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Abstract—Tensors, as higher order generalization of matrices,
have received growing attention due to their readiness in repre-
senting multidimensional data intrinsic to numerous engineering
problems. This paper develops an efficient and accurate dynam-
ical update algorithm for the low-rank mode factors. By means
of tangent space projection onto the low-rank tensor manifold,
the repeated computation of a full tensor Tucker decomposition
is replaced with a much simpler solution of nonlinear differential
equations governing the tensor mode factors. A worked-out
numerical example demonstrates the excellent efficiency and
scalability of the proposed dynamical approximation scheme.

I. INTRODUCTION

Tensors, as higher order generalization of matrices, have
found great success and applications in various fields such
as mobile communications, biomedical engineering, signal
processing and big data [1], [2], [3], [4], [5]. An extensive
survey on tensor decompositions and applications can be found
in [6]. Whenever the efficient decomposition of a tensor into
low-rank factors exists, it often provides an effective means
to overcome the curse of dimensionality arising from the
explosion of data in modern modeling problems. However,
utilization of tensors in design automation (EDA) remains rela-
tively obscure despite their perfect fit to many electronic design
problems. In particular, this paper introduces a dynamical low-
rank approximation to accelerate circuit simulation based on a
tensor formulation and operator splitting. Specifically, suppose
we have the following tensor differential equation

Ȧ(t) = F (A(t))

where A is a time-varying tensor and F (·) is an arbitrary
nonlinear tensor function. We then compute a low-rank ap-
proximate Y(t) of A(t) such that ||Ẏ − F (Y)||F is minimal.

The idea of dynamical low-rank approximation is not
new [7], [8], [9], [10] and dates back to as early as 1930 [11].
The central idea is to project the dynamics onto the tan-
gent space of a low-rank matrix/tensor manifold whereby
nonlinear differential equations are derived for the low-rank
matrix/tensor factors, e.g., [8], [9], [10]. Consequently, instead
of evaluating the full dense time-varying matrix/tensor, only
the low-rank factors are updated over time, resulting in signif-
icant savings in computation while maintaining accuracy [12].
Nonetheless, numerical integration in the aforesaid differen-
tial equations often involves inverting a core matrix that is
necessarily near-singular by construction. Regularization by
adding small numbers to this matrix is conventionally done
but apparently this is highly ad-hoc and the error behaviour is
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Fig. 1. An example tensor A ∈ R3×4×2.

hard to predict. Recently, a standard operator splitting method
has been applied to the dynamical low-rank approximation of
a time-varying matrix [12]. By doing so, the ill-conditioned
matrix inverse is completely avoided.

This paper contributes by extending this operator splitting
strategy to a general time-varying tensor. In the following,
Section II reviews the necessary basics of tensors and tan-
gent spaces in differential geometry. Section III presents the
proposed dynamical tensor low-rank update algorithm based
on orthogonal projections and operator splitting methods. The
effectiveness of our developed algorithm is verified by means
of a numerical example in Section IV. Finally, Section V draws
the conclusions.

II. BACKGROUND

A. Tensor Basics

A dth-order (or d-way) tensor, assumed real in this work, is
a multi-way array A ∈ Rn1×n2×···×nd generalizing the matrix
format to its dth-order counterpart [6], wherein the ni’s are
called the dimensions. We use calligraphic font, e.g., A, to
denote a tensor. An example of a 3rd-order real tensor is
shown in Fig. 1. Obviously, a tensor reduces to a matrix and a
vector when d = 2 and d = 1, respectively. The inner product
between two tensors A,B ∈ Rn1×n2×···×nd is defined as

〈A,B〉 =
∑

i1,i2,··· ,id

Ai1i2···idBi1i2···id = vec(A)T vec(B) (1)

where vec(·) is the vectorization operator that stacks the tensor
entries into a tall column vector. In the index tuple [i1i2 · · · id],
i1 is conventionally assumed to be the fastest changing index
while id the slowest, so vec(A) will arrange the entries A11···1,
A21···1, · · · , A12···1, · · · , An1n2···nd

from top to bottom. The
norm of a tensor is defined to be the Frobenius norm ||A|| =
||A||F =

√
< A,A >.
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Fig. 2. Possible tensor decompositions for A ∈ Rn1×n2×n3 .

