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Abstract

We introduce music-driven video montage, a media format that of-
fers a pleasant way to browse or summarize video clips collected
from various occasions, including gatherings and adventures. In
music-driven video montage, the music drives the composition of
the video content. According to musical movement and beats, video
clips are organized to form a montage that visually reflects the
experiential properties of the music. Nonetheless, it takes enor-
mous manual work and artistic expertise to create it. In this paper,
we develop a framework for automatically generating music-driven
video montages. The input is a set of video clips and a piece of
background music. By analyzing the music and video content, our
system extracts carefully designed temporal features from the in-
put, and casts the synthesis problem as an optimization and solves
the parameters through Markov Chain Monte Carlo sampling. The
output is a video montage whose visual activities are cut and syn-
chronized with the rhythm of the music, rendering a symphony of
audio-visual resonance.

CR Categories: I.3.0 [Computer Graphics]: General.

Keywords: audio-visual synchresis

The word and its sound, form and its color
are vessels of a transcendental essence that we dimly surmise

As sound lends sparkling color to the spoken word

so color lends psychically resolved tone to form

JOHANNES ITTEN, 1888 - 1967

1 Introduction

We have seen a thrilling series of work on visual media synthe-
sis in the past decades, including Video Textures [Schödl et al.
2000], stochastic motion textures [Chuang et al. 2005], visual mo-
saic [Agarwala et al. 2004; Irani et al. 1996; Kopf et al. 2010],
video synopsis [Pritch et al. 2008], cinemagraphs [Beck and Burg
2012] and its extensions [Bai et al. 2012; Joshi et al. 2012; Liao
et al. 2013]. Perhaps at a higher level is the concept of moment
images envisioned by Cohen and Szeliski [2006]. By their defini-
tion, a moment image captures a universal yet subjective state by
combining visual snapshots from multiple shutter instants.

While such work successfully creates lively visual representations
of the world, other dimensions of human sensation are absent, e.g.

Figure 1: Given a set of video clips and a piece of music, our
system analyzes the video and music content, and produces a video
montage that “dances” to the beat of the music.

hearing, touch, smell or taste. To break the status-quo, we advocate
the concept of audio-visual synchresis by French theorist Michel
Chion [1994], and introduce Music-Driven Video Montage: video
montages that “dance” to a piece of background music. Music-
driven video montage belongs to a type of audio-visual media called
music-driven imagery [Goodwin 1992; Wesseling 2004], where the
music drives the composition of the video content. According to
musical movements and beats, video clips are reorganized to form
a montage that “visually reflects the experiential properties of the
music” [Wesseling 2004], e.g., body parts moving back and forth
to the rhythm of music beats, footsteps on music notes, portamento
when a bird glides over lake Tahoe, and on a music transition the
scene cuts to the deep valley of Yosemite.

Music-driven video montage suggests a pleasant way to browse or
summarize video clips collected from gatherings, adventures, sport
events, or time-lapse photography. A niche of application is on
the widespread mobile devices. With these devices, people nowa-
days shoot moments of daily life and share them online very easily.
Music-driven video montage would be a nice way to organize such
video clips and play them to the beat of a selected background mu-
sic. The result is of higher aesthetics value, and provides a new
experience for personal viewing and online sharing. However, it
takes enormous manual work and artistic expertise to create such
result. Our goal is to develop a computer-aided solution to creating
such audio-visual composition (Figure 1).

Creating a high-quality music-driven video montage with a ma-
chine algorithm is a challenging new task. First of all, given a
piece of background music and a set of video clips, it is not ob-
vious how should the problem be formulated, because producing
an audio-visual composition has a large degree of freedom. The al-
gorithm does not have to use all the video clips or all the frames
in a chosen video. It also needs to determine the order of the
chosen videos on the music timeline, the cut between the videos,
as well as the play speed of every chosen video. To make the
problem tractable, we adopt two important thumb-of-rules when
artists create music-driven imagery: cut-to-the-beat and synchro-
nization [Wesseling 2004; Dmytryk 2010]. Cut-to-the-beat means
video sequences should be cut at significant note onsets in the mu-



sic, and synchronization means visual motion in the video should
match the rhythm and pace of the music. The second challenge is,
music and videos are two different types of media. The waveform
of a music piece is a one-dimensional time series while videos have
two spatial dimensions in addition to one temporal dimension. It is
unclear what kind of features and properties should be used to de-
fine synchronization between them, let alone an automatic method
for achieving such synchronization. Third, choosing a subset of
video clips and deciding their order is an expensive combinatorial
problem that has a very large search space. How to obtain a reason-
able solution in an efficient manner is another challenge.

In this paper, we develop a framework for automatically generat-
ing music-driven video montage. The input is a set of video clips
and a selected piece of background music with fit melody or theme.
By analyzing the music and video content, our system first per-
forms music segmentation and extracts carefully designed tempo-
ral features from both. Next, it casts the synchronization between
the music segments and video clips as an optimization problem and
solves the synthesis parameters in the optimization through Markov
Chain Monte Carlo sampling. The output is a video montage whose
visual activities are cut and synchronized with the rhythm of the
background music, rendering a symphony of audio-visual reso-
nance. Such effect is highly desirable in music-driven video editing.
With our algorithms, artists perform the high-level work of shooting
video clips and selecting the music, leaving the labor-intensive and
precision-demanding editing work (e.g. cut and synchronization) to
the machine.

In summary, we make the following contributions in this paper:

• We propose a new research problem on computer-aided genera-
tion of music-driven video montage. We further quantitatively for-
mulate this problem as an optimization. Two of the energy terms in
our formulation address two important composition principles.

