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Abstract 

In dynamic stochastic user equilibrium simultaneous route and departure time choice 

(DSUE-SRDTC) problems, route travel costs can be non-monotone even if route travel times are 

monotone with respect to route flows. As a result, the mapping function of the variational inequality 

(VI) problems for the DSUE-SRDTC problems can be non-monotone, and many existing solution 

algorithms developed for the DSUE-SRDTC problems do not guarantee convergence under this 

non-monotone condition. This paper formulates the DSUE-SRDTC problem with fixed demand as a 

system of nonlinear equations. The mapping function of the proposed system of nonlinear equations is 

defined by a dynamic route choice problem, which can also be formulated as a VI problem with a 

strictly monotone mapping function under some assumptions. This property enables that the solution 

algorithm for the DSUE-SRDTC problem can avoid the requirement of the monotonicitiy of the route 

travel cost functions for the convergence of the solution procedure. A backtracking inexact 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is adopted to solve the system of nonlinear 

equations, and iterative methods are developed to generate an initial solution for the BFGS method 

and solve the dynamic route choice problem. Finally, numerical examples are set up to show that the 

proposed method outperforms many existing algorithms for solving the DSUE-SRDTC problem in 

terms of guaranteeing solution convergence. 

Keywords: Dynamic traffic assignment; Dynamic stochastic user equilibrium; Simultaneous route and 

departure time choice; Nonlinear equations; Iterative method; BFGS method. 

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/
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1. Introduction 

Dynamic traffic assignment (DTA) problems have two fundamental components: the traffic flow 

component and the travel choice principle (Szeto and Lo, 2006). The traffic flow component depicts 

how traffic propagates inside a traffic network and hence governs the network performance in terms 

of travel time (see e.g., Szeto, 2008; Sumalee et al., 2012; Ngoduy, 2013; Zhang et al., 2013; Zhong 

et al., 2013; Zhu et al., 2013; Balijepalli et al., 2014; Chen et al., 2014; Chiabaut et al., 2014). This is 

sometimes referred to as a dynamic network loading (DNL) model. 

A travel choice principle models travelers’ propensity to travel, e.g., how they select their routes, 

departure times, modes, or destinations. Traditionally, most of DTA problems assume that travelers 

have perfect travel information and their travel choices are governed by either the dynamic system 

optimal principle (e.g., Merchant and Nemhauser, 1978a,b; Ma et al., 2014; Mesa-Arango and 

Ukkusuri, 2014; Shen and Zhang, 2014) or the dynamic user optimal (DUO) principle (e.g., Iryo, 

2013; Blumberg-Nitzani and Bar-Gera, 2014). The DUO principle assumes that travelers select their 

routes and/or departure times to minimize their actual travel costs. However, travelers may have 

imperfect information and different perceptions toward travel costs rather than perfect information 

and homogeneous perceptions (Han, 2003). To overcome this limitation, the dynamic stochastic user 

equilibrium (DSUE) principle was proposed to model how travelers behave in transportation 

networks (e.g., Vythoulkas, 1990; Chen and Feng, 2000; Lim and Heydecker, 2005; Szeto et al., 

2011). These two principles can be adopted in the three categories of DTA problems (Szeto and Wong, 

2012): (1) the pure departure time choice problems (e.g., Vickrey, 1969; Arnott et al., 1990; Lindsey, 

2004; Qian and Zhang, 2013; Siu and Lo, 2013), (2) the pure route choice problems (e.g., Merchant 

and Nemhauser, 1978a,b; Carey and Srinivasan, 1993; Carey and Subrahmanian, 2000; 

Ziliaskopoulos, 2000; Lo and Szeto, 2002a,b; Han, 2003; Ban et al., 2008, 2012a,b; Chow, 2009; Nie 

and Zhang, 2010; Mounce and Carey, 2011; Nie, 2011; Zheng and Chang, 2011; Carey and Ge, 2012; 

Carey and Watling, 2012; Han et al., 2013a; Long et al., 2013; Zhu and Ukkusuri, 2013), and (3) the 

simultaneous route and departure time choice (SRDTC) problems (e.g., Mahmassani and Herman, 

1984; Friesz et al., 1993; Ran and Boyce, 1996; Huang and Lam, 2002; Szeto and Lo, 2004; 

Heydecker and Addison, 2005; Lim and Heydecker, 2005; Mun, 2011; Han et al., 2013b; Siu and Lo, 

2013; Friesz and Meimand, 2014). This paper mainly focuses on the DSUE SRDTC (DSUE-SRDTC) 

problem with fixed demand. 

Similar to the DSUE route choice problems (e.g., Vythoulkas, 1990; Szeto et al., 2011, Meng and 

Khoo, 2012), the DSUE-SRDTC problems can be formulated as fixed point (FP) problems (e.g., Lim 

and Heydecker, 2005), i.e., multiplying OD demands with route and departure choice probabilities 
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yields route flows, where the choice probabilities are functions of route flows. The DSUE-based DTA 

problems formulated as FP problems are usually solved by the method of successive averages (MSA) 

(e.g., Ran and Boyce, 1996; Han, 2003), which relies on a predetermined stepsize for guaranteeing 

convergence. However, the convergence speed of the MSA is slow due to improper stepsize (i.e., too 

large or too small for some iterations). Liu et al. (2009) proposed a self-regulated averaging method 

(SRAM) to deal with the slow convergence problem and to solve the deterministic-network SUE 

problem. SRAM was further used by Szeto et al. (2011) to solve a multi-class doubly stochastic 

dynamic traffic assignment. If the stepsize in the MSA is fixed to be 1.0, then it becomes the pure 

network loading (PNL) method (Han, 2003). Nevertheless, these solution algorithms cannot always 

guarantee convergence even for the DSUE route choice problems (see examples in Han, 2003 for 

details). 

The DSUE-SRDTC problems can also be analytically formulated as variational inequality (VI) 

problems (e.g., Chen, 1999), and be solved by any general computational technique developed for VI 

problems, such as the MSA (e.g., Ran and Boyce, 1996; Ran et al., 2002), the diagonalisation method 

(e.g., Ran and Boyce, 1996; Han, 2003), the projection method (e.g., Wu et al., 1998; Chen and Feng, 

2000; Zhang et al., 2001), and so on, provided that the convergence requirements are satisfied. The 

convergence of solution algorithms for VI problems is mainly determined by the continuity and 

monotonicity of their mapping functions. For example, the convergence of projection-based method 

developed for VI problems requires their mapping functions to be continuous and strictly monotone 

(Theorem 1.6 in Nagurney, 1993; Jang et al., 2005). This strictly monotone requirement is in fact 

stronger than necessary and other solution algorithms for VI problems with weaker convergence 

requirements were used in the literature. For instance, the convergence of both the alternating 

direction method (Lo and Szeto, 2002a,b) and the descent method (Szeto and Lo, 2004) requires the 

mapping function of the VI problems to be co-coercive. Co-coercive mappings are monotone and 

Lipschitz continuous but may not necessarily be strongly monotone (Zhao and Hu, 2007). Many 

algorithms with even weaker convergence requirements have been developed to solve DTA problems 

formulated as VI problems, such as the day-to-day route swapping algorithm (Huang and Lam, 2002; 

Szeto and Lo, 2006; Tian et al., 2012) and the extragradient method (Long et al., 2013), which, 

respectively, require that the mapping functions to be continuous and monotone (Mounce and Carey, 

2011) and to be Lipschitz continuous and pseudomonotone (Panicucci et al., 2007) for guaranteeing 

convergence. In summary, the convergence of solution methods for VI problems generally requires 

that the mapping functions are (Lipschitz) continuous and (strictly or pseudo-) monotone. However, 

we found that the generalized route travel cost can be non-monotone with respect to route flows, 

even if the travel time function is monotone. This leads to that the mapping function of the VI 
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problem for the DSUE-SRDTC problem can be non-monotone, and the convergence requirement of 

many existing solution algorithms for the DSUE-SRDTC problems which are formulated as VI 

problems in general networks cannot be met. 

