimization, H2 optimization.

1. Introduction

Dynamic vibration absorber (DVA) is an auxiliary mass system attached to a vibrating1

primary system to reduce undesired vibration, which is widely used in the fields of civil2

and mechanical engineering for its simple design and high reliability [1]. In the first DVA3

proposed by Frahm in 1909 [2], only a spring was employed, and it was useful only in a4

narrow band of frequency. In 1928, the damping mechanism was introduced by Ormondroyd5

and Den Hartog [3], which is a parallel arrangement of a spring and a damper, and as a6

result, the effective frequency band was significantly widened. It was also pointed out in [3]7

that for the spring-damper DVA (in this paper, it is called the traditional DVA or TDVA)8

and undamped primary system, there were two frequencies called fixed points, where the9

magnitudes were independent of the damping, and the optimal setting of the spring stiffness10

was the one equalizing the magnitudes at the fixed points, and the optimal damping was the11

one making the curves of the frequency response horizontally pass through the fixed points.12

Such a tuning method is still in use today and currently known as the fixed-point method [1],13

which has been demonstrated to be a suboptimal H∞ optimization method [4]. The exact14
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solutions were analytically derived in [4] and it was also shown that the fixed-point method15

actually yielded an approximate but highly precise solution (with less than 0.5% deviation16

when the mass ratio less than 1). Another common performance measure of tuning DVA is the17

H2 performance measure, which is desirable when the primary system subjected to random18

excitations. The objective of H2 optimization is to optimize the total vibration energy of19

the system over all frequencies [5]. For the TDVA with undamped primary systems, the20

optimal tuning frequency and damping ratio were investigated in [5], and then the analytical21

solutions were derived in [6]. For damped primary systems, various design methods and22

tuning criteria have been proposed, such as those in [7, 9, 8, 10], and the applications of the23

TDVA in nonlinear and distributed primary systems have been investigated [11, 12, 13]. The24

active DVAs utilizing feedback control actions have also been proposed [14, 15, 16].25

Inerter is a two-terminal mechanical device proposed by Smith in 2002 [17], which has the26

property that the applied force at its two terminals is proportional to the relative acceleration27

between them and the constant of proportionality is called inertance with a unit of kilogram.28

Inerter has been successfully applied in Formula One racing car suspension systems [18],29

and now, applications of inerter in various mechanical systems, such as vehicle suspensions30

[19, 20, 21, 22] and vibration suppression systems [23, 24, 25, 26], have been investigated.31

Recently, the reduction of vibration systems’ natural frequencies by using inerter has been32

theoretically demonstrated [27], and the interest in passive network synthesis has also been33

rekindled [28, 29, 30, 31, 32, 33, 34, 35, 38].34

Vibration absorption is one of the potential applications of inerter [17]. In [17], the35

problem of designing inerter-based networks to absorb vibration at a specific frequency was36

studied. Thereafter, the suppression of vibration over a broadband frequency by using inerter37

has been proposed. In [23], an inerter-based configuration (C4 in this paper) was employed38

between adjacent storeys to suppress the vibration of a multi-storey building. In [24], optimal39

solutions for several inerter-based isolators (including all the configurations except C5 in this40

paper) were algebraically derived based on a “uni-axial” vibration isolation system. In [25],41

a new configuration incorporating an inerter was proposed and applied to a mechanical42

cascaded (chain-like) systems. In [26], the dynamics of a tuned mass absorber with an43

additional viscous damper and an inerter attached to the pendulum was investigated.44

In this paper, a novel structure for inerter-based DVAs (IDVAs) is proposed by replacing45

the damper in the TDVA with some inerter-based mechanical networks, and both the H∞46

and H2 performances of the proposed IDVAs are investigated. It is demonstrated in this47

paper that adding an inerter alone to the TDVA, no matter it is in parallel connection or48

in series connection, provides no benefits for the H∞ performance and negligible benefits49

(less than 0.32% improvement over the TDVA when the mass ratio less than 1) for the H250

performance. In contrast, by adding an inerter together with a spring to the TDVA (e.g. C3,51

C4, C5, and C6 in this paper), both H∞ and H2 performances can be significantly improved.52

Over 20% improvement compared with the TDVA can be obtained for the H∞ performance,53

and the effective frequency band can also be further widened by using inerter. For the H254

performance, it is analytically demonstrated that the IDVAs proposed in this paper perform55

surely better than the TDVA and over 10% improvement is obtained in numerical simulation.56

Moreover, a minmax framework directly using the resonance frequencies is proposed for the57

H∞ optimization, and an algebraic method to analytically calculate the H2 norm is employed58

for the H2 optimization. All these constitute the main contributions of this paper.59
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The organization of this paper is as follows. In Section 2, the IDVAs in this paper60

are introduced and the dimensionless representations of displacement transfer functions are61

derived. In Section 3 and Section 4, the H∞ and H2 optimization problems are solved for the62

IDVAs and the comparison between the IDVAs and the TDVA is conducted. Conclusions63

are drawn in Section 5.64

2. Inerter-based dynamic vibration absorbers65

Fig. 1 shows the comparison between the IDVAs proposed in this paper and the TDVA,66

where the IDVA is obtained by replacing the damper in the TDVA with some inerter-based67

mechanical networks. The entire networks employed in this paper are shown in Fig. 2. The68

equations of motion for the whole system in the Laplace domain are69

Ms2x = F + Fd −Kx, (1)

ms2xa = −Fd, (2)

Fd = (k + sY (s)) (xa − x), (3)

where Y (s) is the admittance of the inerter-based passive mechanical networks and Fd is the70

force of the DVA imposed on the primary mass M .71

From (2) and (3), one obtains,72

Fd = −R(s)x,

where73

R(s) =
(k + sY (s))ms2

k +ms2 + sY (s)
.