• To achieve perceptual synchronization between music and video,
we propose carefully designed and experimented temporal features
for both music and video. To make the features of the two different
media comparable, temporal video features are aggregated features
derived from pixelwise optical flows. Temporal music features are
interpolated from saliency scores at note onsets using the Gaussian
kernel.

• We apply Markov Chain Monte-Carlo sampling to solve the
above optimization problem. To improve efficiency, we factor
the optimization into two stages, a precomputation stage and an
MCMC based stochastic sampling stage.

2 Background

Sound as a primitive medium form has been intervened with the
visual medium for a long time in human history. Ancient Greek
were experts on music and dance in stage performance back to the
6th century BC. The first collection of Chinese poetry, Shijing, was
performed with bronze bells and wooden drums during the same
period of time in the east. In the history of filmmaking, after a very
short period of silent film (1890s to 1920s), images and sound were
inevitably combined together in the cinema and opened up an era
of a flourishing industry. Later in the 1980s, the storyline-based
audio-visual synthesis approach in filmmaking was challenged by
the music video industry (MTV), where fragments of videos were
sequenced to coordinate with and emphasize the music instead of
the other way around. Our work takes the music-driven imagery
approach. Its distinction from music video is that the two elements,
music and video, are of equivalent importance in the composition
to mutually intensify one another.

The practice of music-video composition, although being very sub-
jective and following no strict rules, has a few guidelines. The first
one is called cut-to-the-beat. It is related to video cuts, best known
as the montage of scenes from different time and space to create a
visual impression. A critical question of video montage is where
to cut. According to American film editor and sound designer Wal-
ter Murch, when we watch a film, the scenes on the screen invoke
a flow of ideas (emotions and thoughts) in the head. A cut is to
“separate and punctuate an idea from what follows, like a blink of
eye to the thought process” [Murch 2001]. In music-video com-
position, the bars in a music piece provide natural transition points
where cuts should be exactly placed – not a frame sooner or later.
This is the origin of the cut-to-the-beat principle.

The second guideline is related to audio-visual synchresis: the link-
age between the visual and the auditory. In music videos, the pace
and timing of visual activities typically flow with the pace and en-
ergy of the song. For example, footsteps are synchronized with
the beat, popping with the drum. This association between action
and sound is critical for narration and has a deep root in mankind’s
hereditary perception – that every sound rises from a source, a pure
instinct developed from the ancient to learn from the association of
sound and visual about threats for survival in the wild (explained in
depth in Chion’s book on synchresis [Chion 1994]). So the brain
is more comfortable to accept visual and auditory signals that co-
occur in time. This is the origin of the synchronization principle.

In addition, there are other dimensions where music and video can
match in quality, for example, pace and velocity, loudness and dy-
namism, timbre and color, melody and mood. Our work primarily
implements the cut-to-the-beat and synchronization principles. We
also define a set of corresponding audio and visual features that can
accommodate the matching between audio and visual in these other
dimensions.

MIDI Format We rely on the Musical Instrument Digital Interface
(MIDI) [Huber 1991; Swift 2014] format to parse the music input.
A MIDI file is a semantic encoding of musical signals (in contrast
with waveforms or the MP3 format) by specifying note onset pa-
rameters (time, pitch, volume and duration), instrument type, sound
effect controller (e.g. vibrato and percussion), track information, as
well as music meta data (clef, meter and tempo). In other words, it
is a digital music sheet. Since 1983, MIDI has become an industrial
protocol standard used by a wide variety of electronic musical in-
struments, computers and other sound devices to connect and com-
municate with one another. MIDI is now a mainstream language
for digital music. All music pieces performed on electronic musi-
cal instruments are sequenced into the MIDI format. A large body
of music pieces with public awareness has its MIDI format avail-
able in online databases such as 8notes (http://8notes.com)
or free-midi (http://free-midi.org).

The MIDI data format lists a sequence of musical note events. For
example, on track 0 second 2.5 a piano key of pitch 75 is pressed
with volume 80; on track 1 second 2.75 a flute note of pitch 50 is
on with volume 95; on track 0 second 3.0 the piano key of pitch
75 is released. The MIDI music meta data also defines the start
and end times of bars using meter and tempo. Thus musical notes
are first separated into tracks, and then grouped into bars. Notes
from different tracks belong to the same bar if their onsets fall into
a bar’s time interval. Bar is the most basic unit of a music piece,
like cells to a body. On top of bars, rhythm is developed, repeated
and progressed to form the whole musical movement.

http://8notes.com
http://free-midi.org


Figure 2: System overview. Given a set of video clips and a piece of music, our system first performs feature analysis from both inputs, and
then cast the synthesis problem as an optimization problem, solved by a two-stage algorithm. Lastly, the rendering component renders the
final video montage that are cut and synchronized to the beat of the music.

3 System Overview

Given a set of video clips and a music sequence, how do we fuse
them into one piece? According to the music-driven imagery ap-
proach, the music provides the structural layout and remains un-
changed. It is the video clips that are rearranged and edited on the
music timeline. We first extract a set of carefully designed features
from both the musical piece and the video clips, and then cast the
problem of synthesizing a music-driven video montage as an en-
ergy minimization problem. Figure 2 shows an overview of the
framework.

