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In this work, we investigate the coalescence of emulsion droplets in a controlled electric field. Two 

contacting droplets stabilized by surfactants can be forced to coalesce into a combined one when the 

applied voltage is above a critical value. The critical voltages change with the types, concentrations of 

surfactants and temperature. By exploring the drainage of thin oil film trapped between emulsions, we 

interpret that the coalescence occurs as the electric compression overcomes the disjoining pressure 

barrier and squeezes the film to a critical thickness. Based on this, we have devised an approach to probe 

the threshold disjoining pressure which can help predict the emulsion stability and surfactant efficacy 

quantitatively. We have confirmed the validity of our approach for measuring the threshold disjoining 

pressure by comparing the result with other proven tests that involve centrifugation and thermal heating. 

Our approach is simple, reliable and robust in predicting emulsion stability, and will facilitate the design 

of emulsion-based formulations by accelerating the testing of emulsion stability. 

Introduction 

 
Emulsions, mixtures of two immiscible fluids with one phase 

dispersed in another, have various applications; these include food 

products, cosmetics, pharmaceutics1-3, as well as droplet-based 

microfluidic sensors4-6 and biological assays7-10. The shelf life of the 

emulsion products is mainly determined by the emulsion stability, 

which represent their capability to resist changes in properties over 

time.2 To enhance the emulsion stability, surfactants are usually 

added to prevent the coalescence of droplets. These surfactant 

molecules aggregate at interfaces and provide a repulsive stress 

Prepulsion, which prevents the direct contact of the emulsions in 

close proximity.11 The repulsive stress can be either long-ranged or 

short-ranged. An example of long-ranged interactions is electrostatic 

interactions provided by ionic surfactants.12 A common short-ranged 

interaction is steric stress caused by the overlapping of polymeric 

chains of non-ionic surfactants.12 Sources of interactions 

counteracting these repulsions include the attractive van der Waals 

stress Pvdw=-A/6πh3, which tends to facilitate the approach of the 

interfaces,13-15 where A is the Hamaker constant and h is the 

thickness of the oil film. The net interaction between the interfaces, 

which is the sum of the repulsive stress and attractive stress: 

(h)=Prepulsion +Pvdw, is often called a disjoining pressure.11,16,17 

Interestingly, the disjoining pressure is not a function of the film 

thickness h monotonically.18 With a decrease in film thickness, the 

disjoining pressure rises as the repulsive stress dominates the 

interaction of interfaces initially. At sufficiently small film thickness, 

the pressure reaches a peak and decreases as the attractive stress 

dominates the interaction of the interfaces. Thus, the disjoining 

pressure isotherm contains a metastable point, sometimes termed the 

threshold disjoining pressure threshold, which represents physical 

pressure barrier that determines the stability of emulsions.  

  Knowledge of the threshold disjoining pressure threshold can help 

to predict the emulsion stability, which is especially crucial to the 

design of emulsion-based formulations2 and the manipulation of 

droplets in emulsion- based techniques19-23. Traditional method to 

measure the disjoining pressure isotherm usually utilizes the porous-

plate technique,24 which probes the (h) through hydrostatic 

pressure when the film is in an equilibrium state. However, the 

threshold value of the disjoining pressure is much more rarely 

measured. This may be due to the limited pressure range of porous-

plate technique as measuring threshold usually involves a process of 

breaking the film under relatively large external pressure. There are 

also alternative measurement techniques utilizing external pressure 

or thermal heating to probe threshold, but most of these approaches 

have limitations and lack sound scientific basis.2,25,26 For instance, 

centrifugation approach can break the emulsion droplets and 

determines the threshold through an external centrifugal force. This 

method is ineffective when applied to emulsions without distinct 

density difference between the two emulsion phases.  

      In this work, we use a custom-built system to study the 

coalescence of emulsion droplets under a controlled electric field. 

