
STORM: A Nonlinear Model Order Reduction
Method via Symmetric Tensor Decomposition

Abstract—Nonlinear model order reduction has always been a
challenging but important task in various science and engineering
fields. In this paper, a novel symmetric tensor-based order-
reduction method (STORM) is presented for simulating large-
scale nonlinear systems. The multidimensional data structure
of symmetric tensors, as the higher order generalization of
symmetric matrices, is utilized for the effective capture of high-
order nonlinearities and efficient generation of compact models.
Compared to the recent tensor-based nonlinear model order
reduction (TNMOR) algorithm [1], STORM shows advantages in
two aspects. First, STORM avoids the assumption of the existence
of a low-rank tensor approximation. Second, with the use of
the symmetric tensor decomposition, STORM allows significantly
faster computation and less storage complexity than TNMOR.
Numerical experiments demonstrate the superior computational
efficiency and accuracy of STORM against existing nonlinear
model order reduction methods.

I. INTRODUCTION

To facilitate efficient modeling and simulation of large-scale
dynamical systems, model order reduction has been intensively
studied in the past decades [2]. The principle of model
order reduction is to extract a compact reduced-order model
(ROM) which approximates the input-output relationship of
the original system accurately, so that efficient simulation
and reliable system-level verification can be achieved. The
effectiveness and robustness of model order reduction have
been proved in various domains, e.g., circuit design [3]–[5],
mechanical systems [6] and chemical engineering [7].

Since model order reduction for linear time-invariant (LTI)
systems is by now mature, large amounts of research effort
are being devoted to nonlinear cases, which are also more
practical for real-world problems [8]. For instance, simula-
tions of radio-frequency integrated circuits (RFIC) are highly
time-consuming due to their intrinsic nonlinearities and large
problem sizes [9]. However, nonlinear model order reduction is
much more challenging: the behaviors of nonlinear dynamical
systems are much more complex than linear systems, and
there is a lack of a universal and efficient way to extract the
nonlinear ROM [10].

Several projection-based nonlinear model order reduction
methods [9], [11], [12] have been derived from linear model
order reduction approaches. In [9], a method called NORM
is proposed to match the moments of high-order transfer
functions explicitly. NORM shows a great advantage in com-
parison with the methods in [11], [12], since the lower order
approximation is skipped. However, NORM builds the ROM
whose matrix form tends to be very dense and whose size
grows exponentially as the order increases. This fact limits

the practicality of NORM for large sparse systems as well as
strongly nonlinear systems.

In fact, existing high-order nonlinear model order reduction
problems are always doomed by an explosion of matrix
dimensions. To overcome such curse of dimensionality, the
data structure of tensors [13], as higher order generalizations
of matrices, is introduced to effectively capture the high-
order nonlinearities and generate highly compact models. The
recent work [1] proposed a tensor-based nonlinear model
order reduction method named TNMOR. It relies on the
CANDECOMP/PARAFAC (CP) decomposition [14], [15] to
find a low-rank rank approximation of the original system.
Based on the assumption of the existence of a low-rank
approximation, TNMOR allows faster simulation and smaller
memory requirement than previous nonlinear model order
reduction methods.

In this paper, a symmetric tensor-based order-reduction
method called STORM is presented. Comparing to TNMOR,
STORM avoids the premise that a low-rank approximation of
the original system exists, which is a limitation of TNMOR.
Meanwhile, via the symmetric tensor structure and the pro-
posed decomposition algorithm, STORM provides significant
improvements of computational performance and storage re-
quirement, for both the order-reduction stage and the ROM
simulation stage.

In the rest of this paper, Section II reviews the theoretical
backgrounds of STORM, including Volterra series, symmetric
tensor decomposition, as well as the existing projection-based
nonlinear model order reduction methods. The details of
STORM are discussed in Section III. In Section IV, numerical
examples are given to verify the validity and advantages of
STORM. Finally, Section V concludes this paper.

II. BACKGROUND

The theory on Volterra systems, symmetric tensors and their
symmetric rank-1 decomposition are first briefly reviewed.
Then, we show the principles and limitations of the existing
projection-based nonlinear model order reduction methods
such as NORM and TNMOR.