Then, one obtains the displacement transfer function as74

H(s) =
x

xs

=
1

s2

ω2
n
+ 1

K
R(s) + 1

, (4)

where xs = F/K and ωn =
√

K
M

are the static displacement and natural frequency of the75

primary system, respectively.76

The admittance of each network in Fig. 2 is shown in Table 1, where Yi(s), i = 1, . . . , 677

corresponds to Ci, i = 1, . . . , 6 in Fig. 2, respectively. Substituting each Yi(s) into (4), one78

can obtain the detailed transfer function for each configuration. To obtain the dimensionless79

representation of each configuration, the following dimensionless parameters are defined as80

µ = m
M

: mass ratio
δ = b

m
: inertance-to-mass ratio

ζ = c
2
√
mk

: damping ratio

η = ωb

ωm
: corner frequency ratio

γ = ωm

ωn
: natural frequency ratio

λ = ω
ωn

: forced frequency ratio


(5)
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Figure 1: Dynamic vibration absorbers (DVA): (a) traditional dynamic vibration absorber (TDVA); (b)
inerter-based dynamic vibration absorber (IDVA).

where81

ωm =
√

k
m

: natural frequency of the DVA

ωb =
√

k1
b
: corner frequency of the DVA

ωn =
√

K
M

: natural frequency of the primary system

 (6)

Remark 1. In this paper, the force-current analogy between mechanical and electrical net-82

works is employed, and admittance is defined to be the ratio of force to velocity, which agrees83

with the usual electrical terminology (see [17] for details). Such a definition is consistent with84

some books [36, p. 328], but not others which use the force-voltage analogy [37].85

Remark 2. Since the natural frequencies would be perturbed by using inerter as demonstrated86

in [27], ωm and ωn are not the real natural frequencies of the whole system. Neither is87

ωb the real corner frequency. Here, these notations are employed just for dimensionless88

representations.89

Replacing s with jω in (4), the frequency response functions in a dimensionless form can90

be obtained as91

Hi(jλ) =
Rni + jIni
Rmi + jImi

, i = 1, . . . , 6, (7)

where Rni, Ini, Rmi, and Imi, i = 1, . . . , 6 are functions with respect to λ, γ, δ, and ζ. The92

detailed representations are given in Appendix A.93

3. H∞ optimization for the IDVAs94

3.1. Minmax optimization problem formulation95

The objective of the H∞ optimization is to minimize the maximum magnitude of the96

frequency response |Hi(jλ)| , i = 1, . . . , 6, which is known as the H∞ norm of Hi(s) with97

4



Table 1: Admittance Y (s) for each configuration in Fig. 2.

Y1(s) = bs+ c Y2(s) =
1

1
bs
+ 1

c

Y3(s) =
1

s
k1

+ 1
c
+ 1

bs

Y4(s) =
1

1
k1
s +c

+ 1
bs

Y5(s) =
1

1
k1
s +bs

+ 1
c

Y6(s) =
1

1
bs+c

+ s
k1

(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) C6

Figure 2: The employed inerter-based networks as Y (s) in Fig. 1.
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s = jλ. For the TDVA, the fixed-point method [1] is commonly used to analytically obtain98

the optimal parameters [1, Chapter 3.3]. Since there always exist more than two fixed points99

with respect to the damping ratio for IDVAs, it is difficult to obtain simple and analytical100

representations for optimal parameters. Given this fact, in this paper, a minmax optimization101

problem is formulated as follows to directly minimize the magnitude at resonance frequencies.102

For a given mass ratio µ, solving the follow minmax problem103

min
δ,γ,η,ζ

(
max
λl

(|Hi(jλl)|)
)
, i = 1, . . . , 6 (8)

subject to δ ≥ 0, γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl, l = 1, . . . , N , are the real and positive solutions104

of the following equation105

∂|Hi(jλ)|2

∂λ2
= 0, (9)

where i = 1, . . . , 6 corresponds to the six IDVAs in Fig. 2, respectively.106

The underlying idea of the minmax problem (8) and (9) is, instead of using the fixed107

points to approximately minimize the H∞ norm as done in the fixed-point method [1], here108

the resonance frequencies are directly used to exactly minimize theH∞ norm. This is inspired109

by the method in [4], where the two resonance frequencies were employed to derive the110

exact solutions for the TDVA. Note that the solution set of (9), that is λl, l = 1, . . . , N ,111

contains the resonance frequencies, anti-resonance frequencies, and other frequencies where112

the curves horizontally pass through. Since the largest magnitude of the frequency response,113

representing the H∞ norm of the transfer function, only occurs at resonance frequencies, it114

is sufficient to minimize maxλl
(|Hi(jλl)|), l = 1, . . . , N , to obtain the optimal H∞ norm of115

the transfer function Hi(s).116

Equation (9) can be transformed into a polynomial function with respect to λ2 as follows.117

From (7), |Hi(jλ)|2 can be written as118

|Hi(jλ)|2 =
n

m
,

where n = R2
ni + I2ni, m = R2

mi + I2mi. Since119

∂|Hi(jλ)|2

∂λ2
=

n′m−m′n

m2
,

where n′ = ∂n
∂λ2 and m′ = ∂m

∂λ2 , (9) is equivalent to120

n′m−m′n = 0, (10)

which is an equation of λ2 with different orders for different configurations.121

Problem (8) and (10) is a constrained optimization problem, and the equality constraint122

(10) can be transformed into the objective function by employing λl = f(δ, γ, η, ζ). In this123

paper, a direct search method is employed to solve the constrained optimization problem (8)124

and (10) by using the Matlab solver patternsearch with multiple starting points.125
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3.2. Comparison between the TDVA and IDVAs126

For the TDVA, the optimal parameters can be analytically obtained as [1]:127

γopt =

√
1

1 + µ
, ζopt =

√
3µ

8(1 + µ)
,

and the optimal height at the two fixed points are
√

2+µ
µ
.128

3.2.1. Performance limitation of C1 and C2129

In this subsection, it will be demonstrated that configurations C1 and C2 provide no130

improvement for the H∞ performance compared with the TDVA.131

For configuration C1, by directly using the fixed-point method in [1], the optimal param-132

eters for C1 can be analytically obtained as133

γopt =

√
1 + (1 + µ)δ

1 + µ
, ζopt =

√
3µ

8(1 + µ)
,

and the optimal height at the two fixed points are
√

2+µ+2δ(1+µ)
µ

. It is obvious that the optimal134

δ is 0, which means that the parallel inerter in configuration C1 provides no improvement in135

the H∞ optimization. Such an observation is shown in Fig. 3 with µ = 0.1.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

λ

|H
1
(j
λ
)|

TDVA
δ = 0.1
δ = 0.5
δ = 1

Decreasing δ

Figure 3: Comparison between the TDVA and C1 when µ = 0.1 with different δ.