Two emulsion droplets upon contact can be prevented from 

coalescing using surfactants. An applied voltage can facilitate the 

coalescence of these surfactant-stabilized droplets27-29. From our 

studies, emulsion droplets always coalesce when the voltage is above 

a critical value; this critical voltage differs with the types, 

concentrations of surfactants and even temperature. Based on 

framework of disjoining pressure, we attribute the coalescence of 

droplets to the electric compression which overcomes the disjoining 

pressure barrier when the applied voltage is sufficiently large. With 

these understandings, we further devise an approach to deduce the 

threshold of emulsions stabilized by different surfactants. The result 

of threshold is in good agreement with that tested by other proven 

methods. Our work suggests that the threshold determined by droplet-
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based electro-coalescence has great potential as a general 

quantitative indicator for emulsion stability. By inducing droplets to 

coalescence within timescales much shorter than that between 

uncharged droplets, our approach accelerates the testing of emulsion 

stability and will contribute to the design of emulsion-based 

formulations. 

Experimental 

Emulsion preparation 

We form a pair of water droplets submerged in oil continuous phase 

in a custom-built poly (methyl methacrylate) (PMMA) device, as 

shown schematically in Fig 1(a). Deionized water with different 

concentrations of potassium chloride (KCl) is used as the dispersed 

phase. The ionic strengths of these aqueous phases are measured 

using an electric conductivity meter (Eutech Inc., CONT 610). 

Silicone oil (10mPas, Aladdin Reagent) or liquid paraffin 

(36.5110mPas, Aladdin Reagent) is used as the continuous phase. 

To form two contacting emulsion droplets, we slowly inject the 

aqueous phase into the oil phase through two opposing needles using 

syringe pumps (Longer pumps, Baoding, China). Prior to contact, we 

stop the injection of fluids and let the droplets gradually get into 

contact. The coalescence of emulsion droplets is prevented by 

stabilizers that include Span 80 (Sigma, USA), EM90 (ABIL, USA), 

Dow Corning 749 (Dow Corning, USA), as shown in Fig 1(b). The 

corresponding interfacial tension between the dispersed phase and 

continuous phase is measured using a spinning drop tensiometer 

(Kruss-SITE100).  

Electro-coalescence and temperature control  

After the formation of the two touching droplets, we use an 

electrochemical workstation (Model: CH Instruments, 660E) to 

apply a direct current (DC) and monitor the corresponding current. 

The voltage gets ramped up linearly with controlled scanning rate. 

The corresponding dynamic behaviours of the emulsion droplet pair 

are monitored under an optical microscope (Motic AE2000) 

connected to a high-speed camera (Phantom v9.1) with frame rates 

of up to 2000 fs-1. To investigate the critical voltages at different 

temperatures, we control the temperature of the liquid using a 

heating plate (Bioscience Tools) connected to the microscope stage. 

The temperature of liquid after heating is monitored using an 

infrared thermometer (Smart sensor, AR350) during the electro-

coalescence experiments. 

Measurement of film thickness 

To measure the film thickness, we superimpose a sinusoidal 

waveform onto the base DC voltage. The influence of sinusoidal 

waveform on the film thickness can be neglected due to its low 

amplitude compared with the base DC voltage. Afterwards, we 

record the behaviours of the droplets and monitor their 

corresponding current signal. The impedance Z can be calculated by 

dividing the applied voltage over current signal. Considering oil is 

dielectric, we treat the thin film as a parallel-plate capacitor with a 

capacitance: C= r0S/h, where 0 is the vacuum permittivity, r is 

the dielectric constant of oil, S is the contact area (measured by 

microscopic images) and h is the film thickness. The capacitance of 

the thin film contributes the most to the imaginary part of the 

impedance: Z=1/jC, where the j is the imaginary unit,  is the 

frequency. Thus, we can calculate the film thickness using the 

following formula: h=r0S  Z.  

Centrifuge acceleration and thermal heating  

To test the emulsion stability using an accelerated test based on 

centrifugation,25 we first disperse water droplets in paraffin oil. 