A. Volterra System

Volterra series is an important mathematical tool for nonlin-
ear analysis [16]. It decomposes the original nonlinear system
into a series of homogeneous nonlinear systems. In this work,
we consider a nonlinear multi-input multi-output (MIMO)

time-invariant system modeled by the differential-algebraic
equation (DAE)

d

dt
[q(x(t))] + f (x(t)) = Bu(t), y(t) = DTx(t), (1)

where x ∈ Rn and u ∈ Rl are the state and input vectors,
respectively; B and D are the input and output matrices, re-
spectively; q(·) and f(·) are smooth nonlinear vector functions
of the state vector x.

According to the Volterra theorem and variational analy-
sis [17], the system response x can be written as a summation
of the responses xi of the ith-order homogeneous nonlinear
system, namely x(t) =

∑∞
i=1 xi(t). Therefore, the response

of (1) to the inputs αu(t) becomes

d

dt
[q(x(t))] + f (x(t)) = Bαu(t), x(t) =

∞∑
i=1

αixi(t). (2)

The Taylor series expansion of the nonlinear system (1) can
be obtained around its equilibrium point x0, that is

d

dt
[C1x+ C2(x⊗ x) + C3(x⊗ x⊗ x) + · · ·] +G1x

+G2(x⊗ x) +G3(x⊗ x⊗ x) + · · · = Bu, (3)

where Gk = 1
k!
∂kf
∂xk

∣∣∣
x=x0

, Ck = 1
k!
∂kq
∂xk

∣∣∣
x=x0

∈ Rn×nk

, and
⊗ denotes the Kronecker product, here we use the shorthand
x d© = x⊗x⊗· · ·⊗x for d-time repeated Kronecker product ⊗.
Merging (3) and (2), we get

d

dt
[αC1x1 + α2(C1x2 + C2x

2©
1) + · · ·]+

[αG1x1 + α2(G1x2 +G2x
2©
1) + · · ·] = αBu.

(4)

By matching the coefficients of the monomials αi, we have
the following Volterra subsystems

d

dt
[C1x1] + G1x1 = Bu, (5a)

d

dt
[C1x2] + G1x2 = −

d

dt

[
C2x1

2©
]
−G2x1

2©, (5b)

d

dt
[C1x3] + G1x3 = −

d

dt

[
C3x1

3© + C2(xi1 ⊗ xi2)3
]
−G3x1

3©

−G2(xi1 ⊗ xi2)3, (5c)

and so on, where (xi1 ⊗ xi2)3 = x1 ⊗ x2 + x2 ⊗ x1, or
generally (xi1 ⊗ · · · ⊗ xin)k =

∑
i1+···+in=k xi1 ⊗ · · · ⊗

xin , i1, . . . , in ∈ Z+.

B. Symmetric tensor decomposition

Tensors are high-order generalizations of matrices. Follow-
ing the conventional terminology used by the tensor commu-
nity, a dth-order tensor is a d-way array defined as1

A ∈ Rn1×n2×···×nd . (6)

For example, Fig. 1(a) shows a 3rd-order 3 × 4 × 2 tensor.
In particular, scalars, vectors and matrices can be regarded
as 0th-order, 1st-order and 2nd-order tensors, respectively. A
high-order tensor can be unfolded into a 2nd-order matrix

1Tensors are denoted by calligraphic letters, e.g., A and G.

i1

i2

i3

1 4 7 10

2 5 8 11

3 6 9 12

é ù
ê ú
ê ú
ê úë û

13 16 19 22

14 17 20 23

15 18 21 24

é ù
ê ú
ê ú
ê úë û

1 2 3
i i i

(a)

24 18

18 12

é ù
ê ú
ë û

18 12

12 6

é ù
ê ú
ë û

1 2 3
i i i

(b)

Fig. 1. (a) A tensor A ∈ R3×4×2. (b) A symmetric tensor A ∈ R2×2×2.

by the “matricization” process. The k-mode matricization is
aligning each kth-direction “vector fiber” to be the columns
of the matrix.