136

The minmax optimization method proposed in this paper is also applicable for C1 and a137

comparison between the method in this paper and the fixed-point method is shown in Fig. 4.138

As shown in Fig. 4, the results by these two methods highly coincide with each other and139

the results are consistent with the analytical solutions in [4, Table 2], which demonstrates140

the effectiveness of the method in this paper.141

In what follows, it will be shown that for configuration C2, the series-connected inerter142

provides no improvement for the H∞ performance as well. To show the influence of δ, the143

problem (8) is slightly modified as: for a given µ and δ,144

min
γ,ζ

(
max
λl

(|H2(jλl)|)
)
,
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

2

4

6

λ

|H
1
(j
λ
)|

Minmax optimization method

Fixed−point method

0.842 0.855
4.58

4.59

1.052 1.067

4.58

4.59

maximum of the minmax optimization

method: 4.589

maximum of fixed−point method: 4.590

Figure 4: Comparison between the minmax optimization method in this paper and the fixed-point method
when µ = 0.1.

subject to γ ≥ 0, η ≥ 0, ζ ≥ 0, and λl, l = 1, . . . , N , are the real and positive solutions of145

(10). Fig. 5 shows the comparison between C2 with different δ and the TDVA when µ = 0.1,146

where it is clearly shown that the maximum of |H2(jλ)| is decreased by increasing δ and if147

δ is sufficiently large, the frequency response of C2 coincides with that of the TDVA. Such148

an observation is also confirmed by other choices of µ, as shown in Fig. 6. Therefore, it is149

sufficient to conclude that for a single series arrangement of an inerter and a damper, the150

series inerter provides no improvement for the H∞ performance of the isolation system.151

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

λ

|H
2
(j
λ
)|

TDVA
δ = 0.5
δ = 1
δ = 3

Increasing δ

Figure 5: Comparison between the TDVA and C2 when µ = 0.1 with different δ.

The IDVAs C1 and C2 represent the two ways of adding an inerter to the TDVA, that is,152

the parallel connection (C1) and the series connection (C2). Now, it has been demonstrated153

that adding a single inerter alone to the TDVA, no matter it is in parallel connection or154

in series connection, provides no improvement for the H∞ performance. Therefore, other155

degrees of freedom should be introduced, which is the motivation of introducing IDVAs C3,156

C4, C5, and C6 by adding an inerter together with a spring to the TDVA.157

3.2.2. Performance benefits of C3, C4, C5, and C6158

In this subsection, it will be shown that after adding another degree of freedom, that is159

the spring k1, the H∞ performance will be significantly improved compared with the TDVA.160

The optimization problem (8) with the constraint (10) is solved for configurations C3,161

C4, C5 and C6, separately, where a 9th-order polynomial of equation (10) with respect to162
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Figure 6: max(|H2(jλ)|) with different µ and δ.

λ2 is obtained. The exact solutions of the TDVA in [4] are employed for comparison and the163

detailed parameter values are shown in Tables 2, 3, and 4. Table 2 shows that all the IDVAs164

C3, C4, C5 and C6 can improve the H∞ performance compared with the TDVA, where C3165

performs the best and the order of the performance is C3 > C6 > C4 > C5 > TDV A (“>”166

means performing better) with an exception for µ >= 1. However, since the mass ratio is167

normally quite small and practically less than 0.25 [42, 43], it is sufficient to conclude that168

C3 > C6 > C4 > C5 > TDV A. Such an conclusion is also confirmed by Fig. 7, where the169

comparison of the IDVAs over the TDVA in the range of 0 < µ ≤ 0.25 is shown. As shown170

in the right figure of Fig. 7, 8% to 26% improvement can be obtained for the IDVAs. The171

other parameters in the range of 0 < µ ≤ 0.25 are depicted in Fig. 8. It should be noted172

that although the optimal γ and ζ for C3 are almost identical to the TDVA, as shown in173

Table 3 and Fig. 8, over 22% improvement can be provided by C3 compared with the TDVA.174

Moreover, the spring k1 is better to be in series connection for the H∞ performance, given175

the fact that C3 and C6 are superior to C4 and C5.176

The frequency responses of the IDVAs and the TDVA when µ = 0.1 are shown in Fig. 9,177

where one sees that the magnitudes of the IDVAs around 1 are much flatter than those of178

the TDVA, and the effective frequency band is much larger than that of the TDVA.179

Table 2: maximum magnitude max |H(jλ)| in the H∞ optimization.

µ TDVA [4] C3 C4 C5 C6
0.01 14.1796 11.0330 11.0860 12.9216 11.0351
0.02 10.0530 7.8340 7.9064 9.1498 7.8352
0.05 6.4080 5.0159 5.1194 5.8051 5.0210
0.1 4.5892 3.6175 3.7448 4.1379 3.6208
0.2 3.3254 2.6552 2.7986 2.9877 2.6616
0.5 2.2480 1.8513 1.9941 2.0198 1.8521
1 1.7457 1.4893 1.6127 1.5809 1.4893
2 1.4279 1.2697 1.3629 1.3157 1.2697
5 1.1942 1.1166 1.1702 1.1766 1.1166
10 1.1033 1.0602 1.0918 1.0934 1.0603
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Table 3: Optimal natural frequency ratio γ and damping ratio ζ in the H∞ optimization.

(a) Optimal natural frequency ratio γ

µ TDVA [4] C3 C4 C5 C6
0.01 0.9902 0.9900 0.9957 0.9712 0.9842
0.02 0.9802 0.9802 0.9911 0.9493 0.9684
0.05 0.9520 0.9520 0.9766 0.9090 0.9242
0.1 0.9083 0.9083 0.9499 0.8501 0.8642
0.2 0.8319 0.8319 0.8931 0.7538 0.7693
0.5 0.6642 0.6643 0.7514 0.5681 0.5604
1 0.4973 0.4971 0.5882 0.4041 0.3979
2 0.3307 0.3302 0.4100 0.2547 0.2526
5 0.1646 0.1641 0.2145 0.2004 0.1197
10 0.0889 0.0893 0.1198 0.1118 0.0652

(b) Optimal damping ratio ζ

µ TDVA [4] C3 C4 C5 C6
0.01 0.0603 0.0547 0.0025 0.0655 0.0025
0.02 0.0841 0.0769 0.0065 0.0973 0.0073
0.05 0.1276 0.1199 0.0224 0.1477 0.0270
0.1 0.1686 0.1657 0.0505 0.2086 0.0593
0.2 0.2101 0.2244 0.0981 0.2919 0.1180
0.5 0.2402 0.3175 0.2012 0.4294 0.3047
1 0.2235 0.3894 0.2905 0.5359 0.4354
2 0.1749 0.4505 0.3779 0.6325 0.5498
5 0.1002 0.5057 0.4525 0.5163 0.6593
10 0.0581 0.5288 0.4804 0.5313 0.6841

0.05 0.1 0.15 0.2 0.25
2

4

6

8

10

12

14

µ

m
a
x
|H

(j
λ
)|

C3

C4

C5

C6

TDVA

0.05 0.1 0.15 0.2 0.25

10

15

20

25

30

µ

%
m
a
x
|H

(j
λ
)|

C3 C4 C5 C6

Figure 7: Maximum magnitude comparison between the IDVAs and the TDVA (left figure) and percentage
improvement of the IDVAs with respect to the TDVA (right figure).
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Table 4: Optimal inertance-to-mass ratio δ and corner frequency ratio η in the H∞ optimization.