Different from traditional methods, this paper analytically reformulates the DSUE-SRDTC 

problem with fixed demand as a system of nonlinear equations instead of a FP problem or a VI 

problem, whose decision variables are not route flows but the minimum perceived travel costs of OD 

pairs instead. Under the DSUE-SRDTC condition, the perceived travel costs are the same for all 

travelers who belong to the same OD pair. If the minimum perceived travel costs are given for all OD 

pairs, then the total fixed demand for each OD pair can be retrieved endogenously by the specified 

equilibrium cost via solving a relaxed DSUE-SRDTC problem. In this case, we can solve the relaxed 

DSUE-SRDTC problem to obtain the equilibrium route flows and the corresponding total OD 

demands, which are the sum of route flows associated with the OD pairs over time. By setting the 

retrieved OD demands equal to the actual OD demands, we can define a system of nonlinear 

equations, whose mapping function is defined by a relaxed DSUE-SRDTC problem. We found that 

the relaxed DSUE-SRDTC problem can be equivalently reformulated as a dynamic route choice 

problem. Both the relaxed DSUE-SRDTC problem and the equivalent dynamic route choice problem 

can be formulated as a VI problem. However, the mapping function of the VI problem for the former 

can be non-monotone, while the mapping function of the VI problem for the latter is strictly 

monotone under some assumptions. Therefore, we can solve the equivalent dynamic route choice 

problem instead of the relaxed DSUE-SRDTC problem to evaluate the mapping function of the 

proposed system of nonlinear equations. 

This paper develops an iterative method to solve the VI problem for the DSUE-SRDTC problem 

and the VI problem for the equivalent dynamic route choice problem of the relaxed DSUE-SRDTC 

problem. As mentioned above, the mapping function of the VI problem for the DSUE-SRDTC 

problem can be non-monotone, and the proposed iterative method may fail to solve the DSUE-SRDTC 

problem. However, the mapping function of the VI problem for the dynamic route choice problem is 

strictly monotone under some assumptions, and hence the iterative method guarantees convergence if 

the assumptions are satisfied. This paper also adopts the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method, which is one of the most popular members of quasi-Newton methods, to solve the proposed 

system of nonlinear equations. The advantage of a BFGS algorithm over a Newton method is that the 

super-linear convergence of the former is sufficiently fast, while its computational complexity is 

significantly less than that of the Newton method. The major difficulty for solving the system of 

nonlinear equations by the BFGS methods is the lack of practical line search strategy. A backtracking 

inexact BFGS method proposed by Yuan and Lu (2008) is adopted to solve the proposed system of 

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://www.columbia.edu/~goldfarb/
http://rutcor.rutgers.edu/~shanno/
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nonlinear equations. The merits of this method include the following: It has a norm descent property 

(i.e., the search direction is descent for the norm function), and its global and superlinear convergence 

can be achieved under mild conditions (Yuan and Lu, 2008). Compared with traditional methods for 

solving the DSUE-SRDTC problem, the proposed method can avoid the requirement of the 

monotonicitiy of the route travel cost functions for the convergence of the solution procedure. It only 

requires the route travel time functions are monotone. Numerical experiments show that the proposed 

method outperforms many existing solution algorithms in terms of guaranteeing convergence. 

The contributions of this paper include the following:  

First, this paper provides a new approach to formulate the DSUE-SRDTC problem. Instead of 

using route flows as decision variables as in the classical VI or FP formulations, equilibrium cost is 

used as a decision variable in a system of nonlinear equations. This formulation approach can be 

adopted to formulate other DTA or traffic assignment problems.  

Second, we develop a novel, efficient, and robust solution methodology to solve the 

DSUE-SRDTC problem with fixed demand. This methodology relies on the backtracking inexact 

BFGS method to determine OD travel cost and an iterative scheme to solve many DSUE route choice 

subproblems and determine an initial feasible solution. The convergence of our algorithm only 

requires the monotonicity of route travel time.  

Third, we illustrate the non-monotonicity of generalized route travel cost functions in 

DSUE-SRDTC problems. This implies that most of existing algorithms that rely on the monotonicity 

of the mapping function of VI may not be able to get optimal solutions for DSUE-SRDTC problems. 

The rest of this paper is organized as follows: In the next section, the FP and VI formulations of 

the DSUE-SRDTC problem is presented, and an alternative DSUE-SRDTC condition is developed. 

The DSUE-SRDTC problem is equivalently reformulated as a system of nonlinear equations in 

Section 3. Section 4 provides a BFGS method to solve the DSUE-SRDTC problem. Numerical 

examples are given in Section 5 to illustrate the performance of the proposed solution algorithms. 

Finally, conclusions are drawn in Section 6. 

2. Dynamic stochastic user equilibrium simultaneous route and departure time choice problem 

2.1. Notations 

We consider a network G (N, A) with multiple origins and destinations, where N  is defined as 

the set of nodes and A  denotes the set of arcs (links). R  and S  denote the set of origin nodes and 

the set of destination nodes, respectively. We discretize the time period T of interest into a finite set of 

time intervals { 1,2, , }K k K= =  . Let δ  be the interval length such that K Tδ = . The demand 

period [0, ]dT  is assumed to be long enough, and travelers depart from their origins at a set of time 
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intervals { 1,2, , }d dK k K= =  , where dK K<  and d dK Tδ = . The following notations are 

adopted throughout this paper: 

rsP  set of routes connecting OD pair (r, s). 

( )rs
pf k  flow entering route rsp P∈  during interval k. 

f  vector of route flows ( )( ), , , ,rs rs
p df k r R s S p P k K∀ ∈ ∈ ∈ ∈ . 

rsQ  total demand for OD pair (r, s) during the demand period. 

Q  vector of total demands ( ), ,rsQ r R s S∀ ∈ ∈ . 

( )rsq k  traffic demand OD pair (r, s) during interval k. 

( )rs
pt k  actual route travel time for flow entering route rsp P∈  during interval k. It is a 

function of route flows f  

( )rs
k tψ  generalized travel cost function with respect to the travel time t for travelers departing 

from origin r to destination s during interval k, which is assumed to be continuous and 

strictly increasing. 
-1( )rs

kψ ⋅  inverse function of ( )rs
k tψ . 