1) Symmetric tensor: A tensor X is called cubical if every
mode has the same size, for example, X ∈ RI×I×···×I .
A ∈ Rn1×···×nd is symmetric if Ai1···id = Aπ(i1···id) where
π(i1 · · · id) is any permutations of the indices i1 · · · id [18].
Therefore, a symmetric tensor is also a cubical tensor, which
means n1 = · · · = nd = I . An example of a 3rd-order
symmetric tensor A is shown Fig. 1(b). In addition, tensors can
be partially symmetric in two or more modes. For example,
a 3rd-order tensor X ∈ RI×I×K is partially symmetric in the
first and second mode if its frontal slices are all symmetric,
namely Xk = XT

k (k = 1, . . . ,K).
2) Symmetric tensor decomposition: A rank-1 tensor of

order d can be written as the outer product of d vectors

A = a(1) ◦ a(2) ◦ · · · ◦ a(d), a(k) ∈ Rnk×1, (7)

where ◦ denotes the outer product. Its element Ai1i2···id =

a
(1)
i1
a
(2)
i2
· · · a(d)id , where a(k)ik

is the ikth entry of vector a(k).
When a(1) = a(2) = · · · = a(d), A is a symmetric rank-1
tensor. A symmetric rank-1 tensor decomposition expresses
a symmetric tensor A as a linear combination of symmetric
rank-1 tensors

A =

R∑
r=1

λrwr ◦ wr ◦ · · · ◦ wr, wr ∈ Rn×1, (8)

where λr ∈ R and R ∈ Z+. The CP decomposition drops the
symmetry requirement of the rank-1 terms. Here we introduce
vec(A) ∈ Rnd×1 to denote the vectorization of a d-way
symmetric tensor A by aligning all entries of A into a single
vector. Using vec(A), (8) can be rewritten as

vec(A) = WL, (9)

where W = [w
d©
1 , . . . , w

d©
R] and L = [λ1, . . . , λR]T ∈

RR×1. The inverse vectorization operation is defined as A =
unvec(a), which reshapes a vector a ∈ Rnd

into a tensor
A ∈ Rn×···×n.

The rank of a symmetric tensor A, rank(A), is the minimum
value of R needed for the approximation (8). A symmetric
tensor decomposition, or a rank-R approximation of a 3rd-
order symmetric tensor is shown in Fig. 2. From now on, all
tensors will be assumed symmetric unless otherwise stated.

1w 2w R
w

1w 2w R
w

1w 2w R
w

(1)
a

(1)
a

(1)
a

(2)
a

(2)
a

(2)
a

(3)
a

(3)
a

(3)
a

11 22 RR

Fig. 2. A symmetric tensor decomposition of a 3rd-order symmetric tensor.

C. Existing projection-based nonlinear model order reduction
methods

In this section we briefly introduce both the NORM and
TNMOR methods. NORM [9] first derives frequency-domain
high-order nonlinear Volterra transfer functions H2(s1, s2),
H3(s1, s2, s3), etc. associated with the subsystems in (5).
Then, these high-order transfer functions are expanded into
multivariate polynomials of s1, s2, etc. via Taylor expansion,
such that the coefficients (moments) can be explicitly matched.
In NORM, the size of an N th-order ROM is O(kN+1lN)
supposing up to kth-order moments of each Volterra transfer
function are matched.

The final step in NORM is the replacement of the original
nonlinear system (3) by a smaller system (the ROM) via the
transformations

x̃ = V Tx, B̃ = V TB, D̃ = V TD,

G̃i = V TGi(V
i©), C̃i = V TCi(V

i©),
(10)

where i = 1, . . . , N and V = orth[Vk1 , Vk2 , Vk3 , . . .] is the
orthogonal projection matrix of the ROM. Suppose q is the
size of the reduced state, G̃i and C̃i will be dense matrices
with O(qi+1) entries, despite the sparsity of Gi and Ci. To
store these dense matrices, the memory space required grows
exponentially.

