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Abstract 

Background: QT interval prolongation, a predictor of cardiac arrhythmias, and elevated heart rate are 

associated with higher risk of cardiovascular mortality. Observationally testosterone is associated with shorter 

corrected QT interval and slower heart rate, however, the evidence is open to residual confounding and reverse 

causality. We examined the association of testosterone with electrocardiogram (ECG) parameters using a 

separate-sample instrumental variable (SSIV) estimator.  

Methods: To minimize reverse causality, a genetic score predicting testosterone was developed in 289 young 

Chinese men from Hong Kong based on a parsimonious set of single nuclear polymorphisms (rs10046, 

rs1008805 and rs1256031). Linear regression was used to examine the association of genetically predicted 

testosterone with QT interval, corrected QT interval (using the Framingham formula (QTf) and Bazett formula 

(QTb)), and heart rate in 4212 older (50+ years) Chinese men from the Guangzhou Biobank Cohort Study.  

Results: Predicted testosterone was not associated with QT interval (-0.08 milliseconds (ms) per nmol/L 

testosterone, 95% confidence interval (CI) -0.81 to 0.65), QTf interval (0.40 ms per nmol/L testosterone, 95% 

CI -0.12 to 0.93) or heart rate (0.26 beats per minute per nmol/L testosterone, 95% CI -0.04 to 0.56), but was 

associated with longer QTb interval (0.66 ms per nmol/L testosterone, 95% CI 0.02 to 1.31). 

Conclusions: Our findings do not corroborate observed protective associations of testosterone with QT interval 

or heart rate among men, but potentially suggest effects in the other direction. Replication in a larger sample is 

required. 
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Introduction 

Cardiovascular disease is the leading cause of mortality globally.
1
 Prolonged QT interval is associated with 

higher risk of cardiac arrhythmias,
2
 and a longer QT interval, even within the normal physiological range, is 

associated with higher risk of cardiovascular disease (CVD) mortality with a graded association.
3
 Men have a 

shorter QT interval than women, with the difference emerging at puberty,
4
 potentially implicating sex hormones, 

although this difference in QT interval may also be related to a slower heart rate (HR) among men.
5
 Heart rate is 

another indicator of cardiovascular health, which is positively associated with CVD mortality.
6
 

 

Observational studies generally show testosterone associated with shorter corrected QT interval
5, 7

 and slower 

heart rate,
5
 suggesting a beneficial effect of androgens on cardiac arrhythmias and/or heart rate among men. 

However, the observed association of endogenous testosterone with a shorter corrected QT interval and a lower 

heart rate is not evident for a different androgen biomarker (3α-diol-G).
8
 Additionally, these observations are 

somewhat inconsistent with the experimental evidence.
9-15

 In animal experiments, increased testosterone shows 

varied effects on QT interval, with reports of both shortening
16, 17

 and prolongation,
9, 10

 and also varied effects on 

HR, with reports of increases,
16

 no effect,
10

 and decreases.
17

 Small randomized controlled trials (RCTs) have 

reported that testosterone has no effect on QT interval
11-13

 or shortens QT interval,
18

 and has no effect on HR
11-13

 

or increases HR
14

. One single-arm trial of an anti-androgen also reported no effect on QT interval or HR.
15

 

These discrepancies within observational studies and by study design may have occurred for several reasons. 

Trials examining the effect of exogenous androgens may be too small to detect minor differences.
11-13, 15

 

Observations concerning endogenous testosterone,
5, 7

 although well-conducted, are open to reverse causality 

arising from testosterone falling with age and being affected by ill-health.
19, 20

 Moreover, numerous factors may 

affect CVD risk, such as lipids, blood pressure and diabetes. However, observations of serum testosterone 
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associated with a healthier CVD risk factor profile have not been substantiated by Mendelian randomization 

(MR) studies.
21, 22

 While a large-scale RCT to examine the effects of testosterone has been suggested,
23

 the 

Institute of Medicine recommended such RCTs only after the benefits of testosterone had been established;
24

 

concerns about the cardiovascular safety of androgen replacement
25

 have also raised questions about such RCTs. 

 

Given the widespread prescription of testosterone for men, particularly in North America,
26

 the cardiovascular 

effect of testosterone is an important question relevant to clinical practice and policy, where evidence is limited. 