( )rs
pc k  generalized travel cost incurred by travelers entering route rsp P∈  during interval k 

and ( ) ( ( ))rs rs rs
p k pc k t kψ= . 

c  vector of generalized travel costs ( )( ), , , ,rs rs
p dc k r R s S p P k K∀ ∈ ∈ ∈ ∈ . 

ˆ ( )rs
pc k  generalized travel cost perceived by travelers entering route rsp P∈  during interval 

k. 

ĉ  vector of perceived generalized travel costs ( )ˆ ( ), , , ,rs rs
p dc k r R s S p P k K∀ ∈ ∈ ∈ ∈ . 

( )rsc k  expected perceived travel cost for travelers who depart from origin r and travel to 

destination s during interval k. 

ˆ rsπ  minimum perceived travel cost between OD pair (r, s) during the studied period. 

π̂  vector of minimum perceived travel costs ( )ˆ , ,rs r R s Sπ ∀ ∈ ∈ . 

( )rsP k  
probability of travelers who depart from origin r during interval k and travel to 
destination s. 

( )rs
pP k  probability of travelers entering route rsp P∈  during interval k. 

Ω  feasible solution set of the DSUE-SRDTC problem. 

2.2. Overview of the DSUE-SRDTC problem 

Following the static stochastic user equilibrium principle (Daganzo and Sheffi, 1977), the 

DSUE-SRDTC condition can be stated as follows: In a dynamic stochastic user equilibrium network, 

no traveler can improve his/her perceived travel cost by unilaterally changing his/her departure time 

and route combination. The DSUE-SRDTC problem assumes that the perceived travel costs of 

travelers are imprecise. To model the perceived travel cost, an error term is often added to the actual 
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travel cost, and many probability distributions have been applied to model the error. The perceived 

route travel cost for travelers equals then the sum of two components, a systematic term and an error 

term, formulated as follows: 

ˆ ( ) ( ) ( )rs rs rs
p p pc k c k kε= + , (1) 

where ( )rs
p kε  is the random component of the travel cost of route rsp P∈  perceived by travelers, 

which is determined by the probability distributions of experienced route travel cost. If ( )rs
p kε  is 

assumed to be independently and identically distributed Gumbel variates, then a logit-based choice 

model is resulted: 
exp( ( ))

( )
exp( ( ))

rs

rs
r prs

p rs
r l

l P

c k
P k

c k
θ
θ

∈

−
=

−∑
, (2) 

where rθ  is a dispersion parameter associated with traveler’s route choice. 

For the logit model, travelers’ expected perceived travel cost can be formulated as follows 

(Williams, 1977; Lim and Heydecker, 2005): 

1ˆ( ) [min { ( )}] ln exp( ( ))rs
rs

rs rs rs
k r lk P

l Pr

c k E c k c kθ
θ∈

∈

= = − −∑ . (3) 

Similar to the dynamic route choice model, if the expected travel cost associated with the departure 

time is assumed to be independently and identically distributed Gumbel variates, then we can obtain a 

logit-based departure time choice model: 
exp( ( ))( )

exp( ( ))
d

rs
rs t

rs
t

h K

c kP k
c h

θ
θ

∈

−
=

−∑
, (4) 

where tθ  is a dispersion parameter associated with traveler’s departure time choice, and t rθ θ≤  

(Lim and Heydecker, 2005). 

By definition, we have 

( ) ( )rs rs rsq k Q P k= , and (5) 

( ) ( ) ( )rs rs rs
p pf k q k P k= . (6) 

Eqs. (5) and (6) imply flow conservation, i.e., the summation of route flows equals the total OD 

demand, given as follows: 

( )
rs

d

rs rs
p

k K p P

f k Q
∈ ∈

=∑ ∑ . (7) 

Eqs. (5) and (6) also imply flow non-negativity: 

≥f 0 , (8) 

because total demands and route and departure time choice probabilities are non-negative.  
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By substituting (2) and (4) into Eqs. (6) and (5) respectively, we have 
exp( ( ))( )

exp( ( ))
d

rs
rs rs t

rs
t

h K

c kq k Q
c h

θ
θ

∈

−
=

−∑
, and (9) 

exp( ( ))
( ) ( )

exp( ( ))
rs

rs
r prs rs

p rs
r l

l P

c k
f k q k

c k
θ
θ

∈

−
= ⋅

−∑
. (10) 

Lim and Heydecker (2005) provided a DSUE condition for the logit-based SRDTC problem, 

which can be used to check the solution quality of the DSUE-SRDTC problem. This paper develops an 

alternative DSUE condition for the logit-based SRDTC problem, given as follows 

Theorem 1. (DSUE-SRDTC condition). Let ( ) 0rs
pf k ≥  be flow that enters route rsp P∈  during 

interval k and is calculated according to the logit-based choice model. Then, there exists a vector 
* *[ ]rsπ=π  such that the following condition is satisfied: 

*
1 2( ) 0 ( ) ( , )rs rs rs rs

pf k k k pπ π π> ⇒ + = , (11) 

where 

1
1 1( ) ln ( )

rs

rs rs
l

l Pt r

k f kπ
θ θ ∈

 
= − 
 

∑ , and (12) 

2
1( , ) ( ) ln ( )rs rs rs

p p
r

k p c k f kπ
θ

= + . (13) 

Proof. Taking logarithms on both sides of Eqs. (9) and (10) and rearranging the resultant equations, 
we have  

1 1 1( ) ln ( ) ln ln exp( ( ))
d

rs rs rs rs
t

h Kt t t

c k q k Q c hθ
θ θ θ ∈

+ = − −∑ , and (14) 

1 1 1 1( ) ln ( ) ln ( ) ln exp( ( )) ln ( ) ( )
rs

rs rs rs rs rs rs
p p l

l Pr r r r

c k f k q k c k q k c kθ
θ θ θ θ∈

+ = − − = +∑ .(15) 

Since the right hand side of Eq. (14) is independent of a specific time interval k, we can define:  

* 1 1ln ln exp( ( ))
d

rs rs rs
t

h Kt t

Q c hπ θ
θ θ ∈

= − −∑ . (16) 

Substituting Eq. (16) into Eq. (14) and rearranging the resultant equation, we have 

* 1( ) ln ( )rs rs rs

t

c k q kπ
θ

= − . (17) 

Substituting Eqs. (17) into Eq. (15) and rearranging the resultant equation, we have 

*1 1 1( ) ln ( ) ln ( )
rs

rs rs rs rs
p l p

l Pt r r

c k f k f k π
θ θ θ∈

 
+ − + = 
 

∑ , or  
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*
1 2( ) ( , )rs rs rsk k pπ π π+ =   

where 1 ( )rs kπ  and 2 ( , )rs k pπ  are expressed by Eqs. (12) and (13), respectively. This completes the 

proof. □ 

Theorem 2. (Special case of the DSUE-SRDTC condition). For the special case of t rθ θ= , there 

exists a vector * *[ ]rsπ=π  such that the following condition is satisfied: 

*
2( ) 0 ( , )rs rs rs

pf k k pπ π> ⇒ = , (18) 

where 2 ( , )rs k pπ  is given by Eq. (13). 

Proof. Substituting t rθ θ=  into Eq. (12), we have 1 ( ) 0rs kπ = . Therefore, Eq. (11) implies  

1 2 2 ˆ( ) 0 ( ) ( , ) ( , )rs rs rs rs rs
pf k k k p k pπ π π π> ⇒ + = = .  