TNMOR [1] gives the equivalent tensor models Gi and
Ci for Gi and Ci respectively, and applies a CP decompo-
sition [15] to find low-rank approximations

Gi ≈ [[G
(1)
i , . . . ,G

(i+1)
i]] =

rg,i∑
r=1

g
(1)
i,r ◦ · · · ◦ g

(i+1)
i,r ,

Ci ≈ [[C
(1)
i , . . . ,C

(i+1)
i]] =

rc,i∑
r=1

c
(1)
i,r ◦ · · · ◦ c

(i+1)
i,r ,

(11)

where i = 2, . . . , N , rg,i and rc,i are the tensor ranks of Gi and
Ci, respectively, g(k)i,r , c

(k)
i,r ∈ Rn, G(k)

i = [g
(k)
i,1 , . . . , g

(k)
i,rg,i

] ∈
Rn×rg,i and C

(k)
i = [c

(k)
i,1 , . . . , c

(k)
i,rc,i

] ∈ Rn×rc,i , for k =
1, . . . , i+ 1. Then it follows the same routine in [11], [12] to
derive the projection matrix V . Finally, the ROM of TNMOR
is given by

x̃ = V Tx, B̃ = V TB, D̃ = V TD,

G̃1 = V TG1V, C̃1 = V TC1V,

G̃i = [[G̃
(1)
i , . . . , G̃

(i+1)
i]] = [[V TG

(1)
i , . . . , V TG

(i+1)
i]],

C̃i = [[C̃
(1)
i , . . . , C̃

(i+1)
i]] = [[V TC

(1)
i , . . . , V TC

(i+1)
i]],

i = 2, . . . , N.

(12)

The size of an N th-order ROM of TNMOR is in O(k1l +
k2(rg,2 + rc,2) + k3(rg,3 + rc,3) + · · ·+ kN (rg,N + rc,N)) =
O(Nkr), where k = max{k1, . . . , kN} and r = max{l, rg,2 +
rc,2, . . . , rg,N + rc,N}. Therefore, the advantage of TNMOR
depends explicitly on the existence of low-rank approxima-
tions of the tensor-based models.

III. STORM
In this section, the STORM algorithm is developed. We

first explain how we use symmetric tensors to represent
multivariate polynomial systems. Then, we briefly explain
the STEROID algorithm [19] to compute a symmetric rank-
1 decomposition of a symmetric tensor as given in (8).
Finally, we describe the projection-based steps in STORM for
extracting the ROM from the original system.

A. Symmetric tensor model for multivariate polynomial sys-
tems

Given the definitions of Gi and Ci in (3), these coefficient
matrices can be treated respectively as the 1-mode matriciza-
tions of (i+ 1)th-order tensors Gi and Ci,

Gi, Ci ∈ R

i+1︷ ︸︸ ︷
n× · · · × n, (13)

where the elements (Gi)j0j1···ji and (Ci)j0j1···ji are coefficients
of the Πi

k=1xjk term in Gi and Ci, respectively. For instance,
G2 is an n × n2 matrix while G2 is a 3rd-order n × n × n
tensor, i.e., G2 is the 1-mode matricization of G2.

Each row vector Gi(j, :) ∈ R1×ni

of Gi can be taken as
the transpose of the vectorization of the ith-order symmetric
tensor Gi,j , namely Gi(j, :) = vec(Gi,j)T . It also works for
Ci, while Ci(j, :) = vec(Ci,j)T . Based on (9), for i > 1, Gi
and Ci can be transformed into

Gi = blkdiag(LTGi,1 , . . . , L
T
Gi,n)[WGi,1 , . . . ,WGi,n]T ,

Ci = blkdiag(LTCi,1 , . . . , L
T
Ci,n)[WCi,1 , . . . ,WCi,n]T .