Problem Formulation Let V = {v1, v2, ..., vp} be the set of in-
put video clips and M = {m1,m2, ...,mq} be the set of sequential
segments of an input music. A music segment consists of a group
of consecutive music bars. Music segments are obtained by an-
alyzing the hierarchical musical structure. The task is to choose
a video subsequence to match each music segment (Fig. 3), such
that the chosen video subsequences minimize the following energy
function:

E(θ,M) = Ematch(θ,M) + Etransit(θ,M) + Eglobal(θ,M),
(1)

where the first term is the matching cost between corresponding
music and video segments; the second term measures transition
compatibility between consecutive segment pairs; and the third
term accommodates higher-order constraints. Solution to the en-
ergy minimization is a mapping function, a : i → j, that maps
each music segment i (= 1, . . . , q) to a subsequence of a video clip
j (∈ {1, . . . , p}), and parameters of the video subsequences. A
video subsequence is defined by three parameters: start frame sf ,
end frame ef , and a temporal scaling factor scale that resamples
the video frames in the temporal domain, thus controls the video
playback speed. We denote all the unknowns by θ = {θ1, . . . , θq},
where θi = (vai ; sfi, efi, scalei). θi defines the video subse-
quence matching music segment i. θ and M together define all the
components needed to synthesize a music-driven video montage.

Analysis Stage The analysis stage of our framework performs
signal analysis on the video clips and the music piece in prepa-
ration for synthesis. Video analysis extracts features from video
frames by performing such tasks as motion analysis, saliency esti-
mation, and frequency detection. Music analysis heavily relies on
the semantic information collected from MIDI data; the associated
waveform data is also used. From the MIDI data, we extract note
onsets, pitch, duration. We further group notes into bars according
to tempo and meter. Then we cluster the bars into music segments,
on top of which segment-level features, such as pace, volume, pitch
variation, number of tracks, are computed.

Figure 3: Illustration of problem formulation. Each music segment
is mapped to a video subsequence defined by a start frame sf , an
end frame ef , and a scaling factor such that the chosen video sub-
sequence can be rescaled to cover the entire music segment.

Synthesis Stage The synthesis stage takes the video and music
features from the analysis stage, and solves the optimization prob-
lem defined in Eq 1 using Markov Chain Monte Carlo sampling.
The first two energy terms determine when video clips transition
from one to another on the music timeline (cut-to-the-beat prin-
ciple), and between two consecutive transitions, which video clip
should be used and how it is aligned with salient musical notes (syn-
chronization principle). In addition to such unary and binary con-
straints, we also consider pairwise and higher-order matching con-
straints across cuts according to music and video features. The op-
timization is factorized into a two-stage process for improved effi-
ciency: a precomputation stage that computes locally optimal video
subsequences for individual music segments, and an optimization
stage that samples the parameter space using the Metroplis-Hasting
algorithm.

Rendering To render the final composition, we first map corre-
sponding video subsequences to music segments with downsam-
pling and upsampling according to the synthesis parameters. Con-
catenation of the resampled video subsequences form the whole
video montage. The video montage is guaranteed to have the same
length of the underlying music and can be played with it to render
our audio-visual synthresis.

4 Analysis

4.1 Video Analysis

Video analysis estimates generic visual activities in a video using
optical flows. Optical flow algorithms are effective in detecting
motion caused by object movement (e.g. swaying trees, running
dogs) and camera movement. We adopt a standard optical flow al-
gorithm in [Liu et al. 2005]. Let us denote frame f of video j as



Figure 4: Motion change rate (bottom curve) for a video sequence.

vj(f), and the optical flow field between two consecutive frames
as φ(vj , f) = OpticalF low(vj(f − 1), vj(f)) (pixel indices are
omitted; same in the following notations when it is clear in context).
Saliency estimation is carried out on each frame using the method
in [Cheng et al. 2014]. We denote the saliency map for frame f of
video j as α(vj , f). This saliency map is used to reweight pixels
flow field in every frame.

Motion Change Rate (MCR) We wish to detect frames with
salient motion from the optical flow φ(vj , f). Imagine the scene
of a baseball player hitting a ball, the most significant moment is
not when the ball is moving fast but the instant when the bat hits
the ball, i.e. the moment when the ball has its maximum magnitude
of acceleration. Thus, instead of directly using the optical flow, we
compute the pixelwise temporal difference of the optical flow for
each frame.

∇φ(vj , f ;x) = φ(vj , f ;x)− φ(vj , f − 1;x′), (2)
where x = x′ + φ(vj , f − 1;x′).

where x and x′ are pixel indices. The key is to find, for each pixel
x, its advection source x′ in the previous frame given the forward
flow field. Inspired by [Yang et al. 2011], we use an iterative back
propagation solver to find the advection source. We then compute
the mean saliency weighted motion change rate by Φ(vj , f) =
1
N

∑
x,y α(vj , f ;x, y)‖∇φ(i, f ;x, y)‖/maxfΦ(vj , f) as the

MCR at frame vj(f). N is the number of pixels. Figure 4 shows a
MCR series of a video sequence.

Flow Peak In addition to average motion change, we would
also like a feature that characterizes the most interesting
bits of the flow field at a frame. To this end, we
take the flow peak ϕ for this purpose: ϕ(vj , f) =
prctile(α(vj , f)‖φ(vj , f)‖, 99.9)/maxfϕ(vj , f). The flow peak
profile is also useful in general cases where a small fraction of pix-
els with large motion (e.g. the baseball example) can stand out
without being marginalized.

Dynamism We also compute the level of dynamism as a feature that
can characterize a video frame. Intuitively, this feature should re-
flect the percentage of pixels that have large motion. It is calculated
as the ratio of pixels whose flow magnitude exceeds a threshold:

δ(vj , f) =
1

N

∑
x,y

1(‖φ(vj , f ;x, y)‖ > δ) (3)

where δ is empirically set to 2.

Peak Frequency We use the peak frequency of visual motion at
every frame as a feature to match musical pace in later optimiza-
tion. This peak frequency is computed using a time window cen-
tered at the frame. For the following time window of size K
centered on frame f in video j, we compute the power spec-
tral density ρ of the following motion profile vector (Φ(vj , f −

Figure 5: Music note saliency computed from MIDI and the asso-
ciated waveform data.