This completes the proof. □ 

2.3. An equivalent VI formulation 

Similar to the stochastic dynamic route choice problem (Chen and Feng, 2000; Han, 2003), the 

DSUE-SRDTC problem can be formulated as a VI problem. According to Theorem 1, the 

DSUE-SRDTC condition can be rewritten as follows: 

ˆ , if ( ) 0,
ˆ ( ) , , , ,

ˆ , if ( ) 0,

rs rs
prs rs

p drs rs
p

f k
c k r R s S p P k K

f k

π

π

= > ∀ ∈ ∈ ∈ ∈
≥ =

 (19) 

where ˆ ( )rs
pc k  is the generalized travel cost perceived by travelers entering route rsp P∈  during 

interval k, and ˆ rsπ  is the minimum perceived generalized travel cost for travelers between OD pair (r, 

s). They can be formulated as follows:  

ˆ ˆmin ( )rs rs
pc kπ  =   , and (20) 

1 2
1 1 1ˆ ( ) ( ) ( , ) ( ) ln ( ) ln ( )

rs

rs rs rs rs rs rs
p p l p

l Pt r r

c k k k p c k f k f kπ π
θ θ θ∈

 
= + = + − + 

 
∑ . (21) 

The first term on the right hand side of the second equality sign in Eq. (21) is the actual route travel 

cost, and the second and the third terms on the right hand side of the second equality sign in Eq. (21) 

are perceived components of the perceived travel cost, respectively. 

Equivalently, the DSUE-SRDTC condition can be rewritten as follows: 

ˆ ˆ( )[ ( ) ] 0, , , ,rs rs rs rs
p p df k c k r R s S p P k Kπ− = ∀ ∈ ∈ ∈ ∈ , and (22) 

ˆ ˆ( ) 0, , , ,rs rs rs
p dc k r R s S p P k Kπ− ≥ ∀ ∈ ∈ ∈ ∈ . (23) 
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The logit-based DSUE-SRDTC problem with fixed demand is to determine a vector of route flows 

to satisfy (7), (8), and (20)-(23). This problem can be expressed as the following VI problem: 

Theorem 3. The DSUE-SRDTC problem (7), (8), and (20)-(23) can be equivalently formulated as a 

finite-dimensional VI problem: finding a vector Ω∈*f  such that 
* *ˆ ( ) ( ) ( ) 0,

rs
d

rs rs rs
p p p

r R s S k Kp P

c k f k f k
∈ ∈ ∈∈

 − ≥ ∀ ∈Ω ∑∑ ∑ ∑ f , (24) 

where Ω  is a closed convex set, and 

: ( ) , ,
rs

d

rs rs
p

k Kp P

f k Q r R s S
∈∈

  Ω = ≥ = ∀ ∈ ∈ 
  

∑ ∑f 0 . (25) 

The proof directly follows Friesz et al. (1993) and Chen (1999). 

2.4. Generalized route travel cost function and its non-monotonicity 

The generalized travel cost for travelers departing from r to s is assumed to be made up of two 

components (Huang and Lam, 2002; Szeto and Lo, 2004; Lim and Heydecker, 2005): (1) travel time 

of the trip, and (2) a “penalty” for arriving at destinations early\late. We assume that travelers going to 

their destinations have a desired arrival time period, expressed as the arrival time window 
* *[ , ]s s s sk k−∆ + ∆ , where *

sk  is the middle point of the time window and may represent the official 

work start time at destination s, s∆  is the interval of arrival time flexibility. Travelers will incur 

schedule delay costs if they arrive at the destination outside this arrival time window; otherwise, they 

acquire no schedule delay cost for arriving within the desired arrival time window. The following 

generalized travel cost function is adopted in this paper: 
* *

* *

[ ],  if ,

( ) [ ],  if ,
0,                          otherwise,

s s s s
rs
k s s s s

k k t k t k
t t k t k k t k

β

ψ α γ

 −∆ − − + < −∆


= + + − −∆ + > + ∆



 (26) 

where α  is the unit cost of travel time; β  and γ  are the unit cost of schedule delay time-early 

and -late, respectively. According to empirical results (Small, 1982), we have β α γ< < . 

Substituting the route travel time into the generalized travel cost function (26), we can obtain the 

generalized route travel cost as follows: 

* *

* *

[ ( )],  if ( ) ,

( ) ( ) [ ( ) ],  if ( ) ,

0,                                  otherwise.

rs rs
s s p p s s

rs rs rs rs
p p p s s p s s

k k t k k t k k

c k t k k t k k k t k k

β

α γ

 −∆ − − + < −∆
= + + − −∆ + > + ∆



 (27) 

Since the DSUE-SRDTC problem is formulated as a VI problem and the solution set is closed and 

convex, if its mapping function (i.e., perceived route travel cost functions) is continuous with respect 

to route flows, then there is at least a solution to the problem. If its mapping function is further strictly 
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monotone with respect to route flows, then there is exactly one solution to the problem. According to 

Huang and Lam (2002) and Szeto and Lo (2004), route travel cost functions are continuous if route 

travel times are continuous with respect to route flows. It is obvious that the perceived components of 

the perceived route travel costs in Eq. (21) are continuous with respect to route flows. Therefore, the 

perceived route travel costs are continuous with respect to route flows. This implies that if route travel 

times are continuous with respect to route flows, then the mapping function of the VI problem for the 

DSUE-SRDTC problem is continuous and the DSUE-SRDTC problem must have at least a solution.  

Smith and Ghali (1990) proved that route travel times are monotonic with respect to the route 

flows for a single bottleneck. However, Ghali and Smith (1993) pointed out that the generalized route 

travel cost functions are not necessarily monotone if there are multiple active bottlenecks per route, 

but they did not give an example to show it. In the following example, we show that the actual route 

travel cost functions can be non-monotone, even if the route travel time function is monotone.  

Example 1. Non-monotonicity of route travel cost functions. 

We consider the single bottleneck model (Vickrey, 1969). Assume that there is a highway with a 

single bottleneck connecting a residential district with the central commercial district (CBD). Without 

loss of generality, we assume the travel time from bottleneck to destination is zero, and the official 

work start time is zero. The DUO-based solution to the bottleneck model is given as follows (see 

Arnott et al., 1990, for details): 

,  for [ , ],
( )

,  for [ , ].

s o

o e

s t t t
r t

s t t t

α
α β
α

α γ

 ∈ −= 
 ∈
 +

 (28) 

where s
Nt
s

γ
β γ

= −
+

, 0
Nt
s

βγ
β γ α

= −
+

, e
Nt
s

β
β γ

=
+

. 