(14)

where blkdiag(·) outputs a block diagonal matrix.
Let Xi = x i©. Then the ith degree terms of

the jth multivariate polynomial is vec(Gi,j)TXi =
LTGi,jW

T
Gi,jXi, where from (9) we have that WGi,j =

[w
i©
Gi,j ,1, . . . , w

i©
Gi,j ,RGi,j

]. We can prove by induction, that
WT
Gi,jXi = [(wTGi,j ,1x)i, . . . , (wTGi,j ,RGi,j

x)i]T . In order to re-
duce the computational complexity of computing WT

Gi,jXi we
introduce UGi,j , [wGi,j ,1, . . . , wGi,j ,RGi,j

], then WT
Gi,jXi =

�i(UTGi,jx). The operator �i stands for the i times’ repeated
Hadamard product �. Let LGi , blkdiag(LTGi,1 , . . . , L

T
Gi,n),

MGi
(x) , [(�i((UTGi,1x)T), . . . , (�i((UTGi,nx)T)]T . The same

goes for Ci when i > 1. Then the system (3) can be
transformed into

d

dt
[C1x+ LC2

MC2
(x) + LC3

MC3
(x) + · · ·]

+G1x+ LG2MG2(x) + LG3MG3(x) + · · · = Bu. (15)

The computational complexity and storage cost of (15) are
much smaller than (3), because we can utilize the form

of MGi
(x) and MCi

(x) in (15) to accurately compute the
high-order nonlinearities. It is worth mentioning that Gi,j =
unvec(Gi(j, :)) and Ci,j = unvec(Ci(j, :)) may not necessarily
be symmetric. However, we can always symmetrize Gi,j and
Ci,j before we apply the symmetric tensor decomposition,
which does not change the inner product of vec(Gi,j)TXi.

B. Symmetric rank-1 tensor decomposition algorithm

We demonstrate a symmetric tensor eigen-rank-one iterative
decomposition (STEROID) algorithm [19] to obtain (9). In
each iteration, the first step is a reshaping of a symmetric
tensor into a square symmetric matrix. Given a symmetric dth-
order symmetric tensor A, we can reshape it into a symmetric
matrix A ∈ Rn

d
2×n

d
2 when d is an even number. Otherwise we

need to embed A into a (d+1)th-order symmetric tensor B be-
fore the reshaping. The details of the embedding step is given
in [19]. After the reshaping, the eigenvalue decomposition of

A can be computed as A =
∑n

d
2

i=1 λi wi w
T
i , wi ∈ Rn

d
2×1.

It is shown in [19] that each eigenvectors wi can be reshaped
into another d

2 -way symmetric tensorWi. Therefore the above
iteration will continue until the dimension of wi becomes
Rn×1.

The last step of STEROID is to collect all wi into the matrix
W , and get the vector L in (9) by solving the following least-
square problem

argmin
L

|| vec (A)−W L ||F . (16)

C. ROM construction

According to [16], we can obtain the matrix transfer func-
tion for (3). For example, the first three transfer functions are

H1(s) = (sC1 + G1)−1B, (17a)

H2(s1, s2) = −
1

2
(s̄C1 + G1)−1(s̄C2 + G2)(H1(s1)⊗H1(s2)),

(17b)

H3(s1, s2, s3) = −
1

6
(s̃C1 + G1)−1 [(s̄C3 + G3)

· (H1(s1)⊗H1(s2)⊗H1(s3)) + (s̄C2 + G2)(H1(s1)⊗H2(s2, s3))],
(17c)

where
s̄ = s1 + s2, s̃ = s1 + s2 + s3,

H1(s1)⊗H1(s2) = (H1(s1)⊗H1(s2) + H1(s2)⊗H1(s1)),

H1(s1)⊗H1(s2)⊗H1(s3) =∑
(i1,i2,i3)=π(1,2,3)

H1(si1)⊗H1(si2)⊗H1(si3),

H1(s1)⊗H2(s2, s3) =∑
(i1,i2,i3)=π(1,2,3)

(H1(si1)⊗H2(si2 , si3) + H2(si2 , si3)⊗H1(si1)).