(a) Optimal inertance-to-mass ratio δ

µ C3 C4 C5 C6
0.01 0.0238 0.0234 2.2791 0.0228
0.02 0.0473 0.0453 1.8105 0.0448
0.05 0.1156 0.1069 1.6782 0.0989
0.1 0.2208 0.1930 1.5320 0.1538
0.2 0.4082 0.3212 1.1521 0.2126
0.5 0.8256 0.5719 0.6919 0.2426
1 1.2552 0.7785 0.3130 0.2009
2 1.7228 0.9703 0.1423 0.1364
5 2.2540 1.1307 3.9018 0.0627
10 2.4989 1.2089 3.6257 0.0339

(b) Optimal corner frequency ratio η

µ C3 C4 C5 C6
0.01 1.0051 0.9864 1.1242 1.0248
0.02 1.0098 0.9745 1.1982 1.0492
0.05 1.0248 0.9420 1.3341 1.1288
0.1 1.0485 0.9013 1.5181 1.2454
0.2 1.0940 0.8563 1.8754 1.4560
0.5 1.2219 0.7713 2.8856 2.2775
1 1.4061 0.7163 4.9686 3.5386
2 1.7178 0.6629 9.6074 6.0835
5 2.4169 0.6141 0.5009 14.5775
10 3.2632 0.5780 0.4739 27.6261

0.05 0.1 0.15 0.2 0.25
0.6

0.8

1

µ

γ

C3 C4 C5 C6 TDVA

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

µ

ζ

C3 C4 C5 C6 TDVA

0.05 0.1 0.15 0.2 0.25
0

1

2

µ

δ

C3 C4 C5 C6

0.05 0.1 0.15 0.2 0.25
0

2

4

µ

η

C3 C4 C5 C6

Figure 8: Optimal parameters in the H∞ optimization: natural frequency ratio γ (up left); damping ratio ζ
(up right); inertance-to-mass ratio δ (bottom left); corner frequency ratio η (bottom right).
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Frequency ratio λ
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IDVA C3 in this paper
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Figure 9: Comparison between the IDVAs and TDVA when µ = 0.1. The spring-only DVA is the first DVA
proposed by Frahm in 1909 [2]. The spring-damper DVA is the TDVA proposed by Ormondroyd and Den
Hartog in 1928 [3].

4. H2 optimization for the IDVAs180

4.1. H2 performance measure and its analytical solution181

If the system is subjected to random excitation instead of sinusoidal excitation, the H2182

optimization would be more desirable than the H∞ optimization [9, 39, 40]. The performance183

measure in the H2 optimization is defined as [9, 39, 40]184

I =
E [x2]

2πS0ωn

, (11)

where S0 is the uniform power spectrum density function. The mean square value of x of the185

object mass m can be calculated as186

E
[
x2
]
= S0

∫ ∞

−∞
|H(jλ)|2 dω = S0ωn

∫ ∞

−∞
|H(jλ)|2 dλ, (12)

where H(jλ) is given in (7). Substituting (12) into (11), one obtains187

I =
1

2π

∫ ∞

−∞
|H(jλ)|2 dλ, (13)

which is exactly the definition of the H2 norm of the transfer function Ĥ(s) by replacing jλ188

in H(jλ) with the Laplace variable s.189

Therefore, the H2 performance measure is rewritten as190

I =
∥∥∥Ĥ(s)

∥∥∥2

2
. (14)

The analytical approach provided in [41, Chapter 2.6] will be employed to derive analytical191

solutions for IDVAs in the H2 optimization, which is briefly presented as follows.192

For a stable transfer function Ĥ(s), its H2 norm can be calculated as [41, Chapter 2.6]193

∥Ĥ(s)∥22 = ∥C(sI − A)−1B∥22 = CLCT ,
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where A, B, C are the minimal state-space realization Ĥ(s) = C(sI − A)−1B and L is the194

unique solution of the Lyapunov equation195

AL+ LAT +BBT = 0. (15)

We can write Ĥ(s)196

Ĥ(s) =
bn−1s

n−1 + . . .+ b1s+ b0
sn + an−1sn−1 + . . .+ a1s+ a0

in its controllable canonical form below197

ẋ = Ax+Bu, y = Cx,

where198

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 , B =


0
0
...
0
1

 , C = [b0, b1, b2 . . . bn−1] .

4.2. Comparison between the TDVA and IDVAs199

For the TDVA, the H2 performance measure can be obtained as200

ITDV A =
γ(1 + µ)ζ

µ
+

1− (µ+ 2)γ2 + (1 + µ)2γ4

4µγζ
, (16)

and the optimal γ and ζ are201

γTDV A,opt =

√
µ+ 2

2(1 + µ)2
, (17)

ζTDV A,opt =

√
(3µ+ 4)µ

8(µ+ 1)(µ+ 2)
. (18)

Substituting γTDV A,opt and ζTDV A,opt into (16), one obtains the optimal ITDV A,opt as202

ITDV A,opt =

√
3µ+ 4

4(µ+ 1)µ
. (19)

4.2.1. Performance limitation of C1 and C2203

The H2 performance measures for C1 and C2 can be obtained as204

IC1 =
γ(1 + µ)ζ

µ
+

1

4µγζ

(
δ2 − 2((1 + µ)γ2 − 1)δ + 1− (µ+ 2)γ2 + (1 + µ)2γ4

)
(20)

= ITDV A +
1

4µγζ

(
δ2 + aC1,1δ

)
, (21)

IC2 =
(
aC2,2δ

−2 + aC2,1δ
−1 + aC2,0

)
ζ +

1− (µ+ 2)γ2 + (1 + µ)2γ4

4µγζ
(22)

= ITDV A +
(
aC2,2δ

−2 + aC2,1δ
−1
)
ζ, (23)

13



where205

aC1,1 = −2((1 + µ)γ2 − 1),

aC2,2 =
γ

µ

(
(1 + µ)3γ4 − 2(1 + µ)γ2 + 1

)
,

aC2,1 =
γ

µ

(
2 + µ− 2(1 + µ)2γ2

)
,

aC2,0 =
γ(1 + µ)

µ
.