The k-mode product of a tensor A ∈ Rn1×···×nk×···×nd

with a matrix U ∈ Rpk×nk is defined by [6]

(A×k
U)i1···ik−1jkik+1···id =

nk∑
ik=1

UjkikAi1···ik···id , (2)

and A×k
U ∈ Rn1×···×nk−1×pk×nk+1×···×nd .

A rank-1 tensor is defined by the outer product of vectors.
As an example, with a scalar s and vectors a ∈ Rn1 , b ∈ Rn2

and c ∈ Rn3 , a 3rd-order outer product X ∈ Rn1×n2×n3 is

X = s(a ◦ b ◦ c) = s×1
a×2

b×3
c, (3)

wherein Xi1i2i3 = sai1bi2ci3 . We remark that the first s
in (3) is in R and the second is in R1×1×1 representing a
“tensor scalar”. These dimensions are not explicitly stated
whenever they are obvious from context. A useful result of
the vectorization of an outer product is that vec(a ◦ b ◦ c) =
vec(1×1

a×2
b×3

c) = c ⊗ b ⊗ a, where ⊗ denotes the matrix
Kronecker product [6]. Similar to the matrix SVD, an arbitrary
tensor can always be decomposed into a sum of outer products
generally called the canonical decomposition, depicted in the
top branch of Fig. 2. Other popular tensor decompositions
include the Tucker decomposition [1] where a tensor is cast
as a usually smaller dense “core tensor” multiplied with
orthogonal matrices on various modes, or the tensor train
(TT) [3] as a product cascade of multiple 3rd-order tensors
in between a head and a tail matrix.

B. Tangent Space on a Manifold

First we consider the manifold of orthogonal rank-r matri-
ces V ∈ Rm×r (m > r):

MV =
{
V : V ∈ Rm×r, V TV = I

}
. (4)

Another name forMV in (4) is the Stiefel manifold, e.g., [7].
Each column in V is of unit norm and orthogonal to all its
columns on the left, so dim(MV ) = mr − (1 + 2 + · · · r) =
mr − r(r + 1)/2. Treating V as a function of time and
differentiating V TV = I with respect to time we obtain
V̇ TV + V T V̇ = 0. The tangent space at V on the Stiefel
manifold MV is therefore

TVMV =
{
δV : δV TV + V T δV = 0

}
. (5)

It is readily checked that the skew symmetry requires (1 +
2+· · ·+r) = r(r+1)/2 constraints so the number of degrees of
freedom in δV , and therefore dim(TVMV ), is mr−r(r+1)/2.
We now consider a rank-r matrix Y ∈ Rm×n expressed in its
SVD form Y = UΣV T where U ∈ Rm×r , V ∈ Rn×r are
orthogonal and Σ = diag(σ1, · · · , σr) with σ1 ≥ · · · ≥ σr >
0. The matrix Y is a point on the manifold of rank-r matrices

MY =
{
Y : Y = UΣV T ∈ Rm×n has rank r

}
. (6)

Since U and V are living on the Stiefel manifolds their
dimensions are mr − r(r + 1)/2 and nr − r(r + 1)/2,
respectively, and added with the r positive singular values in
Σ this amounts to dim(MY ) = (m + n)r − r2. Observing
that Ẏ = U̇ΣV T + U Σ̇V T + UΣV̇ T , the elements of the
tangent space δY = (δU)ΣV T +U(δΣ)V T +UΣ(δV )T in this
case are constrained by δU , δV being on the Stiefel manifolds
and Y (t) always being of rank r. Compared to the previous
orthogonal matrix case (5), it is not so obvious to identify the
tangent space TYMY for (6). However, using ⊥ to denote the
orthogonal complement as before, a smart observation is that
UT
⊥(δY )V⊥ ∈ R(m−r)×(n−r) is always zero which is fulfilled

by

TYMY =

{
δY = [ U U⊥ ]