(18)

If we define

A = −G−11 C1, R1 = G−11 B,R2 = R1 ⊗R1, R3 = R
3©
1 ,

Al⊗m⊗···⊗n = Al ⊗Am ⊗ · · · ⊗An,

Al⊗m =
1

2
(Al⊗m +Am⊗n),

(19)

then based on (17), the Taylor expansion of these transfer
functions can be derived as

H1(s) =

∞∑
k=0

M1,ks
k =

∞∑
k=0

AkR1s
k, (20a)

H2(s1, s2) =

∞∑
k=0

k∑
l=0

sl1s
k−l
2 M2,k,l, (20b)

H3(s1, s2, s3) =

∞∑
k=0

k∑
l=0

k−l∑
m=0

sl1s
m
2 s

k−l−m
3 M3,k,l,m. (20c)

From (20a), it is seen that the kth-order moment M1,k

of the first-order transfer function H1(s) is equal to AkR1.
Therefore, we can compute a Krylov subspace to match up to
k1th-order moments of H1, which is

V1 = [v1,0, v1,1, . . . , v1,k1] = orth(Kk+1(A,R1)). (21)

where Kk+1(A, r) returns the first k+1 vectors of the Krylov
subspace spanned by A.

By substituting (20a) into (17b), the kth-order moment
M2,k,l of the second-order transfer function H2(s) can be
expressed as

M2,k,l = −
k∑
p=1

Ap−1
p∑

q=0,q≤l
p−q≤k−l

(p
q

)
G−1

1 C2 ·A(l−q)⊗(k−l−p+q)R2

−
k∑
p=0

Ap
p∑

q=0,q≤l
p−q≤k−l

(p
q

)
G−1

1 G2 ·A(l−q)⊗(k−l−p+q)R2 (22)

Here we avoid the explicit computation of Ai, i ∈ Z+

when deriving the starting vectors for each Krylov subspace,
which can lead to numerical stability problems [8]. Instead,
we replace Am⊗nR2 by (v1,m ⊗ v1,n), where v1,m and
v1,n are column vectors from V1 in (21). And it can be
proved by induction that this replacement will not change
the subspace. If we define NGi , [UGi,1 , . . . , UGi,n]T , then
we utilize the symmetric tensor model of C2 and G2,
namely C2(v1,m ⊗ v1,n) = LC2

((NC2
v1,m) � (NC2

v1,n))
and G2(v1,m ⊗ v1,n) = LG2

((NG2
v1,m) � (NG2

v1,n)), to
avoid the complexity to compute the Kronecker products. As a
result, in the computation of the starting vectors of the Krylov
subspaces, the computation of both Ai and the Kronecker
products Am⊗nR2 are avoided. To match up to k2th-order
moments of H2, we get the projection matrix V2 as

V2 = orth({[Kk2−m−n(A,G−1
1 LC2

((NC2
v1,m)� (NC2

v1,n))),

Kk2−m−n+1(A,G−1
1 LG2 ((NG2v1,m)� (NG2v1,n)))],

m ≥ 0, n ≥ 0,m ≤ n,m + n ≤ k}). (23)

Similar procedure can be applied to generate Vj when
j > 2, which matches up to the kth-order moments of the
jth-order transfer function Hj . In the end, the projection
matrix for reducing the nonlinear system is denoted by Vp =
orth([V1, V2, . . .]). A general procedure to obtain the projection
matrix Vp for an expansion around the DC operating points is
given in Algorithm 1. The proof of the validity of the Vp can
be found in [9].

Algorithm 1 Generation of projection matrix for STORM
Input: N,Gi, Ci, B, ki, kN ≤ kN−1 ≤ · · · ≤ k1
Output: the projection matrix Vp

1: A = −G−11 C1, R1 = G−11 B
2: Generate matrix V1 = [v1,0, v1,1, . . . , v1,k1] for
Kk1+1(A,R1)

3: for i = 2 to N do
4: Gi = blkdiag(LTGi,1 , . . . , L

T
Gi,n)[WGi,1 , . . . ,WGi,n]T

5: Ci = blkdiag(LTCi,1 , . . . , L
T
Ci,n)[WCi,1 , . . . ,WCi,n]T

6: Build the starting vector set vsi based on the moment
expression and the symmetric tensor model

7: Get the projection matrix Vi = orth(Kki+1(A, vsi))
which matches up to kith-order moments of Hi

8: end for
9: Vp = orth([V1, V2, . . . , VN]);