The following proposition can be obtained.206

Proposition 1. For the H2 performance, C1 performs no better than the TDVA.207

Proof. See Appendix B.208

Proposition 2. For the H2 performance, C2 performs slightly better than the TDVA, but209

only at most 0.32% improvement can be achieved when µ ≤ 1.210

Proof. See Appendix C.211

Now, we have demonstrated that for the H2 performance, C1 performs no better than212

the TDVA and C2 provides negligible improvement over the TDVA. This means that adding213

an inerter alone to the TDVA provides limited improvement for the H2 performance, and214

therefore, another four IDVAs C3, C4, C5, and C6 are proposed by adding an inerter together215

with a spring to the TDVA. It will be shown in the following sections that in this way, the216

H2 performance can be significantly improved.217

4.2.2. Performance benefits of C3, C4, C5, and C6218

In this subsection, it will be analytically demonstrated that for the H2 performance,219

IDVAs C3, C4, C5, and C6 perform surely better than the TDVA, and an optimization220

problem will be formulated to find the optimal parameters.221

By using the method shown in Subsection 4.1, the analytical representations of the H2222

performance measures for C3, C4, C5, and C6 are calculated and the detailed equations are223

shown in Appendix D. Denote the optimal H2 performances of C3, C4, C5, and C6 as224

IC3,opt, IC4,opt, IC5,opt, IC6,opt, respectively. The following proposition can be obtained.225

Proposition 3. For the H2 performance, IDVAs C3 and C5 always perform better than the226

TDVA, that is, the following inequalities hold:227

IC3,opt < ITDV A,opt, (24)

IC5,opt < ITDV A,opt, (25)

and if µ ≤ 1, IDVAs C4 and C6 always perform better than the TDVA, that is, the following228

inequalities hold:229

IC4,opt < ITDV A,opt, (26)

IC6,opt < ITDV A,opt, (27)

where ITDV A,opt is the optimal H2 performance for the TDVA given by (19).230
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Proof. See Appendix E.231

Remark 3. The condition µ ≤ 1 for C4 and C6 in Proposition 3 is only a sufficient con-232

dition, which means that for the case µ > 1, it is also possible that the inequalities (26) and233

(27) hold. However, such a condition introduces no conservativeness for DVA applications,234

as the mass ratio µ is normally less than 1 in practice (typically less than 0.25) [42, 43].235

Since the IDVAs C3, C4, C5, C6 can always reduce to the TDVA by setting the spring236

stiffness k1 (or η) and inertance b (or δ) to 0 or ∞, the conclusions ICi,opt ≤ ITDV A,opt,237

i = 3, 4, 5, 6 always hold. However, Proposition 3 demonstrates the existence of finite η and238

δ such that the IDVAs C3, C4, C5, and C6 are surely better than the TDVA.239

To determine the optimal values of δ, γ, η, and ζ, the following optimization problem240

should be solved.241

min
δ,γ,η,ζ

ICi, i = 3, 4, 5, 6, (28)

subject to δ > 0, γ > 0, η > 0, and ζ > 0.242

Analytical solutions of C3: Problem (28) can be analytically solved for C3, where the243

optimal parameters for C3 are obtained as follows244

γC3,opt =

√√
17µ2 + 32µ+ 16− µ

4(1 + µ)2
, (29)

ηC3,opt =

√
1− 2(1 + µ)γ2

C3,opt + (1 + µ)γ4
C3,opt

(1− (2 + 3µ)γ2
C3,opt + (1 + µ)2γC3,opt64)γ2

C3,opt

, (30)

δC3,opt = −2âC3,2

âC3,1

, (31)

ζC3,opt =

√
1− (µ+ 2)γ2

C3,opt + (1 + µ)2γ4
C3,opt

4µγC3,opt(âC3,2δ
−2
C3,opt + âC3,1δ

−1
C3,opt + âC3,0)

, (32)

where âC3,2, âC3,1, and âC3,0 are obtained by setting γ = γC3,opt and η = ηC3,opt for aC3,2,245

aC3,1, and aC3,0, respectively. For the representations of aC3,2, aC3,1, and aC3,0, see Appendix246

D.247

The analytical solutions δ, γ, and η are derived by successively setting the first derivatives248

of IC3 with respect to δ, η, and γ as 0, and then checking the sign of the second derivatives249

at stationary points. The optimal ζC3,opt is derived due to the fact that both parts on the250

right hand side of (D.1) of IC3 are positive.251

Solutions of C4, C5, and C6: The analytical solutions of C4, C5, and C6 cannot be252

obtained due to the high order equations (more than 4th-order) involved in the derivation.253

However, the optimal solutions of η and ζ can be analytically represented with respect to δ254
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Figure 10: Comparison between IDVAs and the TDVA. (a) the H2 performance; (b) Percentage improvement
of IDVAs with respect to the TDVA.

and γ as follows:255

ηC4,opt =

√
−(gC4,1δ + fC4,1)(2fC4,2 + 2gC4,2δ + 2lC4,2δ2)

2(fC4,2 + gC4,2δ + lC4,2δ2)
, (33)

ζC4,opt =

√
lC4,2η4δ2 + lC4,1δ + lC4,0

aC4,2δ−2 + aC4,1δ−1 + aC4,0

, (34)

δC5,opt = −2aC5,2

aC5,1

, (35)

ζC5,opt =

√
1− (µ+ 2)γ2 + (1 + µ)2γ4

4µγ(aC5,2δ
−2
C5,opt + aC5,1δ

−1
C5,opt + aC5,0)

, (36)

ζC6,opt =

√
lC6,2η4δ2 + lC6,1δ + lC6,0

aC6,2δ−2 + aC6,1δ−1 + aC6,0

. (37)

Correspondingly substituting the optimal representations above into ICi, i = 4, 5, 6, the256

problem (28) for Ci, i = 4, 5, 6 reduces to a nonlinear programming problem with two257

unknown variables δ and γ for C4 and C5, and with three unknown variables δ, γ and η for258

C6, which can be efficiently solved by using the Matlab solver fmincon and GlobalSearch in259

Global Optimization Toolbox.260

Fig. 10 and Fig. 11 depict the comparison between IDVAs C3, C4, C5, C6 and the261

TDVA when 0 ≤ µ ≤ 1. As shown in Fig. 10(b), C3 performs the best, and more than 10%262

improvement with respect to the TDVA can be obtained by C3, C4 and C6. Similar to the263

H∞ performance, the spring k1 is better to be in series connection for the H2 performance,264

given the fact that C3 and C6 are superior to C4 and C5.265

5. Conclusions266

In this paper, the performance of inerter-based dynamic vibration absorbers (IDVAs) has267

been investigated, where the proposed IDVAs were a parallel arrangement of a spring and268

an inerter-based mechanical network. Both H∞ and H2 performances were considered. The269

H∞ performance optimization problem was formulated in a minmax framework and solved by270

using a direct search optimization method; while in theH2 optimization, an analytical method271
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Figure 11: Optimal parameters: (a) optimal γ; (b) optimal ζ; (c) optimal δ; (d) optimal η.