Health Canada recently issued a warning about cardiovascular disease, including risk of irregular heart rate.
27 

The Food and Drug Administration (FDA) advisory committee also recommended restricting testosterone 

prescription and investigation of cardiovascular risk.
28

 Using naturally occurring testosterone related genetic 

variants to predict peak testosterone, unaffected by aging or ill-health, in an MR analysis with a separate-sample 

instrumental variable (SSIV) enables examination of the causal effects of endogenous peak testosterone, without 

any intervention. Here, we used a separate-sample two-stage MR analysis to assess the effects of endogenous 

testosterone on QT interval, corrected QT interval and heart rate among older men, to minimize reverse 

causality.  

 

Methods 

Study design 

A separate-sample two-stage MR analysis was used. First, a genetic score predicting serum testosterone was 

developed in young Chinese men from Hong Kong, as described previously.
22

 Second, the association of 

predicted testosterone with QT interval, and corrected QT interval and HR was examined in older Chinese men 

from the Guangzhou Biobank Cohort Study. 
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Sources of data 

To generate a prediction rule for testosterone, a sample of students was recruited from the University of Hong 

Kong, restricted to those with both parents and at least three grandparents born in Hong Kong or Guangdong 

who were not taking medication affecting hormones. Morning blood samples were collected for testosterone 

assessment and DNA extraction. Testosterone was assessed by radioimmunoassay (Roche Diagnostics GmbH, 

Mannheim, Germany). DNA was extracted and analyzed at the Centre for Genomic Sciences of the University 

of Hong Kong for selected SNPs including SNPs from ESR1 (rs722208 and rs2175898), CYP19A1 (rs10046 and 

rs1008805) and ESR2 (rs1256030 and rs1256031) using a Mass ARRAY system (Sequenom, San Diego, 

California). Stepwise linear regression with all candidate SNPs (excluding those deviating from 

Hardy-Weinburg equilibrium or in linkage disequilibrium) was used to find a parsimonious set of SNPs which 

best predicted log testosterone in the sample of young men (as shown for flow chart in Appendix Figure 1 and 

for each selected SNP in Appendix Table 1), as described previously.
22

 A self-administered questionnaire was 

used to collect socioeconomic position and health status.  

 

To assess the effects of genetically predicted testosterone on electrocardiogram (ECG) parameters, we used a 

large sample of older people (50+ years) from the Guangzhou Biobank Cohort Study (GBCS). GBCS is an 

ongoing collaboration of Guangzhou Number 12 Hospital, and the Universities of Hong Kong and Birmingham, 

UK.
29

 Recruitment of participants was in 3 phases. All participants were permanent residents of Guangzhou and 

members of the “The Guangzhou Health and Happiness Association for the Respectable Elders” (GHHARE), a 

community social and welfare association unofficially aligned with the municipal government. Membership is 

open to older people for a monthly fee of 4 Yuan (50 US cents). About 7% of permanent Guangzhou residents 
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aged 50+ years are members of GHHARE, of whom 11% (about 10,000 participants) enrolled for each of phase 

one, two and three. Inclusion criteria were that they were capable of consenting, ambulatory, and not receiving 

treatment modalities which if omitted may result in immediate life threatening risk, such as chemotherapy or 

radiotherapy for cancer, or dialysis for renal failure. Fasting blood samples were collected for storage at 

recruitment in phase 3 and at follow-up for participants recruited in other phases. Samples were stored, as whole 

blood or as buffy coat and sera, at -80°C for all apart from a subset of phase 3 participants whose DNA was 

extracted from fresh blood and stored at -80°C. Selected SNPs were analyzed by a commercial company 

(Beijing CapitalBio Corporation
30

) in Beijing using a Mass ARRAY system (Sequenom, San Diego, California). 

The University of Hong Kong-Hospital Authority Hong Kong West Cluster Joint Institutional Review Board 

approved the study. The Guangzhou Medical Ethics Committee of the Chinese Medical Association approved 

GBCS, including the use of genetic data, and all participants gave written, informed consent prior to 

participation. 