TABLE I
ROM SIZES AND CPU TIMES OF MODEL ORDER REDUCTION FOR THE

MIXER

Method k1 k2 k3 CPU time (s) size of ROM
NORM 2 2 — 35.33 48

TNMOR 2 2 — 9.53 36
STORM 2 2 2 16.31 49

The size of an N th-order ROM is O(k1l + k2l + k3l +
· · · + kN l) = O(Nkl). Comparing with O(k2N−1lN) in
the standard projection approach and O(kN+1lN) in NORM,
a slimmer ROM can be achieved. Moreover, it avoids the
limitation of the existence of a low-rank tensor decomposition
in TNMOR. Finally, the symmetric tensor-based ROM is given
by the following projection

x̃ = V Tp x, B̃ = V Tp B, D̃ = V Tp D,

L̃Ci = V Tp LCi ,
˜LGi = V Tp LGi ,

ÑCi
= NCi

∗ Vp, ÑGi
= NGi

∗ Vp,

C̃i = L̃Ci
(∗i(ÑCi

T
))T , G̃i = ˜LGi

(∗i(ÑGi

T
))T ,

(24)

where ∗i denotes the i times’ repeated Khatri-Rao product2.
By utilizing this structure, only the L̃Ci ,

˜LGi , ÑCi and ÑGi

matrices need to be stored. Thus in the simulation stage,
significant speedup is achieved as shown in the next section.

IV. NUMERICAL EXAMPLES

In this section, the proposed STORM method is demon-
strated and compared with two existing projection-based non-
linear model order reduction methods, NORM and TNMOR.
All three approaches are implemented in Matlab [20], and
the time-domain transient analysis is solved by the built-in
ordinary differential equation solver in Matlab. Two numerical
experiments are performed on an Intel Core I7 desktop PC
with 2.6GHz CPU and 8GB RAM.

The first example is a double-balanced mixer circuit in
Fig. 3(a), where Vrf(= Vrf+ − Vrf-) and Vlo(= Vlo+ − Vlo-) are

2Khatri-Rao product is a column-wise Kronecker Product of two matrix.

Vlo+ Vlo-

Vrf+ Vrf-

Vif+ Vif-

(a)

(b)

Fig. 3. (a) A double-balanced mixer. (b) A nonlinear transmission line.

TABLE II
CPU TIMES AND ERRORS OF TRANSIENT SIMULATIONS FOR THE MIXER

Transient full model NORM TNMOR STORM

size 93 48 30 49
CPU time (s) 991.51 172.73 16.86 3.23

speedup — 6x 60x 300x
error — 5.05% 3.24% 4.06%

the RF and local oscillator (LO) inputs, respectively. Three
transient simulations of the ROMs generated by different
nonlinear model order reduction methods are performed from
T = 0ns to T = 40ns with the time step ∆T = 1ps.
The reduction time and generated ROM size are recorded in
Table I. The transient simulation time and relative error of
different methods are listed in Table II. The error is calcu-
lated by the output difference between ROM and full model,
(‖VROM−Vfull‖2)/‖Vfull‖2. According to the result, we find that
STORM shows a better computational efficiency of transient
analysis comparing to NORM and TNMOR. Moreover, the
reduction scheme of STORM can match higher order moments
while the other two methods cannot.

The second example is a nonlinear transmission line circuit
shown in Fig. 3(b). It is a common benchmark for testing
nonlinear model order reduction methods. The transient sim-
ulation is executed to T = 400ns with a step size ∆T = 1ps.
TNMOR is not suitable for this case because the low-rank
approximation does not exist. However, STORM still works
and outperforms NORM in terms of the simulation time.
Moreover, the NORM fails when the the size of the original
system exceed 1000 because of shortage of memory, while
STORM still works well.