K/2), ...,Φ(vj , f), ...,Φ(vj , f + K/2)). The frequency with the
maximum power spectral density (if greater than a threshold) is
taken as the peak frequency at frame f :

ψ(vj , f) =

{
k, ρ(k) > −10 and ρ(k) ≥ ρ(k′) ∀k′ > 0;
0, otherwise.

(4)

4.2 Music Analysis

During music analysis, the following tasks are performed: (1) di-
vide the musical sequence into a series of musical segments, each
of which is a single cut; (2) compute a saliency weight for each
note onset, and these weights are used for music-video matching;
and (3) compute segment features for defining the transition cost
between consecutive musical segments.

Music Segmentation According to the “cut-to-the-beat” princi-
ple in music video editing, and especially the insight, that cuts are
used to “separate and punctuate on transition of ideas”, made by
Walter Murch [2001], we use the bars in the music as the atomic
units for music segmentation. Every musical segment must start
with a bar. Agglomerative clustering is performed bottom-up to
form a hierarchical clustering tree; the bars form the initial set of
segments. During each step of clustering, the pair of consecutive
segments with the minimum segment distance is chosen to merge.
This process is repeated until the number of notes in all segments
has reached a desired segmentation granularity. Segment distance
is defined as follows,

χ(mi,mi+1) = w0
|pace(mi)− pace(mi+1)|

mode(pace)
+

w1
|median(pitch(mi))−median(pitch(mi+1))|

σpitch
+

w2
|σ(pitch(mi))− σ(pitch(mi+1))|

σpitch
, (5)

where pace(·) is defined as the number of unique note onsets
divided by the time length of a music sequence (bar, segment,
etc.), mode(pace) is the most common pace across all music bars,
median(pitch(mi)) and σ(pitch(mi)) represent the median and
standard deviation of the note pitches in segment mi, and σ(pitch)
is the standard deviation of the note pitches in the entire musical
piece. In practice, w0 = 10, w1 = 1, w2 = 1.

Saliency We define the following eight types of binary
saliency scores for note onsets: pitch-peak, before-a-long-interval,
after-a-long-interval, start-of-a-bar, start-of-a-new-bar, start-of-a-
different-bar, pitch-shift, deviated-pitch. All these saliency scores
are initially set to zero at all note onsets.

- Pitch-peak is set to 1 if the highest pitch (multiple notes could
be hit at the same time) at a note onset is higher than twice the



highest pitch at the preceding note onset and also higher than twice
the highest pitch at the following note onset.

- The Before-a-long-interval (after-a-long-interval) score at a note
onset is set to 1 if the following (or preceding) note onset is at least
one beat away (1 beat = 60/tempo).

- Start-of-a-bar is set to 1 at the first note onset within each bar.

- Start-of-a-new-bar is set to 1 at the first note onset of new bars. A
new bar is a bar with the preceding bar empty.

- Start-of-a-different-bar is set to 1 at the first note onset of a bar
that possesses a different pattern from the preceding bar. A bar is
“different” from the preceding one if match(bari, bari−1) = 0,
where match(bari, bari−1) is set to 1 if more than 80% of their
note onsets are aligned and more than 50% of their notes have the
same relative pitches and match(bari, bari−1) is set to 0 otherwise.

- When two consecutive bars match and more than 90% of their
notes maintain the same relative position, pitch-shift is set to the
mode of pitch differences at the first note onset of the second bar.

- When two consecutive bars match and the pitch difference be-
tween notes in the second bar and their corresponding notes in the
first bar is larger than two standard deviations, deviated-pitch is set
to 1 at the first note onset of the second bar.

The final saliency score ω at a note onset ti is accumulated as fol-
lows,

ω(ti) = (1 + vol(ti)
8∑

i=1

scorei)/max(ω(ti)), (6)

where vol(·) means the volume of a note and it is computed as the
mean squared magnitude of the waveform samples in the first 20%
of the note duration. This time window is defined according to
the volume envelope of a note strike in musical performance. That
is, upon the strike of a note, the first 20% of the note duration is
called the attack stage, during which the sound reaches the peak
volume. The attack stage is followed by the decay, sustain, and
finally release stages.

We further define the following continuous temporal saliency func-
tion using the above saliency score for discrete note onsets,

Ω(mi; t) =

K∑
ti=1

ω(ti)G(t− ti;σti), (7)

where t is the continuous timeline coordinate (ti for discrete note
onsets), G(·) refers to the Gaussian kernel, and σti is the stan-
dard deviation of the Gaussian centered at time ti. σti is set
such that the Gaussian at ti diminishes to 0.01 at the boundary
of a time window with its center at ti and its width equal to
min(0.1, 0.25(ti+1 − ti−1)). Figure 5 visualizes the continuous
temporal saliency computed from its MIDI source and the associat-
ing waveform data.

5 Synthesis

Given the problem formulation in Section 3, in this section, we
elaborate the definition of the energy terms using features extracted
from the analysis stage, and our MCMC optimization algorithm for
solving the synthesis parameters θ.

5.1 Energy Terms

Matching Cost To follow the synchronization principle, we
would like see the “ups and downs” of a video sequence strongly
correlate with those of the corresponding music segment. However,
music and videos are very different types of media, and are not
directly comparable. Therefore, we need to rely on the derived fea-
tures in the previous section as well as metaphors and intuitive con-
nections between such features to achieve this goal. For example,
in the following, we use the temporal sequence of motion change
rates computed for a video to represent its “ups and downs”.