Consider a different flow pattern that is resulted from an adjustment of the equilibrium flow 

pattern. We increase commuters’ departure rates during [ , ]s ot t  by 1∆  and reduce the commuters’ 

departure rates during [ , ]s ot t  by 2∆ . Let ( )r t  be commuters’ departure rates after the adjustment, 

and ( ( ), )r t t= ∀r  . If the total number of commuters is not changed, then we have 

2 1( ) ( )e o o st t t t− ∆ = − ∆ , and  (29) 

1

2

,  for [ , ],
( )

,  for [ , ].

s o

o e

s t t t
r t

s t t t

α
α β
α

α γ

 + ∆ ∈ −= 
 −∆ ∈
 +

  (30) 
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The route flow rates in Eqs. (28) and (30) generate the following dot products (see Appendix A for 
details): 

2 2
1

1

( ) ( ),
2[ ( )]

o st t
s

α β γ
α α β
+ ∆ −

− − = −
+ ∆ −

c c r r  , and (31) 

( )
2 2
1 1 1

1 1

( ) ( ) ( ) ( )ˆ ˆ, ln
2[ ( )] /

o s o s

t

t t t t s
s s

α β γ α α β
α α β θ α α β βγ
+ ∆ − ∆ − + ∆ −

− − = − +
+ ∆ − −∆ −

c c r r  , (32) 

where r  is the vector of flow rates, and ( ( ), )r t t= ∀r . c  and c  are the vectors of the actual 

travel costs before and after the flow adjustment, respectively. ĉ  and ĉ  are the vectors of the 

perceived travel costs before and after the flow adjustment, respectively. 

Since α β>  and all parameters on the right hand side of Eq. (31) are positive, the only term on 

the right hand side of Eq. (31) is negative, i.e., , 0− − <c c r r  . This implies that the actual route 

travel cost function is non-monotone. 

We set 1.0, 0.5, 1.5α β γ= = = , N = 8000 veh, s = 60 veh/min, and 1 5∆ =  veh/min. 

Substituting the parameters into Eqs. (28)-(32), we have 

63.39ˆ ˆ, 1500
tθ

− − = − +c c r r  . (33) 

According to Eq. (33), Tˆ ˆ( ) ( ) 0− − <c c r r   if 0.04226tθ >  min-1. This implies that the 

perceived route travel cost function can be non-monotone with respect to route flow rates, even if the 

route travel time function is monotone. Therefore, the mapping function of the VI problem (24) may 

be non-monotone due to the non-monotonicity of the actual route travel cost function, and the 

DSUE-SRDTC problem may not have a unique optimal solution. This property leads to the situation 

that many existing solution algorithms (e.g., Han, 2003; Lim and Heydecker, 2005; Szeto et al., 2011) 

developed for solving the DSUE-SRDTC problems cannot guarantee convergence under this 

non-monotonicity condition. 

 

3. A novel formulation 

3.1. A relaxed DSUE-SRDTC problem 

According to Theorem 1, the perceived route travel cost for the used routes are equal and minimal. 

If the minimum perceived route travel cost of each OD pair is given and the demand constraints are 

eliminated, then we can obtain a relaxed DSUE-SRDTC problem where its optimal flow pattern also 

satisfies the DSUE-SRDTC conditions (22) and (23). Similarly, the relaxed DSUE-SRDTC problem 

can also be formulated as a VI problem: finding a vector * R+∈f  such that 
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* *ˆ ˆ( ) ( ) ( ) 0,
rs

d

rs rs rs rs
p p p

k K r R s S p P

c k f k f k Rπ +

∈ ∈ ∈ ∈

   − − ≥ ∀ ∈   ∑ ∑∑ ∑ f . (34) 

where ˆ rsπ  is the minimum perceived route travel cost associated with OD pair (r, s) and is 

predetermined for the VI problem (34). 

The relaxed DSUE-SRDTC problem can be equivalently reformulated as a dynamic route choice 

problem, given as follows: 

Theorem 4. The VI problem (34) can be equivalently formulated as the following VI problem: finding 

a vector * R+∈f  such that 
* * *( ) ( ) ( ) ( ) 0,

rs
d

rs rs rs rs
p p p p

k K r R s S p P

t k k f k f k Rη +

∈ ∈ ∈ ∈

   − − ≥ ∀ ∈   ∑ ∑∑ ∑ f . (35) 

where ( )rs
p kη  is the reference route travel time, and 

( )1 1 1 1ˆ( ) ln ( ) ln ( )
t r r

rs rs rs rs rs
p k l p

l
k f k f kθ θ θη ψ π−  = − − − 

 
∑ . (36) 

Proof. Firstly, we prove that any solutions of the VI problem (35) are also solutions of the VI problem 

(34). Let * R+∈f  be an optimal solution to the VI problem (35). Then, we have 
* *

*
* *

( ),  if ( ) 0,
( )

( ),  if ( ) 0.

rs rs
p prs

p rs rs
p p

k f k
t k

k f k

η

η

= >

≥ =

 (37) 

Since the function ( )rs
k tψ  is monotonic increasing, Eq. (37) implies  

* *
*

* *

( ( )),  if ( ) 0,
( ( ))

( ( )),  if ( ) 0.

rs rs rs
k p prs rs

k p rs rs rs
k p p

k f k
t k

k f k

ψ η
ψ

ψ η

= >

≥ =

 (38) 

According to Eqs. (21) and (36), respectively, we have 

* * * *1 1 1ˆ ( ) ( ( )) ln ( ) ln ( )rs rs rs rs rs
p k p l p

lt r r

c k t k f k f kψ
θ θ θ
 

= + − + 
 

∑ , and (39) 

* * *1 1 1ˆ ( ( )) ln ( ) ln ( )rs rs rs rs rs
k p l p

lt r r

k f k f kπ ψ η
θ θ θ
 

= + − + 
 

∑ . (40) 

Combining Eqs. (38)-(40), we can conclude that *f  satisfies the DSUE-SRDTC condition (19). 

Hence, *f  is also an optimal solution to the VI problem (34). 

Secondly, we prove that any solutions of the VI problem (34) are also solutions of the VI problem 

(35). Let * R+∈f  be an optimal solution to the VI problem (34). Then, *f  must satisfy the 

DSUE-SRDTC condition (19) and *( ) 0rs
pf k >  implies *ˆ ( )rs rs

pc k π≥ . *( ) 0rs
pf k >  further implies 

*ˆ ( ) 0rs rs
pc k π− ≥  and the following  

( ) ( )* 1 1 1 1 1 1ˆ ˆ( ) ln ( ) ln ( ) ln ( ) ln ( )
t r r t r r

rs rs rs rs rs rs
p l p l p

l l
c k f k f k f k f kθ θ θ θ θ θπ− − − ≥ − − −∑ ∑ . (41) 

Since the function ( )rs
k tψ  is monotonic increasing, its inverse function -1( )rs

kψ ⋅  is also monotonic 
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increasing. Therefore, we can substitute each side of inequality (41) into the function -1( )rs
kψ ⋅  to 

obtain the condition * *( ) ( )rs rs
p pt k kη≥  and obtain the condition that  

If *( ) 0rs
pf k > , then * * *ˆ ˆ( ) 0 ( ) ( )rs rs rs rs

p p pc k t k kπ η− ≥ ⇒ ≥ . (42) 

Similarly, we also have the condition that 

If *( ) 0rs
pf k = , then * * *ˆ ˆ( ) 0 ( ) ( )rs rs rs rs

p p pc k t k kπ η− = ⇒ = . (43) 

Eqs. (42) and (43) imply that the condition (37) is satisfied. Therefore, * R+∈f  is also an optimal 

solution to the VI problem (35). □ 

Assumption 1. Route travel times are continuous, differentiable and monotone with respect to route 

flows. 