 

Electrocardiogram (ECG) 

A standard ECG was performed in the supine position after resting for 5 minutes using a 3-channel, 12-lead 

ECG (Marquette MAC-500) in phase 1 and at the start of phase 2 and a synchronous 12-lead ECG (Marquette 

Cam-14 acquisition module) in the rest of phase 2 and in phase 3.
31

 The ECG tracings obtained by the Marquette 

MAC-500 electrocardiograph were evenly distributed to two qualified physicians and measured independently, 

blinded to other information.
32

 QT interval was examined from the earliest QRS onset to the end of T-wave. Any 

uncertainties were resolved through discussion and consensus. In the rest of phase 2 and phase 3 the QT interval 

and HR were measured automatically by the ECG machine. 
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Exposure 

The primary exposure was predicted testosterone estimated as the anti-log of genetically predicted log 

testosterone. Testosterone, instead of log testosterone, was used as the exposure for ease of interpretation as they 

both gave the same pattern of results.  

 

Outcomes 

The outcomes were QT interval, HR corrected QT intervals using the Framingham formula (QTf), calculated as 

QT+154×(1-60/HR),
33

 and the Bazett formula (QTb), calculated as QT{HR/60}
1/2

,
34

 as well as HR. QT interval 

is influenced by HR, so HR correction is required for the analysis of repolarization duration.
35

 The Bazett 

formula is the most widely used method for HR correction, but tends to underestimate or overestimate the 

duration of cardiac repolarization at extremely low or high HR.
36

 The Framingham correction performs better at 

extreme values of HR.
33

 

 

Statistical analysis 

We used an SSIV estimate from two separate samples.
37

 Genetically predicted log testosterone among men was  

calculated as -0.07×rs1008805+0.07×rs10046-0.07×rs1256031+3.0 (Appendix Table 1), as previously.
22

 The 

F-statistic for the regression of log testosterone on genetically predicted log testosterone was obtained; an 

F-statistic >10 suggests a reliable genetic instrument.
38

 

 

ANOVA was used to compare genetically predicted testosterone by key characteristics. Linear regression was 

used to assess the association of genetically predicted testosterone with QT, QTf, QTb intervals and HR. Model 

1 had no covariates, because the genetic associations are unlikely to be confounded in a homogenous population. 
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Model 2 used bootstrapping with 1000 replications for internal validation. We assessed whether the association 

of genetically predicted testosterone with QT intervals and HR varied with ECG measurement methods from the 

relevant interaction term. As a sensitivity analysis, men with a major intraventricular conduction defect, as 

indicated by QRS≥120 milliseconds (ms), were excluded because the repolarization abnormalities in these men 

could be secondary to the conduction defects. To account for variations due to health status, a sensitivity 

analysis was also performed among a subgroup of healthy men (without self-reported CVD or hypertension and 

not taking medication to reduce blood pressure). All statistical analyses were conducted using Stata 10.1 

(StataCorp LP, College Station, Texas). 

 

Results 

Among the 8,450 men in all 3 phases of GBCS, DNA for SNP testing was available for 4,262 men, with 

availability depending on the phase of recruitment and other logistical concerns, but not on ECG parameters. 

Among the 4,262 men, 4,212 (98.8%) had all relevant SNPs and of these, 3,864 (91.7%) had complete data on 

QT interval and HR. 

 

The proportion of variance in log testosterone explained by the genetic score was 4.1%. The F-statistics was 

13.3, suggesting a reliable genetic instrument. As would be expected, age, socioeconomic position and lifestyle, 

including smoking status and use of alcohol, were not associated with genetically predicted testosterone (Table 

1). 

 

Table 2 shows genetically predicted testosterone was not associated with QT interval among men. The estimates 

were close to null. Predicted testosterone was associated with longer QTb and QTf intervals as well as faster HR, 
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but the confidence intervals for QTf and HR included the null. The results remained unchanged after 

bootstrapping replication (Model 2). The association of genetically predicted testosterone with QT, QTb, QTf 

intervals and HR did not vary with ECG measurement method (p-values for interaction 0.27, 0.73, 0.48 and 0.55 

respectively). Sensitivity analysis excluding those with QRS≥120 ms and among healthy men both showed 

similar results (Appendix Table 2), although the confidence interval for QTb interval among healthy men 

included the null, whilst the confidence interval for HR among healthy men no longer included the null. 

 

Discussion 

Using an MR analysis with an SSIV estimator to minimize reverse causality, our study does not show any 

negative association of endogenous testosterone with QT interval or HR in men. Instead, predicted testosterone 

was associated with longer corrected QT interval. Our novel study provides no support for protective effects of 

endogenous testosterone on QT interval or HR among men.  