[
Z11 Z12

Z21 0

] [
V T

V T
⊥

]
:

Z11 ∈ Rr×r, Z12 ∈ Rr×(n−r), Z21 ∈ R(m−r)×r
}
, (7)

and this TYMY must be correct as it represents a linear space
whose dimension is equal to the number of parameters in Zij’s,
which is dim(TVMY ) = r2 + (m− r)r + (n− r)r = (m+
n)r − r2 = dim(MY ).

III. LOW-RANK TENSOR UPDATE

A. Projection and operator splitting

We first illustrate the idea of low-rank dynamical ap-
proximation of a time-varying matrix, whereas the tensor
generalization is derived later. From Section II-B, a dynamical
rank-r m×n matrix Y (t) will have its time differential lying
in its tangent space. Therefore, one way to prescribe a rank-r
approximation to a given time-varying matrix A(t) ∈ Rm×n is
by solving the optimization problem min ||Ẏ (t) − Ȧ(t)|| [7],
[8], [9] which results in nonlinear differential equations along
every matrix mode. However, these works all involve the
cumbersome inverse of a core matrix which is by construction
nearly singular when the approximating rank r is higher
than the actual rank of A, i.e., over-approximation. A major
drawback in these schemes is that the effective rank of a
dynamical system is generally not known beforehand, and
over-approximation is required in practice. Regularization by
adding small finite numbers to the core matrix makes it non-
singular but necessarily introduces errors.

A robust low-rank matrix updating-approach by the tech-
nique of operator splitting is demonstrated in [12], which
completely skips the matrix inversion. First, given a time-
varying matrix A, the constraint min ||Ẏ − Ȧ|| is solved via
projecting Ȧ onto the tangent space of Y = USV T where
U , V are orthogonal and S generalizes Σ to any rank-r
nonsingular matrix. It is readily checked that the same tangent



space as in (7) is obtained. Then, projection of Ȧ onto TYMY

is done through the projector PTY (Ȧ) [12]

Ẏ = PTY (Ȧ) = Ȧ− U⊥UT
⊥ ȦV⊥V

T
⊥

= Ȧ− (I − UUT )Ȧ(I − V V T )

= ȦV V T − UUT ȦV V T + UUT Ȧ. (8)

Contrasting with (7), the first line in (8) corresponds to
subtracting the lower right (zero) block in the core matrix of
δY that does not get projected on the tangent space, whereas
the last line corresponds to computing and summing the com-
ponents [nonzero blocks in (7)] that lie on the tangent space.
This allows us to compute the projection onto the tangent space
in one way or another, viz. by addition or elimination. Starting
with some initial U0, Y0, S0, first-order operator splitting then
permits one to approximate Y via solving three differential
equations, namely, Ẏ = ȦV V T , Ẏ = −UUT ȦV V T and
Ẏ = UUT Ȧ in this order along a fixed time step. The terminal
condition from solving one differential equation is used as the
initial condition for the next equation. More implementation
details can be found in [12].

Now we consider the manifold MY of 3rd-order tensors
Y = S×1

U×2
V ×3

W ∈ Rn1×n2×n3 expressed in the Tucker
format with S ∈ Rr1×r2×r3 and U , V , W orthogonal matrices
(cf. Fig. 2). Obviously,

Ẏ = Ṡ×1
U×2

V ×3
W + S×1

U̇×2
V ×3

W

+ S×1
U×2

V̇ ×3
W + S×1

U×2
V ×3

Ẇ . (9)

Similar to the matrix case, Ẏ is found as the orthogonal
projection of Ȧ onto the tangent space TYMY at Y by

Ẏ =PTY (Ȧ) = Ȧ − Ȧ×1
U⊥U

T
⊥×2

V⊥V
T
⊥ ×3

W⊥W
T
⊥

=Ȧ×1
UUT + Ȧ×2

V V T + Ȧ×3
WWT

− Ȧ×1UU
T
×2V V

T − Ȧ×2V V
T
×3WWT

− Ȧ×1
UUT

×3
WWT + Ȧ×1

UUT
×2
V V T

×3
WWT .