was employed to calculate the H2 performance measures. Comparisons between the proposed272

IDVAs and the traditional dynamic vibration absorber (TDVA) were conducted. The results273

showed that adding one inerter alone to the TDVA, no matter it is in parallel connection (C1)274

or in series connection (C2), provided no improvement for theH∞ performance, and negligible275

improvement (less than 0.32% improvement over the TDVA when the mass ratio less than276

1) for the H2 performance. This demonstrated the necessity of introducing another degree of277

freedom together with the inerter to the TDVA, and then the IDVAs C3, C4, C5, and C6 were278

proposed by adding an inerter together with a spring to the TDVA. Significant improvement279

was obtained by IDVAs C3, C4, C5, and C6. For the H∞ performance, numerical simulations280

showed that over 20% improvement was achieved compared with the TDVA and the effective281

frequency band can be enlarged by using inerter; while for the H2 performance, it was282

analytically demonstrated that IDVAs C3, C4, C5, and C6 were surely better than the283

TDVA by carefully choosing the parameters, and over 10% improvement was obtained in the284

numerical simulation.285
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Appendix A. Detailed representations of Rni, Ini, Rmi, and Imi, i = 1, . . . , 6.286

Rn1 = λ2 − γ2 + δλ2,

In1 = −2λγζ,

Rm1 = (−µδ − δ − 1)λ4 + (γ2 + µγ2 + 1 + δ)λ2 − γ2,

Im1 = 2λγζ(λ2 − 1 + µλ2),

Rn2 = δλ(γ2 − λ2),

In2 = −2γζ(γ2 − (1 + δ)λ2),

Rm2 = δλ(λ4 − (γ2 + µγ2 + 1)λ2 + γ2),

Im2 = −2γζ((1 + δ + µδ)λ4 − (γ2 + µγ2 + 1 + δ)λ2 + γ2),

Rn3 = δη2γλ(γ2 − λ2),

In3 = −2ζ(γ4η2 − (1 + δη2 + η2)λ2γ2 + λ4),

Rm3 = δη2γλ(λ4 − (1 + γ2 + µγ2)λ2 + γ2),

Im3 = 2ζ(λ6 − (1 + µ+ η2 + δη2 + µδη2)λ4 + ((µ+ 1)η2γ2 + 1 + η2 + δη2)γ2λ2 − γ4η2,

Rn4 = −δ(λ4 − (1 + η2 + δη2)γ2λ2 + γ4η2),

In4 = −2γλζ(γ2 − λ2 − δλ2),

Rm4 = δ(λ6 − (1 + (1 + µ+ η2 + δη2 + δµη2)γ2)λ4 + ((µ+ 1)η2γ2 + (1 + η2 + δη2))γ2η2 − γ4η2),

Im4 = −2γλζ((1 + δ + µδ)λ4 − (1 + δ + γ2 + µγ2)λ2 + γ2),

Rn5 = δ(γ2 − λ2)(λ2 − η2γ2),

In5 = −2γλζ((1 + δη2)γ2 − (1 + δ)λ2),

Rm5 = δ(λ2 − η2γ2)(λ4 − (1 + γ2 + µγ2)λ2 + γ2),

Im5 = −2γλζ((1 + δ + µδ)λ4 − ((1 + µ+ δη2 + µδη2)γ2 + 1 + δ)λ2 + (1 + δη2)γ2),

Rn6 = −δ(λ4 − (1 + η2 + δη2)γ2λ2 + γ4η2),

In6 = 2λγζ(λ2 − (1 + δη2)γ2),

Rm6 = δ(λ6 − (1 + (1 + µ+ η2 + δη2 + µδη2))λ4 + ((µ+ 1)η2γ2 + (1 + η2 + δη2))γ2λ2 − γ4η2),

Im6 = −2γλζ(λ4 − (1 + (1 + µ+ δη2 + µδη2)γ2)λ2 + (1 + δη2)γ2).

Appendix B. Proof of Proposition 1287

From (21), if C1 performs better than the TDVA, that is IC1 < ITDV A, the second term288

of (21) must be less than 0, which means289

δ2 + aC1,1δ < 0.

Since δ ≥ 0, if γ2 < 1
1+µ

, the optimal δ denoted as δopt is 0. If γ2 ≥ 1
1+µ

, the optimal290

δopt = (1+µ)γ2− 1, and it can be checked that the optimal γ is 1
1+µ

by substituting δopt into291

(21), which means that the optimal δ is also 0.292
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Appendix C. Proof of Proposition 2293

First, we prove that C2 performs better than the TDVA, that is IC2,opt < ITDV A,opt,294

where IC2,opt denotes the optimal IC2. From (23), if C2 performs better than the TDVA, the295

following inequality must hold296

aC2,2δ
−2 + aC2,1δ

−1 < 0,

which requires that297

aC2,1 < 0 or γ2 >
2 + µ

2(1 + µ)2
,

as aC2,2 ≥ 0 for any γ ≥ 0. If γ2 > 2+µ
2(1+µ)2

, the optimal δ−1 is298

δ−1
opt = − aC2,1

2aC2,2

,

and IC2 can be represented as299

IC2 =

√
(1− (2 + µ)γ2 + (1 + µ)2γ4)(4(1 + µ)2γ2 − µ)

4µ(1− 2(1 + µ)γ2 + (1 + µ)3γ4)
. (C.1)

Using ITDV A,opt given in (16), one obtains300

I2C2 − I2TDV A,opt =
((µ+ 1)γ2 − 1)(2(µ+ 1)2γ2 − 2− µ)2

4µ(1− 2(µ+ 1)γ2 + (µ+ 1)3γ4)(µ+ 1)
,

Clearly, if γ2 < 1
1+µ

, then IC2 < ITDV A,opt. Since 1
1+µ

> 2+µ
2(1+µ)2

, one can always find a γ301

such that IC2 < ITDV A,opt. Since IC2,opt ≤ IC2, one obtains IC2,opt < ITDV A,opt.302

Second, we graphically prove that only at most 0.32% improvement can be obtained by303

C2 when µ ≤ 1. The optimal γ can be obtained by solving
∂I2C2

∂γ2 = 0, which is equivalent to304

(2α2γ2 − 1− α)(2α5γ6 + (α4 − 7α3)γ4 + (8α2 − 2α3)γ2 − 3α + 1) = 0, (C.2)

where α = µ+ 1. It is easy to check that (C.2) has two real positive solutions denoted as γ1305

and γ2, γ1 < γ2, where306

γ1 =

√
1 + α

2α2
,

and γ1 < γ2 <
√
2γ1. Also, γ

2
2 is the unique real solution of equation307

2α5γ6 + (α4 − 7α3)γ4 + (8α2 − 2α3)γ2 − 3α + 1 = 0,

and the optimal γ is γ2.308

For 0 ≤ µ ≤ 1, a graphical comparison with the TDVA is shown in Fig. C.12, where it is309

clearly shown that at most 0.32% improvement is obtained for C2.310
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Appendix D. Analytical representations of the H2 performance measures for311