TABLE III
ROM SIZES AND CPU TIMES OF MODEL ORDER REDUCTION FOR THE

NONLINEAR TRANSMISSION LINE

Method k1 k2 CPU time size of ROM
NORM 2 4 0.5s 15
STORM 2 4 0.4s 15

TABLE IV
CPU TIMES AND ERRORS OF TRANSIENT SIMULATIONS FOR THE

NONLINEAR TRANSMISSION LINE

Transient full model NORM STORM

size 80 15 15
CPU time (s) 33.61 16.38 7.18

speedup — 2x 4x
error — 0.03% 0.03%

V. CONCLUSION

This paper presented a symmetric tensor based order-
reduction method called STORM. The key feature of STORM
is to build symmetric tensor models for high-order polynomial
nonlinear systems. By utilizing the symmetric tensor decom-
position and the new projection-based reduction scheme under
the symmetric tensor framework, faster ways of model order
reduction and transient analysis are available. The advantage
of STORM has been proved by comparing with existing
nonlinear model order reduction methods on some benchmark
circuits. STORM has shown the potential of the symmetric
tensor structure for efficient simulation of high-order nonlinear
large-scale systems.

REFERENCES

[1] H. Liu, L. Daniel, and N. Wong, “Model reduction and simulation of
nonlinear circuits via tensor decomposition,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 34, no. 7,
pp. 1059–1069, July 2015.

[2] U. Baur, P. Benner, and L. Feng, “Model order reduction for linear
and nonlinear systems: a system-theoretic perspective,” Archives of
Computational Methods in Engineering, vol. 21, no. 4, pp. 331–358,
2014.

[3] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: passive reduced-
order interconnect macromodeling algorithm,” in Proceedings of the
1997 IEEE/ACM international conference on Computer-aided design.
IEEE Computer Society, 1997, pp. 58–65.

[4] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by
Padé approximation via the Lanczos process,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 14, no. 5,
pp. 639–649, 1995.

[5] B. N. Bond and L. Daniel, “Guaranteed stable projection-based model
reduction for indefinite and unstable linear systems,” in Proceedings
of the 2008 IEEE/ACM International Conference on Computer-Aided
Design. IEEE Press, 2008, pp. 728–735.

[6] J. S. Han, E. B. Rudnyi, and J. G. Korvink, “Efficient optimization
of transient dynamic problems in MEMS devices using model order
reduction,” Journal of Micromechanics and Microengineering, vol. 15,
no. 4, p. 822, 2005.

[7] N. Vora and P. Daoutidis, “Nonlinear model reduction of chemical
reaction systems,” AIChE Journal, vol. 47, no. 10, pp. 2320–2332, 2001.

[8] C. Gu, “QLMOR: a projection-based nonlinear model order reduction
approach using quadratic-linear representation of nonlinear systems,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 30, no. 9, pp. 1307–1320, 2011.

[9] P. Li and L. T. Pileggi, “Compact reduced-order modeling of weakly
nonlinear analog and RF circuits,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 24, no. 2, pp. 184–203,
2005.

[10] J. M. T. Thompson and H. B. Stewart, Nonlinear dynamics and chaos.
John Wiley & Sons, 2002.

[11] J. R. Phillips, “Automated extraction of nonlinear circuit macromodels,”
IEEE Custom Integrated Circuits Conference, pp. 451–454, 2000.

[12] J. Roychowdhury, “Reduced-order modeling of time-varying systems,”
Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, vol. 46, no. 10, pp. 1273–1288, 1999.

[13] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[14] B. W. Bader and T. G. Kolda, “Algorithm 862: Matlab tensor classes
for fast algorithm prototyping,” ACM Transactions on Mathematical
Software (TOMS), vol. 32, no. 4, pp. 635–653, 2006.

[15] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an” explanatory” multi-modal factor analysis,” 1970.

[16] W. J. Rugh, Nonlinear system theory. Johns Hopkins University Press
Baltimore, 1981.

[17] E. Bedrosian and S. O. Rice, “The output properties of Volterra systems
(nonlinear systems with memory) driven by harmonic and gaussian
inputs,” Proceedings of the IEEE, vol. 59, no. 12, pp. 1688–1707, 1971.

[18] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric tensors
and symmetric tensor rank,” SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 3, pp. 1254–1279, 2008.

[19] K. Batselier and N. Wong, “Symmetric tensor decomposition by an it-
erative eigendecomposition algorithm,” arXiv preprint arXiv:1409.4926,
2014.

[20] MATLAB, version 7.14 (R2012a). Natick, Massachusetts: The Math-
Works Inc., 2012.