By applying the same reasoning as in (8) in subtracting zero
blocks in the core tensor that do not fall onto the tangent space,
the following simpler expression can be written down

Ẏ =Ȧ×2
V V T

×3
WWT − Ȧ×1

UUT
×2
V V T

×3
WWT

+ Ȧ×1UU
T
×3WWT − Ȧ×1UU

T
×2V V

T
×3WWT

+ Ȧ×1
UUT

×2
V V T . (10)

This brings us to the major contribution in this work, which
is the application of first-order Lie-Trotter splitting in solving
the tensor equation (10) from t0 to t1 = t0 + h. This involves
solving differential equations of the form Ẏk = Pk(Ȧ), where
Pk(·) is the k-th term in the right-hand side of (10) and Ẏk is
the k-th intermediate result. Due to space constraints it is not
possible to describe the whole solution strategy for the Lie-
Trotter splitting. We will therefore illustrate how to solve the
first 2 terms. The same reasoning can be applied to solve the
remaining terms. The first set of differential equations that need
to be solved is Ẏ1 = P1(Ȧ) = Ȧ×2V V

T
×3WWT . Assuming

that an initial Tucker decomposition Y(t0) = S(t0)×1U(t0)×2

V (t0)×3W (t0) is available and that V (t),W (t) remain con-
stant over the interval [t0, t1], then integration of Ẏ1 = P1(Ȧ)

over the time interval [t0, t1] results in

Y1(t1)− Y(t0) = A(t1)×2V (t0)V (t0)T×3W (t0)W (t0)T

−A(t0)×2
V (t0)V (t0)T×3

W (t0)W (t0)T .
(11)

Introducing the notation ∆A , A(t1) − A(t0) and replacing
Y(t) by its Tucker decomposition we can rewrite (11) as

S1(t1)×1
U1(t1)×2

V (t0)×3
W (t0) = S(t0)×1

U(t0)×2
V (t0)

×3
W (t0) + ∆A×2

V (t0)V (t0)T×3
W (t0)W (t0)T .

Observe that we have given the core tensor S1(t1) and matrix
factor U1(t1) on the left hand side of (11) a subscript index 1
to indicate that these will be the first intermediate results that
are computed. Multiplying (11) along the second and third
modes with V (t0)T and W (t0)T respectively then results in

S1(t1)×1
U1(t1) = S(t0)×1

U(t0)

+ ∆A×2
V (t0)T×3

W (t0)T , (12)

which allows us to compute S1(t1) and an orthogonal U1(t1)
from the Tucker decomposition of the right hand side of
(12). These computed quantities together with V (t0),W (t0)
serve then as inputs for solving the second set of differential
equations Ẏ2 = P2(Ȧ) = −Ȧ×1UU

T
×2V V

T
×3WWT . This

means that we now set S(t0) , S1(t1), U(t0) , U1(t1) in the
Tucker decomposition of Y2 and assume that U(t), V (t),W (t)
remain constant over the time interval [t0, t1]. Similar reason-
ing as in solving the first set of differential equations and
multiplication along modes 1, 2, 3 with U(t0)T , V (t0)T and
W (t0)T respectively then results in

S2(t1) = S(t0)−∆A×1
U(t0)T×2

V (t0)T×3
W (t0)T ,

from which the second intermediate result S2(t1) is computed.
The remaining steps of the Lie-Trotter operator splitting are
solved in a similar fashion. The whole procedure of applying
first-order Lie-Trotter operator splitting to solve Ẏ = PTY (Ȧ)
is summarized in Algorithm 3.1, where Tucker(·) computes
the Tucker decomposition with orthogonal factor matrices
U, V,W .