C3, C4, C5, and C6312

Denote IC3, IC4, IC5, and IC6 as the H2 performance measures for C3, C4, C5, and C6,313

respectively. The detailed representations are obtained as follows:314

IC3 =
(
aC3,2δ

−2 + aC3,1δ
−1 + aC3,0

)
ζ +

1− (µ+ 2)γ2 + (1 + µ)2γ4

4γµζ

= ITDV A +
(
aC3,2δ

−2 + aC3,1δ
−1
)
ζ, (D.1)

IC4 =
(
aC4,2δ

−2 + aC4,1δ
−1 + aC4,0

)
ζ +

(
lC4,2η

4δ2 + lC4,1δ + lC4,0

) 1
ζ

= ITDV A +
(
aC4,2δ

−2 + aC4,1δ
−1
)
ζ +

(
lC4,2η

4δ2 + lC4,1δ + fC4,2η
4 + fC4,1η

2
) 1
ζ
,

IC5 =
(
aC5,2δ

−2 + aC5,1δ
−1 + aC5,0

)
ζ +

1

4γµζ

(
1− (µ+ 2)γ2 + (1 + µ)2γ4

)
= ITDV A +

(
aC5,2δ

−2 + aC5,1δ
−1
)
ζ, (D.2)

IC6 =
(
aC6,2δ

−2η−4 + aC6,1δ
−1η−2 + aC6,0

)
ζ +

(
lC6,2δ

2 + lC6,1δ + lC6,0

) 1
ζ

= ITDV A +
(
aC6,2δ

−2η−4 + aC6,1δ
−1η−2

)
ζ +

(
lC6,2δ

2 + lC6,1δ + fC6,2η
−4 + fC6,1η

−2
) 1
ζ
,
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where315

aC3,2 = dC3,2η
−4 + dC3,1η

−2 + dC3,0, aC3,1 = gC3,1η
−2 + gC3,0, aC3,0 =

γ(1 + µ)

µ
,

dC3,2 =
1

γ3µ

(
1− 2γ2 + (1 + µ)γ4

)
, dC3,1 = − 2

γµ

(
1− (2 + µ)γ2 + (1 + µ)2γ4

)
,

dC3,0 =
γ

µ

(
1− 2(1 + µ)γ2 + (1 + µ)3γ4

)
, gC3,1 = − 2

µγ

(
1− (1 + µ)γ2

)
,

gC3,0 = −γ

µ

(
2(1 + µ)2γ2 − 2− µ

)
,

aC4,2 =
γ

µ

(
1− (2 + µ)γ2 + (1 + µ)3γ4

)
, aC4,1 =

γ

µ

(
2 + µ− 2(1 + µ)2γ2

)
, aC4,0 =

γ(1 + µ)

µ
,

lC4,2 =
γ3(1 + µ)2

4µ
, lC4,1 = gC4,2η

4 + gC4,1η
2, lC4,0 = fC4,2η

4 + fC4,1η
2 + fC4,0,

gC4,2 =
γ3

2µ

(
1 + µ− (1 + µ)3γ2

)
, gC4,1 =

γ

4µ

(
2(1 + µ)2γ2 − µ− 2

)
,

fC4,2 =
γ3

4µ

(
(1 + µ)4γ4 + (µ− 2)(µ+ 1)2γ2 + 1

)
, fC4,1 = − γ

2µ

(
(1 + µ)3γ4 − 2(1 + µ)γ2 + 1

)
,

fC4,0 =
1

4µγ

(
1− (µ+ 2)γ2 + (1 + µ)2γ4

)
,

aC5,2 =
gC5,2η

4 + gC5,1η
2 + gC5,0

µ(1 + fC5,1η2 + fC5,2η4)2
, aC5,1 =

lC5,3η
6 + lC5,2η

4 + lC5,1η
2 + lC5,0

µ(1 + fC5,1η2 + fC5,2η4)2
, aC5,0 =

γ(1 + µ)

µ
,

gC5,2 = γ
(
(1 + µ)γ4 − 2γ2 + 1

)
, gC5,1 = −2γ

(
(1 + µ)2γ4 − (µ+ 2)γ2 + 1

)
,

gC5,0 = γ
(
(1 + µ)3γ4 − 2(1 + µ)γ2 + 1

)
, fC5,1 = −(1 + γ2(1 + µ)), fC5,2 = γ2,

lC5,3 = 2γ3((1 + µ)3 − 1), lC5,2 = −γ
(
4(1 + µ)2γ4 − 2γ2 − µ− 2

)
,

lC5,1 = 2γ
(
(1 + µ)3γ4 + (1 + µ)2γ2 − µ− 2

)
, lC5,0 = γ

(
µ+ 2− 2(1 + µ)2γ2

)
,

aC6,2 =
1− 2γ2 + (1 + µ)γ4

γ3µ
, aC6,1 =

2((1 + µ)γ2 − 1)

γµ
, aC6,0 =

γ(1 + µ)

µ
,

lC6,2 =
1

4γµ
, lC6,1 = gC6,1η

−2 + gC6,0, lC6,0 = fC6,2η
−4 + fC6,1η

−2 + fC6,0,

gC6,1 =
µ− 2 + 2γ2

4γ3µ
, gC6,0 =

1− (1 + µ)γ2

2γµ
,

fC6,2 =
1 + (µ− 2)γ2 + γ4

4µγ5
, fC6,1 = −1− 2γ2 + (1 + µ)γ4

2µγ3
, fC6,0 =

1− (2 + µ)γ2 + (1 + µ)2γ4

4γµ
.