 

To our knowledge, this is the first MR analysis using an SSIV estimator to provide an unbiased estimation of the 

effects of testosterone on QT interval or HR. SSIV is useful and cost-efficient when the phenotype of interest 

was either not measured or was measured with substantial error in the sample with the outcome.
37, 39

 It is 

infeasible to obtain lifetime sex hormones for older people; neither biomaterials nor peak sex hormones dating 

back to the 1960s are available. The MR design makes it feasible to use testosterone in early adulthood as a 

marker of lifetime exposure. Thus, we can minimize reverse causality and avoid the imprecision in MR 

estimates that could arise from assessing the genetic association with testosterone at older ages, which may 

reflect ill-health rather than life-long exposure, inducing an underestimation of the genetic association with 

exposure inflating the MR estimates.
40

 SSIV also remediates weak-instruments bias, reducing concerns about 
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using multiple polymorphisms as IVs.
37

 Any correlation of the genetic variants with unmeasured confounders in 

the sample with the phenotype is unlikely to be replicated in the sample with the outcome due to the different 

data structures.
37

 We also restricted the sample of young people to those with both parents and at least 3 

grandparents born in Hong Kong or Guangdong province, to ensure genetic homogeneity.  

 

Although we used MR which can mimic the randomized treatment allocation in RCT,
41

 several limitations exist. 

First, QT interval was measured using two methods. Assessing QT interval manually added some measurement 

error and thereby reduced differences between groups. However, any measurement error is likely to be random, 

which is compensated for by our large sample size, and the effect of genetically predicted testosterone did not 

vary with measurement method. QT interval and HR had the expected associations with age and sex (data not 

shown).
42, 43

 Second, the estimates for QTf and QTb are different, although they are in the same direction. 

Different correction methods may provide discordant result, as observed previously.
44

 The wide range of HR in 

our study may account for the differences in the two correction methods; as such the Framingham correction 

may be more reliable. However, all our corrected estimates were in the same direction with only a difference in 

the level of variability. The estimates in the sensitivity analysis were also in the same direction, but sometimes 

had confidence intervals including the null, perhaps because of the smaller sample size. Third, this study is not 

totally representative, although the QT interval is similar to that in a nationally representative study.
45

 The 

results would only be invalidated if the relation of genetic variants with testosterone or with ECG parameters in 

our sample differs from that in the general population, which is unlikely as the relevant genetic variants were not 

associated with socioeconomic position or lifestyle. Fourth, only Chinese men were included which could 

restrict generalizability. However, the association of genetic variants with testosterone or ECG parameters is 

unlikely to vary by setting or ethnicity. Fifth, the selected SNPs may affect ECG parameters directly rather than 
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via testosterone. To our knowledge, no study indicates a direct association of these SNPs with QT interval or 

HR. Sixth, our SNP selection is restricted by the limited availability of genome-wide association studies 

(GWAS) of testosterone, which are also among older men, and so might reflect the factors causing testosterone 

to fall with age rather than testosterone. Moreover, several SNPs identified in GWAS of testosterone among 

Caucasian men have not replicated in Chinese men,
46

 whilst one SNP that did replicate (rs2075230) was 

associated with both testosterone and SHBG,
46

 making it unsuitable as a genetic instrument for testosterone 

because of pleiotropy. In addition, genetic structure might vary by ethnicity, however, only Chinese originating 

from Guangdong province were included. We also tested for linkage disequilibrium in the young men, and 

discarded any SNPs in linkage disequilibrium.
22

 To avoid these issues, we generated a genetic prediction rule 

for testosterone from genes functionally relevant to testosterone in a sample of young men with the same genetic 

origin as the sample of older men with ECG data. Using the same genetic prediction rule in the same sample of 

older men, we have previously shown an association of genetically predicted testosterone associated with lower 

HDL-cholesterol,
22

 as would be expected from meta-analysis of RCTs,
47

 which suggests some validity. Seventh, 

genetic variants typically have small effects. MR estimates are less precise than conventional regression 

estimates.
48

 However, MR avoids the confounding which occurs in traditional observational studies.
49

 We used 

a weighted genetic score instead of one SNP as instrument, reducing variability in MR estimation.
50