These water droplets are stabilized by the surfactants: 2%EM 90 or 

2% Span 80. For all emulsion samples, the volume of water and oil 

is kept the same to ensure a fair comparison.25 The emulsions are 

placed in centrifuge tubes and rotated by a centrifuge at 1000 rpm or 

2000 rpm for 3 minutes. Immediately after centrifugation, we 

retrieve the emulsion and collect relevant images for analysis. To 

test the emulsion stability using thermal heating method, we first 

fabricate water-in-oil emulsions stabilized by 2% EM90 or 2% Span 

80 using a capillary microfluidic device.30 The resultant emulsion 

samples are uniform in droplet size. Afterwards, we place these 

emulsion samples into an oven at a constant temperature of 50C; 

the droplet size is continuously monitored for characterization of the 

emulsion stability. 

 

Fig. 1 (a) Schematic of droplet-based electro-coalescence. 

Two contacting emulsion droplets are placed under an electric 

field controlled by an electrochemical workstation. (b) 

Microscopic image of two emulsions stabilized by surfactants. 

Surfactants absorbed on water/oil interfaces prevent the 

direct contact of emulsions as sketched by the insert. 

Results and discussion  

 

Electro-coalescence of emulsion droplets  

To investigate the coalescence of emulsions in an electric field, we 

charge the two droplets oppositely by applying a voltage through the 

two metallic nozzles. We increase the applied DC voltage linearly 

with a constant scanning rate, as indicated by the red dots in Fig 

2(a). At nil or low applied voltage, the emulsion pair remains stable 

(inserts: 0 V~1.0 V, Fig 2(a)). The stable state of droplets is also 

reflected by the nil current in the initial current evolution (green 

dots, Fig 2(a)). When the applied voltage increases and approaches a 
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critical value Uc, two contacting droplets start to coalesce (insert: 

1.05 V, Fig 2(a)), which is also indicated by the jump in the current 

plot. The coalescence of droplets driven by an applied electric field 

is termed electro-coalescence.21-29,31-33 

 

Fig. 2 (a) The applied voltage increases gradually at a scanning 

rate of 0.015 V/s (red dots). When it reaches a critical value Uc, 

the droplet pair coalesces, as indicated by the sudden increase of 

the current (green dots); the insets are microscopic images 

showing behaviours of the droplet pair under different applied 

voltage; the outer diameter of the needles is 0.9mm. (b) Plots of 

critical voltage (red dots) and time for coalescence to occur (green 

dots) versus the scanning rate of the applied voltage. For 

experimental tests in both (a) and (b), the dispersed phase is 

deionized water and the continuous phase is the paraffin oil with 

2% EM90. 

 Surprisingly, the value of the critical voltage Uc for droplet 

electro-coalescence is not constant as reported previously.28,29 

Instead, Uc changes and depends crucially on the scanning rate of the 

applied voltage. We systematically test the critical voltages of water 

droplets stabilized by 2% EM90 in paraffin oil under an applied 

voltage with scanning rate ranging from 10-3 V/s to 10-1 V/s. The 

results show that, with an increase in scanning rate, the critical 

voltage increases accordingly (red dots, Fig 2(b)). Moreover, with a 

faster scanning rate, the time needed for coalescence to occur after 

the initial application of voltage becomes shorter (green dots, Fig 

2(b)). The dependence of critical voltage on scanning rate indicates 

that the electro-coalescence is a time-dependent dynamic process 

instead of a simple static problem. 