The matching cost term in Eq 1 is a summation of all individual
matching costs between each music segment and a subsequence of
its corresponding video clip,

Ematch(θ,M) =

q∑
i=1

Match(mi, θi), (8)

where the individual matching cost can be further split into the fol-
lowing two terms,

Match(mi, θi) = Ψ(mi, θi) + Γ(mi, θi). (9)

The first term in Eq (9), Ψ(·), is the co-occurrence cost. It penalizes
temporal mismatch between the motion change rate Φ(ai, t) and
the music saliency function Ω(mi, t). The co-occurrence cost is
defined as follows,

Ψ(mi, θi) =

{
G(x;σco), x ≥ 0;

2−G(x;σco), x < 0;
(10)

where the dot product x = Ω(mi, t)
T Φ(ai, t)/N is evaluated at

discrete time samples on the music timeline at the video frame rate
and normalized by the number of samplesN , and σco is set to 0.05.
Ω(·) and Φ(·) are subtracted by the their mean before the dot prod-
uct. Although musical pieces and video clips are not directly com-
parable, this dot product computes the correlation between two de-
rived features, music saliency score and video motion change rate.

The second term in Eq (9), Γ(·), penalizes mismatch between musi-
cal pace and the detected peak frequency of the video (Section 4.1).
That is, videos with a high peak frequency are preferred to match
music segments with a fast pace, and vice versa. The cost function
for this term is expressed as

Γ(mi, θi) =


1, pace(mi) > 1, ψ(θi) < 0.5;

1, pace(mi) < −1, ψ(θi) > 2;

0, otherwise,
(11)

where pace(mi) is the standardized value of pace with mean sub-
tracted and standard deviation normalized to one, ψ(θi) is the peak
frequency averaged over video subsequence specified in θi.

Transition Cost The transition cost term in Eq 1 encourages
video transitions across cuts to match characteristics of musical
transitions across segments. For example, if the music goes from a
slow pace to a faster one, we would like to see the accompanying
video also switch from a scene of slow motion to another one with
faster motion; or when extra sound tracks are on, the visual scene
becomes more dynamic. We define two terms in the transition cost,

Transit(i, i+ 1) = ∆(mi,mi+1, θi, θi+1) +

Λ(mi,mi+1, θi, θi+1). (12)



The ∆(·) cost evaluates the matching quality between musical pace
transition and velocity transition in visual motion,

∆(mi,mi+1, θi, θi+1) =


1, κp < 0.5, κv > 0.75;

1, κp > 2, κv < 1.5;

0, otherwise,
(13)

where κp = pace(mi+1)/pace(mi) and κv = vel(pi+1)/vel(pi),
where vel(·) is the mean flow magnitude in a video frame.

The Λ(·) cost evaluates the matching quality between the change in
the number of musical tracks and the change in visual dynamism,

Λ(mi,mi+1, θi, θi+1) =


1, ∇t < 0,∇d > −0.3;

1, ∇t > 0,∇d < 0.3;

0, otherwise,
(14)

where ∇t = numtrack(mi+1) − numtrack(mi), and ∇d =
δ(vai+1 , sfi+1)−δ(vai , efi). Note that the change in dynamism is
calculated as the difference between the dynamism of the last frame
of a video clip and that of the first frame of the following video clip,
instead of using whole sequence averages.

The transition cost in Eq 1 sums up the transition costs over all
musical cuts,

Etransit(θ,M) =

q−1∑
i=1

Transit(i, i+ 1). (15)

Global Constraints The global cost term in our energy function
focuses on constraints on the global statistics of the music-video
composition. We define a duplication cost to prevent a single video
clip from appearing multiple times in the synthesis result. The du-
plication cost is defined as

∑
i=1,..,p

(
2count(vi)−1 − 1

)
, which

imposes an exponentially growing penalty as a video clip is repeat-
edly used in the output.

5.2 Optimization

Minimizing the energy function in Equation 1 is an intractable
combinatorial problem. We factor the problem into a two-stage
optimization: a precomputation that computes locally optimal
video subsequences for music segments, and an MCMC Metroplis-
Hasting algorithm [Andrieu 2003; Chib and Greenberg 1995] to
sample the parameter space. The precomputation stage further
consists of a global alignment of video subsequences to music
segments, and a temporal snapping procedure that aligns local
keyframes to salient music notes.

The parameter space for each music segment, θi =
(vai , sfi, efi, scalei), has three degrees of freedom because
the position of the last frame of the video subsequence, efi, can
be determined jointly by the length of the music segment, the
position of the first frame and the temporal scaling factor for
this subsequence. The entire parameter space has 3q degrees of
freedom where q is the number of music segments. This paramter
space is too large for the Metroplis-Hasting algorithm to traverse.
To make the optimization computationally feasible, we factor
the computation into two stages. In a pre-computation stage,
we compute for each music-video candidate pair (mi, vj), the
optimal starting position of the subsequence, sf j

i , and the optimal
temporal scaling factor for this subsequence, scaleji . Thus the
4-tuple, (vj , sf

j
i , ef

j
i , scale

j
i ), j = 1, .., p, is precomputed and

will become the candidate set for θi in the second stage. In the

Figure 6: Audio-visual synchronization by global alignment and
non-linear snapping. The global alignment is performed in the pre-
computation stage, which uses a scalable sliding window to search
for video subsequences that aligns with music segments. The tem-
poral snapping “snap” local MCR peaks to the exact music note
onsets by dynamic programming.

second stage, when a music segment mi chooses a matching
video subsequence, the precomputed matching parameters for
every video clip can be used immediately. In this way, the optimal
matching parameters between any music-video pair need to be
computed only once. With such precomputation, for a problem
with 30 music segments, 60 video clips, and a maximum 1000000
sampling steps, computing its solution takes about 10-15 seconds.