Assumption 2. The matrix T1
2 ( )− ∇ +∇f fη η  is a strictly diagonally dominant matrix. 

Lemma 1. (Johnson, 1970). An n n×  matrix A is positive definite if and only if the symmetric part 

of A is positive definite, i.e., T1
2 ( )B A A= +  is positive definite. 

Proposition 1. Under Assumptions 1 and 2, the VI problems (34) and (35) guarantee solution 

existence and solution uniqueness. 

Proof. Since the function ( )rs
k tψ  is continuous, -1( )rs

kψ ⋅  is also a continuous function, and hence Eq. 

(36) implies that η  is continuous with respect to route flows. Under Assumption 1, route travel times 

are continuous with respect to route flows, and hence the mapping function of the VI problem (35) is 

continuous. The solution set is also convex and can be reduced to a closed set because the flow cannot 

be greater than its corresponding OD demand. Therefore, the VI problem (35) guarantees solution 

existence (Theorem 1.4 in Nagurney, 1993). 

We can obtain the diagonal elements of the Jacobian matrix ∇f η  as follows: 

1 *

( )
( )

1 1 1 1 1 1 1ˆ ln ( ) ln ( ) .
( ) ( )

rs
p
rs
p

rs rs rs rs
k l p rs rs

lt r r t r l r p
l

k
f k

c f k f k
f k f k

η

ψ
θ θ θ θ θ θ

−

∂
=

∂

      ′ − − − ⋅ − − −              
∑ ∑

  

Since the function ( )rs
k tψ  is strictly increasing, its inverse function -1( )rs

kψ ⋅  is also strictly 

increasing, and the derivative of -1( )rs
kψ ⋅  is positive. Since t rθ θ≤  and ( )rs

pf k  is positive, the 

diagonal elements of the Jacobian matrix ∇f η  are negative. Hence, the diagonal elements of the 

matrix T1
2 ( )− ∇ +∇f fη η  are positive. Moreover, under Assumption 2, T1

2 ( )− ∇ +∇f fη η  is a 

strictly diagonally dominant matrix. Hence, the matrix is positive definite. According to Lemma 1, 

−∇f η  is positive definite, and hence −η  is strictly monotone with respect to route flows. Under 

Assumption 1, route travel times are monotone with respect to route flows, and hence the mapping 
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function of the VI problem (35) is strictly monotone with respect to route flows. This and the 

condition for solution existence imply that the VI problem (35) guarantees solution uniqueness 

(Theorem 1.6 in Nagurney, 1993). 

According to Theorem 4, the VI problem (35) is equivalent with the VI problem (34). Hence, the 

VI problem (34) also guarantees solution existence and solution uniqueness. □ 

The non-diagonal elements of T−∇f η  are given as follows: 

1 *

( )
( )

1 1 1 1 1 1ln ( ) ln ( ) ,
( )

rs
p
rs

l

rs rs rs rs
k l p rs

lt r r t r l
l

k
f k

c f k f k l p
f k

η

ϕ
θ θ θ θ θ

−

∂
− =
∂

      ′ − − − ⋅ − ∀ ≠              
∑ ∑



  

Since the function ( )rs
k tψ  is strictly increasing, its inverse function -1( )rs

kψ ⋅  is also strictly 

increasing, and the derivative of -1( )rs
kψ ⋅  is positive. Since t rθ θ≤  and ( )rs

pf k  is positive, the 

non-diagonal elements of T−∇f η  are positive. When the value of tθ  is closer to the value of rθ , 

the values of the non-diagonal elements of T−∇f η  are smaller, and T1
2 ( )− ∇ +∇f fη η  is more 

likely to be a diagonally dominant matrix. 

Proposition 2. Under Assumption 1, if t rθ θ= , then the VI problems (34) and (35) guarantee 

solution existence and solution uniqueness. 

Proof. If t rθ θ= , then we have  

1 *( ) 1 1ˆ ln ( )
( ) ( )

rs
p rs rs rs

k prs rs
p r r p

k
c f k

f k f k
η

ψ
θ θ

−∂  ′= − − ⋅ ∂  
, and (44) 

( )
0,

( )

rs
p
rs

l

k
l p

f k
η∂

= ≠
∂

. (45) 

Eqs. (44) and (45) imply that −∇f η  is a diagonal matrix with positive diagonal elements, and 

Assumption 2 is satisfied, i.e., the matrix T1
2 ( )− ∇ +∇f fη η  is a strictly diagonally dominant matrix. 

According to Proposition 1, the VI problems (34) and (35) guarantee solution existence and solution 

uniqueness under Assumption 1. This completes the proof. □ 

In the VI problem (34), the vector of the minimum perceived OD travel costs π̂  is a model input. 

For any given π̂ , we can obtain an optimal solution to the VI problem (34). Using Eq. (7), we can 

further retrieve the corresponding vector of OD demands. Therefore, the vector of retrieved OD 

demands is a function of the vector of the minimum perceived OD travel costs π̂ , denoted by ˆ( )S π  

and named the retrieved OD demand function. According to Proposition 2, the optimal solution to the 

VI problems (34) and (35) is unique, and hence we have the following corollaries: 
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Corollary 1. Under Assumptions 1 and 2, the function ˆ( )S π  is an injective function. 

Corollary 2. Under Assumption 1, if t rθ θ= , then the function ˆ( )S π  is an injective function. 

3.2. The DSUE-SRDTC problem formulated as a system of nonlinear equations 

According to the preceding discussion, the vector of retrieved OD demands is a function of the 

vector of the minimum perceived OD travel costs π̂ . Let the vector function of retrieved OD 

demands be equal to the vector of total demands, i.e., ˆ( ) =S π Q . Then, we can obtain a system of 

nonlinear equations, whose decision variables are the minimum generalized perceived OD travel costs 

π̂ . The value of retrieved OD demand function ˆ( )S π  can be obtained by solving a relaxed 

DSUE-SRDTC problem (34), while the total demand vector Q  is an input to the DSUE-SRDTC 

problem and is predetermined. In order to simplify the description of the solution algorithm in the next 

section, we define the following system of nonlinear equations: 

ˆ ˆ( ) ( )= − =Z π S π Q 0 . (46) 

Theorem 5. Under Assumptions 1 and 2, for any solutions of nonlinear equations (46), the 

corresponding route flow solution is the unique optimal solution to the VI problem (24). 

