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Observing the spectral dynamics of a mode-locked laser with
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Abstract: We experimentally observe the spectral dynamics of a passively mode-locked fiber laser
by using a parametric spectro-temporal analyzer (PASTA) with a frame rate up to 100 MHz, and
different non-repeating transient dynamics has been observed.
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1. Introduction

Ultrashort pulse fiber laser based on passively mode-locking technique, featured with the compact design and reliable
operation, has been strongly investigated and applied to various science fields, to name a few, the material processing,
surgery, femtochemistry, bioimaging, metrology and optical communication [1]. The passively mode-locked cavity,
on the other hand, is a versatile platform for studying ultrafast nonlinear dynamics, such as soliton molecules,
pulsations, explosions and soliton rain [2]. The observation of those ultrafast dynamical processes in a mode-locked
fiber laser, however, is still confined to the temporal domain by using high-speed photoreceivers [3,4]. While such
kind of temporal characterization technique can only partially gain insight into transient dynamics, e.g. the
self-starting mode-locking; the spectral dynamics of ultrafast events is largely unexplored owing to the lack of
high-speed spectrum analyzer [5-8]. Techniques such as imaging grating spectrometer with beam scanner [5], gating
photomultiplier tube (PMT) associated with monochrometer [6] and framing streak camera coupled with spectrograph
[7], have been introduced to investigate the self-starting spectral transitions of a mode-locked laser [8]. These devices,
unfortunately, have to be synchronized with the event to be observed, or operated in burst mode can only provide
several frames per acquisition. Thus, it is unable to capture unique or even random spectral events inside a laser cavity.
By using time-lens focusing mechanism, we recently demonstrated a real-time parametric spectro-temporal analyzer
(PASTA), which enables a frame rate up to 100 MHz and accommodates various input conditions without
synchronization requirements [9]. Here, we demonstrate the spectral observations of ultrafast dynamics of a
mode-locked fiber laser by using PASTA.

2. Experimental setup and results
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Fig. 1. (a) The experimental setup. (b) The spectral evolution of the mode-locked fiber laser measured by PASTA when PC was tuning. (c1) The
spectral transient of the self-starting mode-locking measured by PASTA. (c2) The spectral transient of the self-starting mode-locking measured by
optical spectrum analyzer, noted that the driving current was manually increased step by step in this case. (d1) The spectral transient of the
mode-locked laser measured by PASTA when the chopper was opened. (d2) The corresponding temporal transient.
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The mode-locked fiber laser monitored by PASTA is shown in Fig. 1(a), where the mode-locking was realized by the
nonlinear polarization rotation (NPR) technique. A fiber-based optical integrated module (OIM) [10] with
multi-functional, i.e. wavelength-division multiplexing, beam splitting and polarization-sensitive isolation, was used
to construct the fiber ring. The state-of-polarization (SOP) of the lightwave was adjusted by an in-line polarization
controller (PC, also served as the polarization scrambler). The gain medium was a piece of erbium-doped fiber (EDF,
0.6 min length), and was pumped by a 980-nm laser diode (LD) through OIM. A mechanical chopper sandwiched by
two collimators (Col) was introduced to control the operating conditions of the fiber laser. The lasing wavelength was
selected by a 1-nm tunable bandpass filter (TBPF). To observe the spectral evolutions, the output of the mode-locked
laser was launched into PASTA, which enables a variable frame rate of 0-100 MHz and a spectral resolution of 0.03
nm. In brief, PASTA was realized by two stages of four-wave mixing (FWM) involved in the time-lens
implementation. The first stage FWM was a parametric mixer with chirped pump through a 4-ns/nm dispersive
module. The second stage of FWM was employed to perform phase conjugation, which served as a spectral mirror.
More details about the working principle of PASTA have been covered in Ref. 9.

First, we opened the chopper and randomly adjusted the SOP of the lightwave inside the cavity through polarization
scrambling. The spectral behavior of the fiber laser is shown in Fig. 1(b). As can be observed, the wavelength of the
fiber laser exhibited random variation, owing to the fact that the cavity loss is polarization-sensitive and thus the lasing
wavelength would be determined by the SOP of the lightwave. Then, we measured the self-starting mode-locked
dynamics of the fiber laser by PASTA when the driving current of the LD was suddenly increased from 0 to 200 mA.
As shown in Fig. 1(cl), the fiber laser evolved from no emission to continuous-wave (CW) lasing, and ultimately
mode-locking. The fiber laser was lasing at ~1541.5 nm at the beginning, and then switched to ~1541.9 nm where the
mode-locking was achieved. To emulate this transient in a much slower process, we manually increased the driving
current of the LD with a step of 20 mA, and recorded the optical spectrum of the fiber laser for each step with a
conventional optical spectrum analyzer (OSA, YOKOGAWA AQ6370C), as shown in Fig. 1(c2). The stepping
spectra (a slow process) matched with the PASTA measurement (a much faster process) quite well. Finally, we
chopped the laser cavity, and captured the on/off transient of mode-locking by using PASTA at a frame rate of 100
MHz, as shown in Fig. 1(d). Different from the case shown in Fig. 1(c), the fiber laser directly evolved from
Q-switched mode-locking to CW mode-locking, which was also identified by the temporal evolution measured with a
16-GHz real-time oscilloscope, as shown in Fig. 1(d2).

3. Conclusion

In conclusion, we have observed ultrafast spectral events of a mode-locked fiber laser by using a newly-designed
high-speed spectro-temporal analyzer with a resolution of 0.03 nm and a frame rate of 100 MHz. It is believed that
more unexplored and non-repeated events of the mode-locked fiber laser can be observed by using such kind of
spectral analyzer with ultrahigh throughput.
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