Algorithm 3.1: First-order splitting method
Input: S(t0), U(t0), V (t0),W (t0)← Tucker(Y(t0)), ∆A
Output: Y(t1)

T1 ← S(t0)×1
U(t0) + ∆A×2

V (t0)T×3
W (t0)T

S1(t1), U1(t1)← Tucker(T1)
S(t0)← S1(t1), U(t0)← U1(t1)
T2 ← S(t0)−∆A×1U(t0)T×2V (t0)T×3W (t0)T

S2(t1)← Tucker(T2)
S(t0)← S2(t1)
T3 ← S(t0)×2V (t0) + ∆A×1U(t0)T×3W (t0)T

S3(t1), V3(t1)← Tucker(T3)
S(t0)← S3(t1), V (t0)← V3(t1)
T4 ← S(t0)−∆A×1

U(t0)T×2
V (t0)T×3

W (t0)T

S4(t1)← Tucker(T4)
S(t0)← S2(t4)
T5 ← S(t0)×3

W (t0) + ∆A×1
U(t0)T×2

V (t0)T

S5(t1),W5(t1)← Tucker(T5)
S(t0)← S5(t1),W (t0)←W5(t1)
Y(t1) = S(t0)×1 U(t0)×2 V (t0)×3 W (t0)
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Fig. 3. Approximation errors ||A(t)− Y(t)|| for different core sizes.

IV. NUMERICAL EXAMPLES

All experiments were run in Matlab on a Intel quad-
core running at 3GHz with 7 GB of RAM. The Matlab
implementation of Algorithm 3.1 is freely available on request.

A. Numerical Experiment

One good avenue for applying this low-rank update tech-
nique is in the simulation of reaction-diffusion models com-
monly employed in transistor and MOSFET simulations, e.g,
(eqns. (2) & (3) in [13]) where 3rd-order time-varying tensors
naturally arise. Due to space constraints we choose to verify
and apply Algorithm 3.1 to a repeatable and similar setup [8].
This involves the following reaction-diffusion problem

∂u

∂t
= ∆u+ u3, (x, y, z) ∈ Ω = [0, 1]3, t > 0

with Dirichlet boundary conditions and initial data

u(x, y, z, 0) = 30 exp(−100(x− 1

2
)2 − 100(y − 1

2
)2

− 100(z − 1

2
)2) + χ(x, y, z),

where χ(x, y, z) ∈ (0, 10−3) is a random number. The variable
u(x, y, z, t) ∈ Ω = [0, 1]3 was discretized into a 100×100×10
3rd-order tensor for each time t. The nonlinear PDE was
then solved using a backward Euler method and Newton’s
method over a time span of 10−4 seconds with a time step size
of 10−6 seconds, generating a time varying 3rd-order tensor
A(t) , u(x, y, z, t). This took about 435.44 seconds. Figure
3 shows the approximation error ||A(t) − Y(t)|| over each
time step for different runs of Algorithm 3.1 where the size
of the core tensor varies between [2, 2, 2], [3, 2, 2], [2, 3, 3] and
[3, 3, 3]. Solving the nonlinear PDE using the low-rank tensor
updating algorithm took 8.5 seconds for each of the different
core sizes. As expected, the approximation error decreases as
the size of the core tensor increases. Increasing the core tensor
size beyond [3, 3, 3] did not decrease the approximation error
any further.

V. CONCLUSION

This paper presented an effective and novel low-rank
tensor dynamical approximation scheme useful for electronic
simulation. It starts with the Tucker decomposition of a tensor,

which then facilitates multi-way operator splitting to construct
nonlinear differential equations amenable to efficient solution.
New operator splitting results in low-rank tensor manifold
and tangent space are derived. This splitting of the projector
operator for a 3-rd order tensor and the inverse free updating of
the Tucker core and factors have to our knowledge not been
described anywhere in the literature. Furthermore, this low-
rank updating technique is very general and can be applied
to all sorts of circuit simulations where the solution is of low
rank nature. Numerical experiment has verified the excellent
speed and accuracy of the proposed tensor-based simulation
scheme.
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