     Besides the dependence on the scanning rate, the critical voltage 

also changes sharply with the surfactant concentration, the nature of 

the surfactant and even temperature. To confirm the dependence on 

surfactant concentration, we keep the scanning rate constant (0.005 

V/s) and measure the critical voltages for three types of surfactant at 

various concentrations systematically, as shown in Fig 3(a). For each 

surfactant type, upon an increase in the surfactant concentration, the 

critical voltage increases significantly initially. However, when the 

concentration increases above a certain value, the critical voltage 

reaches a plateau and remains relatively unchanged. Such 

dependence on concentration is observed for different surfactants 

including EM 90, Span 80, DC749 and other continuous phases, 

such as silicone oil, as shown in Fig 3(a). We hypothesize that the 

specific concentration above which the critical voltage starts to 

converge has a strong correlation with the critical micelle 

concentration (CMC) of the surfactants. Surfactants can migrate to 

interfaces and form a physical barrier to prevent the direct contact of 

the emulsion droplets. The stability of emulsion is highly dependent 

on the surface concentration in addition to the properties of 

surfactants and the fluid phases. The surface concentration of the 

surfactant is in a dynamic equilibrium with the bulk concentration34-

36. When the bulk concentration of surfactant is above a critical 

value, the surface concentration becomes saturated and does not 

increase further. The additional surfactants in the bulk solution will 

form micelles, instead of migrating to the interfaces; thus, they will 

not further enhance the stability of emulsion. The concentration 

where the micelles start to form is termed as critical micelle 

concentration. We obtain the CMC value of EM90 by measuring the 

interfacial tension between water and paraffin oil with surfactants at 

various concentrations (green dotes, Fig 3(b)). From our results, the 

CMC is in surprisingly excellent agreement with the threshold 

concentration above which the critical voltage starts to plateau. With 

increasing surfactant concentration, the interfacial tension decreases 

and the critical voltage increases. Both of them start to converge at 

almost the same value of the concentration. Apart from the 

surfactant type and concentration, the critical voltage is also highly 

sensitive to the temperature of the liquid. We systematically test the 

critical voltages of emulsions stabilized by 2% Span 80 or 2% EM90 

at temperatures ranging from 23C to 60C. The results of both 

surfactants show that the critical voltage decreases as the 

temperature increases (Fig 3(c)).  

 

 



ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

Fig. 3 (a) Plots of critical voltage versus concentration of surfactant. Critical voltages of Span 80 (blue dots), EM90 (red dots) a nd 
DC749 (green dots) with concentration range from 0.001% to 4% are tested through electro-coalescence in DC voltage. (b) A plot of the 
interfacial tension and critical voltage as a function of the concentration of a non-ionic surfactant, EM 90, in paraffin oil. (c) Plots of 
critical voltage versus temperature. Two types of surfactants are tested: 2% Span 80 (filled dots) and 2% EM 90 (open dotes); The 
scanning rate of applied voltage is fixed at 0.005 V/s. 

Electric compression and film thinning dynamics  

To understand the behaviours of emulsion droplets under electric 

voltage, we first investigate the mechanism of droplet coalescence 

driven by electric stress. When two emulsion droplets are 

approaching each other, the opposing interfaces are deformed or 

flattened due to the existence of a surfactant layer as a physical 

barrier. A thin lamellar oil film is formed between the two water/oil 

interfaces,37 as shown schematically in Fig 4(a). When an electric 

voltage is applied to the emulsions, the voltage drop is the most 

significant across the oil film as the oil is a dielectric fluid being 

much less conductive (10-12~10-10 S/cm) than the aqueous phase (see 

ESI 1). Thus, the thin oil film can be treated as a parallel-plate 

capacitor charged by the applied voltage U. The charge density on 

the interfaces is estimated as =r0U/h, where h is the film 

thickness. These interfacial charges attract the opposite interface and 

cause an electric compression Pe to the interfaces, which can be 

calculated by the Maxwell stress38,39 Pe= 0.5r0(U/h)2. In 

addition, the Laplace pressure Plapalace also compresses the interfaces, 

given by Young-Laplace equation: Plapalace=2/R, where R is the 

droplet radius. However, as R is around 1 mm in our experiment, the 

Laplace pressure is much smaller in magnitude than the electric 

compression. We can thus neglect the Laplace pressure effects on 

the consequent coalescence.  