Proof. Let *π̂  be a solution to the system of nonlinear equations (46) and * R+∈f  be the optimal 

solution to the VI problem (34) with *ˆ ˆ=π π . This optimal route flow solution is unique according to 

Proposition 1 under Assumptions 1 and 2. Since the optimal solution to the VI problem (34) must 

satisfy the DSUE-SRDTC conditions (22) and (23), we have 
* * *ˆ ˆ( )[ ( ) ] 0, , , ,rs rs rs rs

p p df k c k r R s S p P k Kπ− = ∀ ∈ ∈ ∈ ∈ , and (47) 

* *ˆ( ) 0, , , ,rs rs rs
p dc k r R s S p P k Kπ− ≥ ∀ ∈ ∈ ∈ ∈ . (48) 

Let *Q  be the vector of retrieved OD demands, i.e., * *( )
rs

d

rs rs
p

k Kp P

f k Q
∈∈

=∑ ∑ . By the definition 

of retrieved OD demand functions, we have * *ˆ( ) =S π Q . Since *π̂  is a solution to the system of 

nonlinear equations (46), we have 
*ˆ( ) =S π Q . (49) 

Hence, we have 
* *( )

rs
d

rs rs rs
p

k Kp P

f k Q Q
∈∈

= =∑ ∑ . (50) 

Since * R+∈f  satisfies Eqs. (47), (48), and (50), *f  is an optimal solution to DSUE-SRDTC 

problem. It is also a unique optimal solution to the VI problem (24) according to Theorem 3. □ 

Theorem 6. Under Assumption 1, if t rθ θ= , then for any solutions of nonlinear equations (46) the 

corresponding route flow solution is an optimal solution to the VI problem (24). 

The proof is similar to that of Theorem 5. 
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Assumption 3. The function ˆ( )S π  is monotone. 

Proposition 3. Under Assumption 3, ˆ( )Z π  is monotone. 

Proof. Since the traffic demand Q  is assumed to be fixed in this paper, −Q  is monotone with 

respect to π̂ . Under Assumption 3, ˆ( )S π  is monotone. Therefore, ˆ ˆ( ) ( )= −Z π S π Q  is monotone 

with respect to π̂ . This completes the proof. □ 

4. Solution algorithms 

According to Theorems 5 and 6, we can obtain an optimal solution to the DSUE-SRDTC problem 

by solving the system of nonlinear equations (46) and the VI problem (35). In this paper, the BFGS 

method will be adopted to solve the systems of nonlinear equations (46). During the implementation of 

the BFGS method, we evaluate the mapping function ˆ( )Z π , in which the function ˆ( )S π  can be 

obtained by solving the VI problem (35). In this section, we will firstly develop an iterative method to 

solve the VI problem (24), which can generate an initial solution for the BFGS method. The iterative 

method will be further extended to solve the VI problem (35). Therefore, the BFGS method forms the 

main solution algorithm, and the iterative method forms a sub-algorithm. Before describing of the two 

solution methods, some gap functions are provided to evaluate the convergence of the algorithms used 

in this paper and the quality of the solutions obtained. 

4.1. Gap functions 

 In this paper, the following two gap functions are adopted to evaluate the quality of the solutions 

of the dynamic route choice problem and the DSUE-SRDTC problem, respectively: 

1( ) max{| ( ) ( ) |}rs rs
p pG t k kη= −f , and (51) 

2 ˆ ˆ( ) max{| ( ) |}rs rs
pG c k π= −f , (52) 

Eqs. (51) and (52) give the maximum gap (i.e., the largest difference between the route travel times 

and the corresponding reference route travel times) for the dynamic route choice problem and the 

maximum gap (i.e., the largest difference between the route travel costs of all used routes and the 

corresponding minimum route travel costs) for the DSUE-SRDTC problem, respectively. 

The following gap function is used to evaluate the convergence of the BFGS method for the 

proposed system of nonlinear equations: 

3 ˆ ˆ( ) ( )G =π Z π . (53) 

If π̂  is a solution to nonlinear equations (46), then the gap function (53) is equal to zero and π̂  is 

the vector of minimum perceived OD travel costs. Otherwise, the gap is positive. 

In order to compare with existing solution methods, the following gap function is adopted to 

evaluate solution quality for the DSUE-SRDTC problem: 
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4 ( ) ( ) ( ) ( )rs rs rs rs
p p

r s p k
G Q P k P k f k= −∑∑∑∑f . (54) 

According to Eq. (6), if f  is an optimal solution to the DSUE-SRDTC problem, then the gap 
function (54) is equal to zero. Otherwise, the gap is positive. 

4.2. Iterative method 

We firstly provide the general iterative scheme proposed by Nagurney (1993), and then develop a 
new smooth function for the general iterative scheme to solve the DSUE-SRDTC problem. The 
proposed function satisfies the required properties of the generalized iterative scheme. 

4.2.1. General iterative scheme  

Assume that there exists a smooth function 

( , ) : nRΩ×Ωg f h  , (55) 

with the following two properties: (i) ˆ( , ) ( )=g f f c f  for all ∈Ωf , and (ii) for every fixed , ∈Ωf h , 

the n n×  matrix , ( , )∇f g f h  is symmetric and positive definite. Then, any function ( , )g f h  with 

the above properties can be used in the following general iterative solution scheme for the VI problem 

(24): 

Step 0: Initialization. Select an initial solution 0 ∈Ωf  and set 0.ι =  

Step 1: Constructing and computing subproblem. Compute 1ι+f  by solving the following VI problem: 
T

1 1( , ) , 0,ι ι ι+ +− ≥ ∀ ∈Ωg f f f f f . (56) 

Step 2. Convergence checking. If 2 1 1( )G ι ε+ <f , where 1ε  is a positive convergence tolerance, then 

stop the algorithm; Otherwise, set 1+=ιι , and return to Step 1. 

Since ( , )∇f g f h  is symmetric and positive definite, the line integral ( , )d∫g f h f  defines a 

function ( , )G f h : RΩ×Ω  such that for a fixed ∈Ωh , ( , )G ⋅ h  is strictly convex and  

( , ) ( , )G= ∇fg f h f h . (57) 

Therefore, the VI problem (56) is equivalent to the following strictly convex mathematical 

programming problem 

min ( , )G ι∈Ωf
f f , (58) 

in which a unique solution 1ι+f  exists. 

4.2.2. The proposed smooth function for the iterative scheme 

In the framework of the general iterative scheme, we propose the following smooth function for 
solving the DSUE-SRDTC problem (24) and the dynamic route choice problem (35): 

1( , ) ( ) (ln ln ),
ρ

= + −g f h F h f h  (59) 
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where ρ  is positive and fixed. It is obvious that function (59) has the two properties required for the 

general iterative scheme, and we can obtain the line integral of ( , )g f h , given as follows:  

T T1( , ) ( , ) ln ( ( ) ln )G d ρ
ρ
 = = + − − ∫f h g f h f f f F h h e f . (60) 

At each iteration ι , substituting ι=h f  into Eq. (60), we can reformulate the subproblem (58) as 

follows: 
T Tmin ln ( ( ) ln )ι ιρ

∈Ω
+ − −

f
f f F f f e f . (61) 

where T(1,1, ,1)=e  . Note that 1/ ρ  is a positive constant in Eq. (60) and can be ignored in 

problem (61) without changing the optimal solution. 

The Hessian matrix of the objective function of the optimization problem (61) is diagonal, and 

hence the optimization problem (61) can be decomposed into many small-size problems. For each OD 

pair (r, s), solve the following problem: 

{ }ˆmin ( ) ln ( ) [ ( ) ln ( ) 1] ( )

( ) ,
s.t. 