Global Alignment The global alignment optimizes the position
of the first frame of the video subsequence and its associated tempo-
ral scaling factor for every possible combination of music segment
and video clip. The matching cost for a single music-video candi-
date pair is adopted as the energy function. Specifically, for every
possible position of the starting frame of the video subsequence,
we perform a continuous optimization on the temporal scaling fac-
tor using gradient descent. Figure 6 (global alignment) illustrates
this process. Since there may still exist many local minima in this
simple one-dimensional optimization, in practice, we run gradient
descent multiple times with regularly spaced initializations. At the
end, we return the location of the starting frame and the scaling
factor that together achieve the lowest matching cost.

Temporal Snapping In our original problem formulation, a con-
stant temporal scaling factor is used for each music-video pair.
However, synchronization achieved with a single scaling factor per
segment cannot be perfect because visual motions usually do not
follow the rhythm of music beats by a constant scaling factor (ex-
cept for artificial motions such as animation and dance). We fur-
ther add a temporal snapping feature to the global alignment result.
It makes salient visual frames precisely “snap” to salient musical
notes. Temporal snapping allows a temporally varying scaling fac-
tor within a single video clip. It identifies a set of keyframes in
the video subsequence and a series of note onsets in the music seg-
ment, and then snaps a subset of video keyframes to salient musical
notes by solving a matching problem using dynamic programming.
Between every pair of consecutive snapping points, the video is
temporally scaled to match the music length.

The following video frames are chosen as keyframes, (a1) the start-
ing frame, (a2) the last frame, and (a3) any intermediate frame
whose motion change rate is a local peak, i.e. large than that of
the preceding and following frames and above the 90 percentile.
Likewise, the following note onsets are labeled as salient, (b1) the
first one of a music segment, (b2) the last one of a music segment,
and (b3) any note onset with a saliency score 0.5 or above. Let



{(t1, w1), ..., (tk, wk)} be the set of salient note onsets in the mu-
sic along with their saliency scores, and {(t′1, w′1), ..., (t′l, w

′
l)} be

the set of time stamps of the keyframes in the video along with
their motion change rates. Temporal snapping searches for a match-
ing between these two sets of temporal points, {(tmi → t′ni

)}(o),
where mi ∈ {1..., k}, ni ∈ {1..., l}, o ≤ min(k, l), by minimiz-
ing the following cost function,

o∑
i=1

match(i)+

m−1∑
i=2

smooth(i−1, i, i+1)+
∑

mi∈Υ

wmi +
∑
ni∈Π

w′ni
,

(16)
where the first term is the matching cost between note onset
(tmi , wmi) and video frame (t′ni

, w′ni
); the second term is the lo-

cal smoothness cost; the third and fourth terms together penalize
temporal points missing from the matching. The matching cost is
empirically defined as

match(i) = (tmi − t
′
ni

)2 −min(wmiw
′
ni
, 0.25),

and the smoothness cost is defined as

smooth(i−1, i, i+1) = (tmi−tmi−1) max

(
α

β
− 1,

β

α
− 1

)
+

(tmi+1 − tmi) max

(
1− α
1− β − 1,

1− β
1− α − 1

)
, (17)

where α = (tmi − tmi−1)/(tmi+1 − tmi−1) and β = (t′ni
−

t′ni−1
)/(t′ni+1

− t′ni−1
). We solve this matching problem with the

classic dynamic programming algorithm in O(k2l2) time. Figure 6
bottom right illustrates our non-linear temporal snapping operation.

MCMC Sampling The standard Metroplis-Hasting algorithm is
implemented to sample the label space for an optimal solution. Be-
cause of the precomputation, the new label space is simply the
sequence of video indices corresponding to the sequence of mu-
sic segments. Two types of mutations are designed: with prob-
ability 0.7, the video index for a music segment is updated to a
random index between 1 and n, where n is the total number of
video clips, and with probability 0.3, two music segments’ corre-
sponding video indices are swapped. We adopt a uniform distri-
bution over the random video index in the first type of mutations
and also a uniform distribution over the pair of music segments
in the second type of mutations to enforce the reversibility con-
dition for the M-H algorithm [Chib and Greenberg 1995]. The
Boltzmann distribution P (x) = exp(−x/T ) is used to convert
energy levels to probabilities in the algorithm. Algorithm 1 sum-
marizes the overall MCMC based optimization. In the algorithm,
θ̃ = {θ̃ji , i = 1, ...q, j = 1, ...p} is the result from the local opti-
mization.

Note that this two-stage factorization can only produce an approxi-
mate solution to the original problem (Eq 1). The trade off is orders
of magnitude computational cost reduction.

6 Rendering

It is straightforward to render the video subsequence matching each
music segment mi given θi and the temporal snapping parameters.
A constant scaling factor is used between every pair of consecutive
snapping points. Upsampling and downsampling are applied ac-
cording to the temporal scaling factor in θi and the relative position
of snapping. These scaled video subsequences are then concate-
nated to form the entire video montage. Finally, the music is added

Algorithm 1
1: procedure METROPLIS-HASTING(M, θ̃, numIter)
2: Init: θ = {θi|θi = arg min θ̃

(·)
i , i = 1, ...q}

3: iter = 1
4: while iter < numIter do
5: Probability P0 = P (E(θ,M))

6: Mutate if (u(0, 1) < 0.7) θi = θ̃ji , j = rand()%p
7: else swap(θi, θj)
8: Probability P1 = P (E(θ′,M))
9: Accept/Reject if p > min(P1/P0, 1), undo mutation

10: iter += 1
11: end while
12: return P
13: end procedure

to the video, forming the final composition, where visual activities
are synchronized with musical notes within every music segment,
and transitions between music segments are echoed with suitable
visual transitions, rendering an audio-visual synchresis.