 

Fig. 4 (a) Schematic illustration of the stresses on the interfaces for oppositely charged emulsion droplets. The electric field induces an 
electric compression Pe to squeeze the oil film while the disjoining pressure consisting of a repulsive stress P repulsion and the attractive 
van der Vaal stress Pvdw prevents the thinning of the gap; R1 and R2 denote the radii of the droplets and contact area respectively. (b) 
Disjoining pressure isotherm (=Pvdw+Prepulsion) versus the film thickness h. A metastable point (hcritical, threshold) exists, indicating the 

pressure barrier that resists the coalescence of the droplets kinetically. The disjoining pressure barrier can be overcome wh en Pe 
exceeds threshold. (c) A plot of electric compression Pe versus film thickness h at constant voltages: 0.1V (purple dots), 0.2V (blue dots)), 

0.4V (pink dots), 0.5V (green dots), 0.6V (yellow dots) and 0.7V (red dots). Coalescence occurs when Pe exceeds the threshold (dotted 

line). (d) Film thinning dynamics at different applied vol tages. Coalescence occurs when the film thickness is below the critical thickness 
hcritical (dotted line). For all experiments in plot (c) and (d), the dispersed phase is deionized water and the continuous phase is paraffin 
oil with 2% Span 80. 

      We attribute the electro-coalescence of emulsions to a 

sufficiently large electric compression which helps to overcome the 

threshold disjoining pressure. The electric compression Pe, resulting 

from the oppositely charged interfaces, drains out the oil and leads to 

the thinning of the film. Meanwhile, the disjoining pressure barrier 

threshold opposes the Pe and prevents the film from thinning, as 

shown schematically in Fig 4(b). With a small applied voltage, Pe is 

insufficient to overcome the threshold. As a result, the oil film is 

thinned to a thickness where the electric compression is balanced by 

the compression and no coalescence will occur. To prove this, we 
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directly apply a constant voltage to the emulsion droplets (water 

droplets dispersed in paraffin oil with 2% Span 80). Indeed, at small 

voltages (0.1V, 0.2V), the oil film maintains a certain thickness 

without coalescence as shown by the purple and blue dots in Fig 

4(c). When the applied voltage is sufficiently large (0.4V-0.7V), Pe 

exceeds threshold and leads to the coalescence, as shown by the pink, 

green, yellow and red dots in Fig 4(c). 

 For coalescence to occur, the oil film needs to be thinned to the 

critical thickness40-42 as indicated by the dotted line in Fig 4(d). 

Though any sufficiently large voltage can cause electro-coalescence, 

the time period needed for coalescence to occur after initial voltage 

application is determined by the film thinning dynamics. The rate of 

film thinning depends on the exact value of voltage and can be 

estimated using the Stefan-Reynolds equation, which considers the 

water/oil interfaces as two parallel plates being pushed towards each 

other by the stress P:28,42 

2

2

(1/ ) 4

3

d h P

dt r


 ,                                  (1) 

where  is the viscosity of the oil, and r is the radius of the contact 

area. The film thinning dynamics is driven by the electric 

compression and prevented by the disjoining pressure barrier. Thus, 

the stress applied on film thinning is: P = Pe – (h). With a larger 

voltage, the electric compression Pe is larger, and hence, the stress 

P for film thinning increases accordingly. As a result, the film 

thinning rate is faster and the time taken for coalescence to occur is 

shorter. Indeed, the evolution profile of the film thickness agrees 

well with this prediction, as shown in Fig 4(d). When the applied 

voltage is 0.4V, the time takes for film to be thinned to the critical 

thickness hcritical is around 160s (pink dots, Fig 4(d)). As the applied 

voltage is increased to 0.7V, the time is shortened to 70s (red dots, 

Fig 4(d)). Such film thinning dynamics depend on the magnitude of 

the applied voltage; this may also contribute to the observed 

dependence of critical voltages on the scanning rate (see ESI 2).  

3.3 Determining threshold disjoining pressure for characterizing 

the emulsion stability  

Sufficiently large electric compression, caused by applied voltage, 

can overcome the disjoining pressure barrier and leads to 

coalescence. Based on this, we propose a method to deduce threshold. 