 MR studies 

require large sample sizes. The sample size of ~4,000 had 0.8 power to detect a relatively small effect size of 

0.22. Meta-analysis combining our findings with previous MR estimates is required, however, no other MR 

study exists. Eighth, correction for multiple testing might be required. Such correction is widely used in agnostic 

or exploratory studies, such as GWAS,
51

 to control for type 1 error, while it may increase the risk of type 2 

error.
52, 53

 However, our study aims at confirmation and given our negative findings, controlling for type 2 error 

is important from a public health perspective. Ninth, we cannot determine the clinical significance of the small 
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effect size, because MR estimates should be interpreted as hypothesis testing for causation, rather than 

indicating the size of causal effects.
40

 However, small effects that may not be clinically significant may still be 

an important determinant of population health. Tenth, serum testosterone might not be a good indicator for 

androgen activity. Successful use of anti-androgens at castrate levels of serum testosterone in prostate cancer 

trials has also challenged the extent to which serum testosterone reflects all androgen activity.
54

 The glucuronide 

derivatives of androgens, such as androsterone glucuronide or androstenediol glucuronide, are obligatory for 

elimination of androgens, and provide a measure or correlate of total androgen activity.
55, 56

 Observationally, 

androstenediol glucuronide is poorly correlated with serum testosterone.
57

 Replication using a measure of 

androgen activity is required. 

 

Our study did not corroborate observations of endogenous testosterone associated with shorter corrected QT 

interval
5, 7

 and slower HR.
5
 Serum testosterone is associated with health status, and falls in response to obesity 

or ill-health.
20

 Our study is more consistent with small RCTs which generally report no effect on QT interval or 

HR.
11-13

 Notably, androgenic steroid users have also been reported to have prolonged QT interval and potentially 

higher risk of cardiac arrhythmias,
58

 although the dose is much higher than that in RCTs. Previous MR studies 

have similarly not corroborated the associations of endogenous testosterone with healthier values of CVD risk 

factors,
21, 22

 but suggest adverse effects on lipids.
22

 A meta-analysis of RCTs among men suggests testosterone 

replacement increases the risk of CVD-related events.
25

. 

 

From a public health perspective, the benefits and the CVD safety of androgens have important clinical 

implications for the increasing numbers, of particularly older men, using testosterone replacement.
26

 Our novel 
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study adds to the limited evidence concerning testosterone and ECG parameters, with corresponding 

implications for the role of testosterone in cardiovascular health. 

 

Conclusion 

The study did not corroborate observations of an association of higher endogenous testosterone with lower QT 

interval or slower HR, and correspondingly a potentially protective effect of testosterone. Replication in a larger 

sample is required. 
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KEY MESSAGES 

 The role of androgens in cardiovascular disease is controversial. 

 

 We used a Mendelian randomization analysis with a separate-sample instrumental 

variable to examine the causal effects of endogenous testosterone on 

electrocardiogram parameters.  

 

 Our findings do not corroborate observed protective associations of testosterone with 

cardiac arrhythmias or heart rate among men, but instead suggests testosterone could 

lengthen corrected QT interval. 

 

  
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Table 1. Predicted testosterone by socio-demographic characteristics among 4,212 men (50+), Guangzhou 

Biobank Cohort Study, 2003-2008 

Characteristic No.   % 
Genetically predicted testosterone (nmol/L) 

Mean SD p value
*
 

Age group, years 4212    0.94 

 50-54   8.1 18.05 1.10  

 55-59  20.2 18.01 1.22  

 60-64  25.4 18.01 1.24  

 65-69  24.1 18.01 1.27  

 70-74  16.5 17.99 1.19  

 75-79   4.2 17.95 1.28  

 ≥80   1.5 18.15 1.52  

Education 4209    0.91 

 Less than primary school   2.6 18.11 1.36  

 Primary school  26.9 18.01 1.22  

 Junior middle school  30.0 18.01 1.19  

 Senior middle school  24.2 18.01 1.23  

 Junior college   8.9 17.99 1.34  

 College    7.4 17.96 1.24  

Smoking status  4192    0.59 

 Never smoker  40.8 17.99 1.22  

 Ex-smoker  27.9 18.02 1.25  

 Current smoker  31.3 18.03 1.22  

Use of alcohol 4212    0.49 

 Never  51.8 18.02 1.25  

 <1/month  19.9 18.03 1.19  

 <1/week   4.3 18.04 1.20  

 1-4/week   6.0 18.03 1.30  

 5+/week  11.9 17.90 1.19  

 Ex-drinker   4.4 18.01 1.20  

 Unknown   1.8 18.08 1.27  

Abbreviation: SD, standard deviation 
*
Two-sided P value from ANOVA.  
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Table 2. Effect of genetically predicted testosterone on QT interval, corrected QT interval and heart rate among 