7 Results and Evaluation

We have successfully applied our algorithm to a variety of video
clips and background musical pieces. Here we show six examples.
We have further conducted a user study on these six examples. All
results have been included in the supplemental material and need to
be watched with background music.

Aurora This example
comprises a set of aurora
and lightening scenes with
the background music
excerpted from Easy
Going by Bjorn Lynne.
The video collection has
36 candidate clips, each
of which is 3-5 seconds
long. The background
music is the segment from second 10 to 30 of the original piece.
It is divided into 10 segments with even length. Thus 10 out of
the 36 candidate video clips were chosen to generate the montage.
This result demonstrate the synchronization of motion change
peaks and music beats. For example, in second 8-10, two strong
optical flashes co-occur with the punctuation of two music strikes,
rendering a pleasant audio-visual resonance.

City Timelapse This
example features breath-
taking timelapse videos
shot by professional
photographers. The shots
were taken from Paris,
Venice, and Besançon.
Most of them have dy-
namic and rhythmic
timelapse motions. We
took 55 separate shots of these videos, each of 2-7 seconds long,
and chose a music segment excerpted from The Chaos Warrior as
the background music. This example demonstrates striking effects
by cutting and synchronizing timelapse videos with the beat of a
piece of music. This is because timelapse videos are in general
more rhythmic than regular shots, and it is easier for the algorithm
to find matching points between such videos and music, such as
the pulsing waves in the videos and the drum beats in the music.



Happy Birthday This ex-
ample demonstrates the
application of our algo-
rithm in organizing video
collections of gatherings
and events to a specific
song. The Happy Birthday
To You song in this exam-
ple has 6 bars. We seg-
mented the song to the finest granularity–each bar is an individual
segment (thus a cut). The 18 input video clips were taken from a
birthday party, each 1-7 seconds long. Our algorithm was able to
find short moments in the videos to match the beat of the music
from a pool of random human/artificial activities that were not in-
tended for the rhythm of the song at all, such as the clown show,
kids play, and flashing lights.

Adventure This example
demonstrates the applica-
tion of our algorithm in or-
ganizing video collections
of outdoor activities, such
as sky diving, water ski-
ing, and canoeing. 52
short video clips were used
as the visual input. The
background music was ex-
cerpted from Lottyr, Lady of the Hells (second 40 - 85). Aside
from audio-visual synchronization inbetween cuts, this example
also demonstrates our algorithm’s capability of automatically vary-
ing videos play speed to match the pace of the background music.
In the first part of the composition, a switch to a scene of extremely
slow motion was made to match a sudden slow-down in the music.
The music then transitions to a faster pace and later to a highly dy-
namic scale with a mixture of multiple sound tracks. The associated
video segments also deliver a visual experience that resonates with
the music.

Wild This example covers
animal, flower, desert and
forest scenes in the wild.
35 video clips were used
as the visual input. The
background music was ex-
cerpted from Exploration
(second 0-27). The move-
ments of the animals (the
baboon, elephant and pen-
guins), being irregular at first, were successfully temporally scaled
and snapped to the musical beats as well. Variations in pace and
motion have also been demonstrated (second 15-22).

7.1 User Study

A set of user studies were designed and conducted to evaluate the
qualitative performance of our algorithm comparing to 4 control
groups. The first two groups are results of our algorithm with the
cut-to-the-beat feature turned off (Group A) and the synchroniza-
tion feature turn off (Group B), respectively. The other two groups
are results created by human users (Group C and Group D). The
user study reveals that our full result is significantly better than the
results with either of the two features turned off. Our result is also
rated higher (in most cases) than the two groups created by human
users.

The user study was performed on six examples (for space limits,

only five of the six are described above). For group A, we took our
result, and shifted the video cutting points by a Gaussian kernel (up
to 2 seconds): the length of one video was shrunk and the length
of its neighbor was extended by the same amount. The shrunk
part was replaced with extra frames taken from the extended video.
All other audio-visual correspondence remains the same. This pre-
serves existing synchronization in most of the frames. For group B,
we perturbed the temporal scaling factor and the position of the start
frame for half of the videos, and chose a random new video (with a
random temporal scaling factor and start frame) for the other half,
while keeping the cutting points unchanged. Group C and D are
manually created results on the same music and video input set. The
users were instructed to apply the cut-to-the-beat and synchroniza-
tion principles during their editing. The users were also encouraged
to apply any high level video editing heuristics. But the editing op-
erations were restricted to be the same as what our algorithm does
(choosing a start frame and varying the temporal scaling factor).
The user who created Group C is a television and broadcast jour-
nalism major with 4 years of experience in video editing (Expert
User); the user who created Group D only had a few video editing
practices in the past (Average User). Both of them used the Adobe
Premiere software to complete this task. Average editing time per
example is about 15 minutes. The 4 control groups, plus our result,
form a 6× 5 video set in our subsequent user study.

Our study collected 29 participants’ ratings. Each participant was
asked to watch the above six sets of videos. The 5 results of each
set (our result plus 4 control groups) were displayed on the same
screen side by side in random order. The participant could watch
several of them simultaneously, or one at a time. He/she was then
asked to rate the results in a scale between 1 and 5, 1 for the worst, 5
for the best. The same score could be given to two different results
if they were regarded as of indiscernible quality. Table 1 shows
the average score of every group. Our result was rated the highest
(3.92), followed with a margin of 0.3 by the result from Expert
User (Group C). The result without the cut-to-the-beat feature and
the result from Average User (Group D) fell in the next range and
were close to each other. The result without synchronization had
the lowest score.