To obtain the value of threshold, we apply a small voltage Uc just 

enough to trigger coalescence. In doing so, the film is ensured to be 

gradually thinned to the critical thickness hc right before 

coalescence. Thus, the left term of film thinning equation (Eq. 1) at 

hc becomes zero: d(1/h2)/dt=0. As a result, we can estimate the 

threshold using the following formula:  

 
2

00.5 /threshold e r c cP U h      .                 (2) 

   To demonstrate our approach, we systematically estimate threshold 

for emulsions stabilized by surfactant EM90 or Span 80 at various 

concentrations, as shown in Fig 5. Indeed, we find a high 

dependence of threshold on the concentration for both surfactants, in 

agreement with a previous study18: as the surfactant concentration 

increases from zero to the CMC value, the threshold increases. With a 

further increase above the CMC value, the threshold starts to plateau 

at a maximum value, which may due to the saturation of surfactants 

on interfaces.  

 

Fig. 5 The threshold disjoining pressure threshold for emulsions 

stabilized by EM90 and Span80 at various concentrations. 

   Moreover, the threshold disjoining pressure threshold should 

change with the nature of surfactants.11,16 Indeed, the threshold 

disjoining pressure values measured by the proposed technique for 

EM90 and Span 80 differs from each other significantly, as shown in 

Fig 5. The difference in the value of threshold should be reflected by 

a corresponding difference in the stability of the emulsions. To 

confirm this, two common methods, namely centrifugation-

accelerated compression and thermal heating, are applied to 

characterize the stability of emulsions stabilized by 2% EM90 or 2% 

Span 80. After centrifugation, the emulsion layer of the 2% EM90 

sample is much thicker than that of the 2% Span 80 sample at 

rotation speeds of 1000 rpm and 2000 rpm (Fig 6(a)), suggesting that 

the emulsion stabilized by EM90 is more robust against coalescence 

than that by Span80. Therefore, the threshold of 2% EM90-stabilized 

emulsions should be higher than that of the 2% Span 80 counterpart, 

in agreement with the results characterized by our approach. In 

addition, in our thermal heating experiments, after incubation at 

50C for 65 hours, the 2% EM 90-stabilized emulsion drops are still 

uniform in size, while the 2% Span 80-stabilized emulsion drops 

coalesce rapidly and subsequently show significant polydispersity, as 

shown in Fig 6(b).  This also suggests that 2% EM90 results in a 

higher threshold than 2% Span 80 does; this again matches our 

results. Thus, our approach based on the electro-coalescence of 

droplets can precisely and accurately measure the threshold 

disjoining pressure which helps predict the emulsion stability 

quantitatively. 

 

Fig. 6 (a) Centrifugal acceleration to compare the performance of 
2% EM90 and 2% Span80 on stabilizing water emulsions in 
paraffin oil. The 2% EM90-stabilized emulsions are more stable as 
they have a thicker emulsion layer than that of 2% Span80 at 
rotation speeds of 1000 rpm and 2000 rpm. (b) Microscopic 
images demonstrating emulsion stability under thermal heating. 
Uniform water droplets dispersed in paraffin oil with surfactants 
are put in an oven at 50C. After 65 hours, 2% EM90 stabilized 

emulsions remain stable while 2% Span 80 stabilized ones not; 
Scale bars are 400 microns. 
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Conclusions 

We have investigated the droplet-based electro-coalescence of 

emulsion droplets using our custom-built device systematically. 

Interestingly, the critical voltage upon which electro-coalescence 

occurs is highly dependent on the scanning rate of the applied DC 

voltage, surfactant type and concentration, and even temperature. 

We interpret that these factors change the critical voltage by 

affecting the disjoining pressure and the corresponding film thinning 

dynamics. Based on these understandings, we have devised an 

approach to quantitatively characterize the stability of emulsions 

using the threshold disjoining pressure obtained by electro-

coalescence. The reliability of this approach is further proved by 

corroborating with results of centrifuge-accelerated compression and 

thermal heating. We believe the simplicity and reliability of our 

approach facilitates its use in the design of emulsion-based 

formulations. 
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