men (50+ years), Guangzhou Biobank Cohort Study, 2003-2008 

Outcome 

(n=3864) 
Mean (SD) Model

*
 β coefficient

†
  95% CI P value 

QT interval  

(milliseconds) 

385.8 (28.2) 1 -0.08 -0.81 to 0.65 0.83 

     

QTf interval  

(milliseconds) 

406.4 (20.4) 1 0.40 -0.12 to 0.93 0.13 

 2 0.40 -0.11 to 0.91 0.12 

QTb interval  

(milliseconds) 

416.7 (24.9) 1 0.66  0.02 to 1.31 0.04 

 2 0.66  0.04 to 1.29 0.04 

Heart rate  

(beats per minute) 

 71.0 (11.5) 1 0.26 -0.04 to 0.56 0.09 

 2 0.26 -0.04 to 0.56 0.09 

Abbreviations: SD, standard deviation; CI, confidence interval 
*
Model 1 had no covariates; Model 2 used bootstrapping with 1000 replications for internal validation for model 

1. 
†
β coefficient refers to the average change in QT, QTf, QTb intervals and heart rate with each unit (nmol/L) 

increase in genetically predicted testosterone. 
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Appendix Table 1. Stepwise linear regression model for prediction of log testosterone in the young men
*
 

Predictors Beta-coefficient 95% CI P value 

rs1008805 (CYP19A1) -0.07 -0.14, -0.01 0.03 

rs10046 (CYP19A1) 0.07 0.01, 0.13 0.02 

rs1256031 (ESR2) -0.07 -0.12, -0.02 0.01 

Constant  3.0 -- -- 

*
In the regression model, log testosterone was used as outcome, because the distribution of testosterone was 

skewed. Two outliers (Cook’D value>0.05) were dropped when establishing the genetic prediction rule for log 

testosterone, so 287 men were included in the prediction model. 
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Appendix Table 2. Sensitivity analysis on the effect of genetically predicted testosterone on QT interval, corrected QT interval and heart rate among older men (50+ years), 

Guangzhou Biobank Cohort Study, 2003-2008, excluding those with QRS≥120 milliseconds and only including *healthy men 

Outcome Sample n Mean (SD) β coefficient
†
  95% CI P value 

QT interval  

(milliseconds) 

Excluding QRS≥120 milliseconds 3697 384.6 (27.5) 0.08 -0.64 to 0.80 0.83 

Healthy men only 2680 385.7 (28.0) -0.40 -1.27 to 0.47 0.37 

QTf interval  

(milliseconds) 

Excluding QRS≥120 milliseconds 3697 405.2 (19.4) 0.49 -0.02 to 1.00 0.06 

Healthy men only 2680 405.6 (20.2) 0.27 -0.35 to 0.90 0.39 

QTb interval  

(milliseconds) 

Excluding QRS≥120 milliseconds 3697 415.4 (23.9) 0.70  0.08 to 1.33 0.03 

Healthy men only 2680 415.4 (24.6) 0.63 -0.13 to 1.39 0.11 

Heart rate  

(beats per minute) 

Excluding QRS≥120 milliseconds 3697  71.0 (11.5) 0.22 -0.08 to 0.52 0.16 

Healthy men only 2680  70.6 (11.2) 0.39  0.04 to 0.73 0.03 

Abbreviations: SD, standard deviation; CI, confidence interval 
*
Healthy men were men without self-reported CVD or hypertension and not taking medication to reduce blood pressure. 

†
β coefficient refers to the average change in QT, QTf, QTb intervals and heart rate with each unit (nmol/L) increase in genetically predicted testosterone. 
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Appendix Figure 1. Flow chart for establishing the genetic prediction rule. For references identified in the 

figure, please see Appendix references. 
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