Table 1 also shows average ratings by different subpopulations ac-
cording to information collected from questionnaire. The first sub-
population division is expert/non-expert. In the expert subpopula-
tion, the advantage of our result is more significant, and the margin
between our result and that without synchronization is even larger.
The second subpopulation division is male/female. Significance
test shows the difference of the two sub-groups’ ratings is not sta-
tistically significant. The last division separates the participants’
ratings of the first 3 sets of videos from those of the next 3 sets
in case the subjects had learned the patterns in the first half and be-
came biased in the second half. Data from these two subpopulations
did not pass the significance test neither. Notably, in all the subpop-
ulations, our result holds an advantage of two standard deviations
(computed by bootstrap sampling) away from the control groups.

We then summarize the fraction that each method was rated the best
or the worst (Fig. 7 left), and head-to-head comparison between
our method and the control groups in terms of the fraction that one
method was rated higher than the other (Fig. 7 right). The first plot
confirms that our result and that of Expert User have the highest
rating, and the result without synchronization is the worst. Notably,
the result from Expert User has almost the same fraction of best
ratings as our result, while its average score is lower (Table 1). In
the second plot, our result again, holds a consistent advantage over
the control groups. Note that the sum of the fractions is not equal to
1 because if two methods were both rated 5, they are both counted
as best rating.



Subpopulation #rating Ours - cut-to-beat - synchronization Expert User 1 Average User
all 29× 6 3.92±0.08 3.37±0.09 2.86±0.10 3.58±0.10 3.20±0.09
expert 8× 6 4.27±0.19 3.31±0.14 2.69±0.16 3.50±0.19 2.97±0.17
non-expert 21× 6 3.79±0.09 3.40±0.11 2.93±0.12 3.61±0.11 3.29±0.11
male 18× 6 3.94±0.10 3.30±0.10 2.80±0.12 3.68±0.12 3.28±0.12
female 11× 6 3.88±0.13 3.56±0.14 2.97±0.16 3.42±0.16 3.08±0.15
1st half 29× 3 3.86±0.12 3.17±0.12 3.31±0.14 3.22±0.13 3.25±0.14
2nd half 29× 3 3.98±0.11 3.57±0.11 2.41±0.12 3.94±0.13 3.15±0.12

Table 1: Average rating (from 1 - 5, higher is better) of results by different methods and subpopulations.

Figure 7: Left: Fraction that one method is rated the best (green)
or the worst (red). Right: Fraction that one method is rated higher
than another

Figure 8: Top: Average rating for different methods by different
groups. Bottom: Average rating of each example among different
methods.

In Figure 8 (bottom), we compare the average user rating among
the 5 groups on each of the six examples. The plot shows our result
was rated the highest on 3 of the 6 examples (Aurora, City time-
lapse, and Wild). The result from Expert User was rated the highest
on 2 examples (Happy birthday and Adventure). The result from
Average User was rated the highest on “Ballet”. Figure 8 top is a
bar chart visualization of Table 1.

8 Related Work and Future Extensions

Related Work Sound computation has been on an independent
track in parallel of video editing in computer graphics. The most
relevant topic to our work is sound-based animation [Langlois
and James 2014; Shiratori et al. 2005; Lee and Lee 2005; Car-
dle et al. 2002; Doel et al. 2001] and music-driven photograph
slideshow [Chen et al. 2006]. In particular, our work bears some re-
semblance to dance-to-music character animation in [Shiratori et al.
2005], which synthesizes character animation sequences by analyz-
ing the rhythm, structure and intensity of both the music and the
motion. And coincidentally, the concept of audio-visual synchre-
sis was also advocated recently in [Langlois and James 2014]. The

key difference between our work and previous sound- or music-
driven animation is that our visual component is not an animated
object but existing video clips. Therefore, the degree of freedom in
the manipulation of the visual component is different. Specifically,
we manipulate video sequences in a passive mode while animation
synthesis is a more active mode.

On the other hand, recent work on video editing suggests a trend
of visual computing in a multi-modal setting. For example,
[Berthouzoz et al. 2012] edit interview videos according to text
transcripts, [Davis et al. 2014] use invisible visual signals to detect
sound from source objects. [Arev et al. 2014] edit video footages
from multiple social cameras to produce video sequences with co-
herent cuts. [Wang et al. 2014] compute nonlinear video alignment
from an arbitrary number of videos. Our work follows this trend,
and extends the application of sound-based animation to music-
driven video composition.

Limitations and Future Work One limitation of the proposed
algorithm is the use of MIDI as the music representation in our
pipeline. Currently the waveform and MP3 are more versatile mu-
sic formats. Our use of MIDI limits the applicability of the pro-
posed approach. Therefore, it is desirable to explore the waveform
or MP3 audio format in music analysis. This brings up additional
technical challenges, such as music segmentation [Chai 2006] and
note onset detection [Bello et al. 2004], although alternative mu-
sic formats and feature engineering could easily replace the cur-
rent counterparts in our computational framework. On the other
hand, MIDI is gaining increasing popularity with the digital music
trend. Compared to the waveform and MP3, MIDI is an organ-
ically editable audio representation. This representation not only
allows more accurate semantic analysis of audio signals, but also
sheds light on new research methodologies on such topics as audio
encoding, audio synthesis and audio editing.

Our system has shown a great promise in automated creation of
video montage without requiring a coherent storyline. To support
semantics-aware editing, however, it would be necessary to have
users in the loop, where humans are allowed to specify constraints
in the optimization, and help the algorithm produce videos with
desired semantics in an iterative manner. Another way to extend
the algorithm is to develop music-video matching criteria in other
dimensions, for example, timbre of sound vs color of shape, melody
of music vs mood of the visual event. More sophisticated music
video editing effects, such as VJing software features, could also
be added. Last but not the least, given the explosive amount of
visual and audio data available online, it would be of great power to
have automatic algorithms that search for compatible music given
video clips and vice versa.
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