Appendix E. Proof of Proposition 3316

For C3, substituting γTDV A,opt and ζTDV A,opt into (D.1), one obtains317

I ′C3 = ITDV A,opt +
(
a′C3,2δ

−2 + a′C3,1δ
−1
)
ζTDV A,opt,
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where a′C3,2 and a′C3,1 are obtained by setting γ = γTDV A,opt for aC3,2 and aC3,1, respectively.318

It can be checked that a′C3,2 > 0 and319

a′C3,1 = −
√

2

2 + µ
η−2 < 0,

which means that there exist finite δ and η such that I ′C3 < ITDV A,opt. Since IC3,opt ≤ I ′C3,320

then one obtains IC3,opt < ITDV A,opt.321

For C4, denote322

I ′C4 = 2
√(

a′C4,2δ
−2 + a′C4,1δ

−1 + a′C4,0

) (
l′C4,2η

4δ2 + l′C4,1δ + l′C4,0

)
,

where a′C4,2, a
′
C4,1, a

′
C4,0, l

′
C4,2, l

′
C4,2, and l′C4,0 are obtained by setting γ = γTDV A,opt.323

Expanding I ′C4, one obtains324

I ′C4 = 2
√

a′C4,0f
′
C4,0 + fC4,η, (E.1)

where325

fC4,η =
(
l′C4,2δ

2 + g′C4,2δ + f ′
C4,2

)
(a′C4,2δ

−2+a′C4,0)η
4+f ′

C4,1(a
′
C4,2δ

−2+a′C4,0)η
2+f ′

C4,0a
′
C4,2δ

−2.

Note that326

ITDV A,opt = 2
√
a′C4,0f

′
C4,0.

Then, we will prove that there exist finite δ and η so that fC4,η < 0. It can be checked327

that l′C4,2δ
2 + g′C4,2δ + f ′

C4,2 > 0, a′C4,2δ
−2 + a′C4,0 > 0, and f ′

C4,1(a
′
C4,2δ

−2 + a′C4,0) < 0. The328

discriminant of fC4,η = 0 is329

∆ = (a′C4,2δ
2 + a′C4,0)

(
(f ′

C4,1
2 − 4f ′

C4,2f
′
C4,0)a

′
C4,2δ

−2 − 4g′C4,2f
′
C4,0a

′
C4,2δ

−1+

330

f ′
C4,1

2
a′C4,0 − 4l′C4,2f

′
C4,0a

′
C4,2

)
.

It can be checked that if µ < 8
√
2−4
7

≈ 1.045, there exists a finite δ such that the second term331

of ∆ is positive, which means that if µ < 1.045, there exists a finite η such that fC4,η < 0.332

For example, if choosing333

δ−1 =
2g′C4,2f

′
C4,0

f ′
C4,1

2 − 4f ′
C4,2f

′
C4,0

=
(3µ+ 4)(1 + µ)

4µ(µ+ 2)
, (E.2)

and334

η =

√
−f ′

C4,1

l′C4,2δ
2 + g′C4,2δ + f ′

C4,2

=

√
2(3µ+ 4)2(1 + µ)(4 + µ)

(µ+ 2)(43µ3 + 204µ2 + 272µ+ 64)
, (E.3)

one obtains335

fC4,η =
1

128

(7µ2 + 8µ− 16)(µ+ 4)(3µ+ 4)2

µ(43µ3 + 204µ2 + 272µ+ 64)(1 + µ)(µ+ 2)
< 0.
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From (E.1) and for the δ and η given by (E.2) and (E.3), one obtains that if µ < 1.045,336

I ′C4 < ITDV A,opt.

Since IC4,opt ≤ I ′C4, one obtains that if µ < 1.045, IC4,opt < ITDV A,opt.337

For C5, setting γ = γTDV A,opt and ζ = ζTDV A,opt in (D.2), one obtains338

I ′C5 = ITDV A,opt +
(
a′C5,2δ

−2 + a′C5,1δ
−1
)
ζTDV A,opt. (E.4)

Then, we will show that there exist finite δ and η such that a′C5,2δ
−2 + a′C5,1δ

−1 < 0. It can339

be checked that a′C5,2 > 0. Therefore, we only need to prove that there exists a finite η such340

that a′C5,1 < 0. Since341

a′C5,1 =
l′C5,3η

6 + l′C5,2η
4 + l′C5,1η

2

µ(1 + f ′
C5,1η

2 + f ′
C5,2η

4)2
,

it is easy to check that a′C5,1 < 0 if η2 > (µ + 1)
(
µ+ 1 +

√
µ2 + 2µ

)
or η2 < (µ +342

1)
(
µ+ 1−

√
µ2 + 2µ

)
. For example, if choosing343

η =
√

2(1 + µ)2, (E.5)

δ−1 =
2(2 + µ)(µ+ 1)2

(1 + 8µ+ 4µ2)(4 + 9µ+ 4µ2)
, (E.6)

one obtains344

fδ = −
√
2(2 + µ)5/2(µ+ 1)2

(1 + 8µ+ 4µ2)(4 + 9µ+ 4µ2)(1 + 3µ+ 5µ2 + 2µ3)2
< 0,

which means that for the η and δ given by (E.5) and (E.6), I ′C5 < ITDV A,opt. Since IC5,opt ≤345

I ′C5, one obtains IC5,opt < ITDV A,opt.346

For C6, setting γ = γTDV A,opt and ζ = ζTDV A,opt, one obtains347

I ′C6 = ITDV A,opt + fC6,η,

where fC6,η = d2η
−4 + d1η

−2 + d0, with348

d2 = a′C6,2ζTDV A,optδ
−2 + f ′

C6,2/ζTDV A,opt,

d1 = a′C6,1ζTDV A,optδ
−1 + (g′C6,1δ + f ′

C6,1)/ζTDV A,opt,

d0 = (l′C6,2δ
2 + g′C6,0δ)/ζTDV A,opt.

It can be checked that d2 > 0 for any δ and if µ <
√
2, d1 < 0. Thus, it remains to349

prove that there exists a finite η > 0 such that fC6,η < 0. This can be done by checking the350

discriminant of fC6,η, which is351

∆ = d21 − 4d2d0

= 16(µ− 4)(µ+ 1)8δ4 − 16µ(4µ3 + 11µ2 + 5µ− 4)(µ+ 1)4δ3 +

8µ2(5µ2 + 21µ+ 20)(µ+ 1)3δ2 + µ3(3µ+ 4)2.
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It is easy to see that there always exists a finite δ such that ∆ > 0. For example, if choosing352

δ =
µ(4µ3 + 11µ2 + 5µ− 4−

√
6µ6 + 56µ5 + 253µ4 + 606µ3 + 799µ2 + 568µ+ 176)

2(µ− 4)(µ+ 1)4
,

which is larger than 0 if µ < 4, one obtains353

∆ = µ3(3µ+ 4)2 > 0.

Therefore, we can always find a η−2 between the two real positive solutions of fC6,η = 0 such354

that fC6,η < 0. A possible choice is η−2 = − d1
2d2

. This means that if carefully choosing δ and355

η, the inequality I ′C6 < IIDV A,opt holds. Since IC6,opt ≤ I ′C6, one obtains IC6,opt < ITDV A,opt.356
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