( ) 0, , , , .

rs
d

rs
d

rs rs rs rs rs
p p p p p

k Kp P

rs rs
p

k Kp P

rs rs
p d

f k f k c k f k f k

f k Q

f k r R s S p P k K

ι ιρ
∈∈

∈∈

+ − −

 =


 ≥ ∀ ∈ ∈ ∈ ∈

∑ ∑

∑ ∑  (62) 

Since the flows on all routes in the path set are positive for the logit-based DSUE problems, the 

non-negativity constraints of problem (62) will never be active and hence can be eliminated. Selecting 

a reference path index rsp P∈  and a reference interval index dk K∈ , we have 

( , ) ( , )
( ) ( )rs rs rs

p p
p k p k

f k Q f k
≠

= − ∑ . (63) 

Substituting Eq. (63) into the objective function of problem (62), we can reformulate the 

optimization problem (62) as an unconstrained optimization problem, given as follows: 

{ }

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

min ( ) ln ( )

( ) ln ( ) ( ) ( ) ( ) ( ) ,

rs rs rs rs
p p

p k p k p k p k

rs rs rs rs rs rs rs
p p p p l p

p k p k p k p k

Z Q f k Q f k

f k f k k f k h Q f kα α

≠ ≠

≠ ≠

   
= − − +   
   

 
+ + − 

 

∑ ∑

∑ ∑
 (64) 

where ( )rs
p kα  is fixed for problem (64), and ˆ( ) ( ) ln ( ) 1rs rs rs

p p pk c k f kι ια ρ= − − . 

At optimality, the gradient of the unconstrained problem (64) equals zero. Therefore, we have  

( ) ln ( ) ( ) ln ( ) 0
( )

rs rs rs rs
p p p prs

p

Z k f k k f k
f k

α α∂
= + − − =

∂
. (65) 

Eq. (65) implies that there exists a positive *µ  such that *( ) ln ( )rs rs
p pk f kα µ+ =  is satisfied for all 

combinations (p, k) at optimality. Hence, we have 



 

 19 

*( ) exp{ ( )}rs rs
p pf k kµ α= − . (66) 

Substituting Eq. (66) in to Eq. (7), we have 
*( ) exp{ ( )}

rs rs
d d

rs rs rs
p p

k K k Kp P p P

f k k Qµ α
∈ ∈∈ ∈

= − =∑ ∑ ∑ ∑ . (67) 

The value of *µ  can be obtained by solving the one-dimensional nonlinear equation (67), and 

can be further substituted into Eq. (66) to obtain the solution to problem (62). In this paper, the 

one-dimensional nonlinear equation (67) is solved by Newton’s method, and the gap function (52) is 

adopted to check convergence of the iterative method for solving the DSUE-SRDTC problem. 

Function (59) was also adopted to develop an iterative method to solve the VI problem (35) and 

obtain the corresponding subproblem (61). This subproblem can be further decomposed into many 

small-size problems. For each OD pair (r, s) and each path at each time interval k, the sub-algorithm 

solves the following problem: 

{ }min ( ) ln ( ) [ ( ) ( ) ] ln ( ) 1 ( )

s.t. ( ) 0.

rs rs rs rs rs rs
p p p p p p

rs
p

f k f k t k k f k f k

f k
ι ι ιρ η+ − − −

≥
 (68) 

where ρ  is a positive constant. 

Solving the optimization problem (68), we have  

{ }1( ) exp ln ( ) [ ( ) ( ) ]rs rs rs rs
p p p pf k f k t k kι ι ι ιρ η+ = − − . (69) 

 To check the convergence of the iterative method for solving the DSUE-SRDTC problem (24) 

and the dynamic route choice problem (35), the gap function (51) was adopted. In theory, the 

convergence of the iterative scheme for solving these two problems requires their mapping functions 

to be continuous and strictly monotone (Theorem 1.6 in Nagurney, 1993). Example 1 shows that the 

mapping function of the VI problem (24) may be non-monotone, and hence the iterative scheme for 

solving the DSUE-SRDTC problem cannot always guarantee convergence. Propositions 1 and 2 show 

that the mapping function of the dynamic route choice problem (35) is continuous and strictly 

monotone under some assumptions, and hence the iterative scheme for solving the dynamic route 

choice problem guarantees convergence under such assumptions.  

4.3. A BFGS method for solving the DSUE-SRDTC problem 

According to Theorems 5 and 6, we can obtain an optimal solution to the DSUE-SRDTC problem 

by solving the system of nonlinear equations (46). In this section, a BFGS method is adopted to solve 

the system of nonlinear equations (46). During the implementation of BFGS method, we evaluate the 

mapping function ˆ( )Z π , in which the function ˆ( )S π  can be obtained by solving the VI problem (35) 

using the iterative method described in Section 4.2.2. Therefore, the BFGS method forms the main 

solution algorithm, and the iterative method forms a sub-algorithm. 
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The BFGS method for solving the system of nonlinear equations (46) is outlined as follows (Yuan 

and Lu, 2008): 

Step 0. Initialization. Select an initial solution 0π̂ , an initial symmetric positive definite matrix 0H , 

constants , (0,1)µ ω∈ , the convergence tolerance 2 0ε > , and let 0ι = . 

Step 1. Checking stopping criterion. If 3 2ˆ( )G ι ε<π , then terminates the algorithm.  

Step 2. Determination of the descent directions and stepsize. Obtain the descent direction 

ˆ( )ι ι ι= −d H Z π . Determine iι  be the smallest nonnegative integer i such that  
2 2 Tˆ ˆ ˆ( ) ( ) ( )i i

ι ι ι ι ιω µω+ ≤ +Z π d Z π Z π d . (70) 

Set iι
ιλ ω= . 

Step 3. Update of the minimum perceived generalized travel cost. Set 1ˆ ˆι ι ι ιλ+ = +π π d . 

Step 4. Update of the symmetric positive definite matrix. Set 1ˆ ˆι ι ι ι ιλ+= − =s π π d , and 

1ˆ ˆ( ) ( )ι ι ι+= −y Z π Z π . If 0T
ι ι >s y , then set 

1 2

( )( )
( )

T T T T T

T T
ι ι ι ι ι ι ι ι ι ι ι ι ι

ι ι
ι ι ι ι

+

+ +
= + −

s y y H y s s H y s s y HH H
s y s y

. (71) 

Otherwise, let 1ι ι+ =H H . Set 1+=ιι , and return to Step 1. 

In Step 0, the initial solution 0π̂  can be any positive vector. In our numerical example, the 

iterative method is adopted to generate the initial solution 0π̂ . We firstly implement the iterative 

method until either the value of the gap function G4 is less than a predetermined convergence tolerance 

3ε  or the average value of the gap function G2 for consecutive 100 iterations is not decreasing. If the 

iterative method terminates due to the fact that the first condition is met, we have obtained an 

approximate solution to the DSUE-SRDTC problem, and the BFGS method will not be implemented. 

Otherwise, we set the average perceived travel cost of each OD pair as the initial solution of the BFSG 

method. Following the literature, we set the initial symmetric positive definite matrix 0H  to be an 

identity matrix. Then, the convergence criterion is checked in Step 1.  

In Step 2, a backtracking inexact line search technique, which was originally proposed by Yuan 

and Lu (2008), is adopted to determine the stepsize. Different from some traditional line search 

techniques, the technique (70) can avoid the computation of the Jacobian matrix of ˆ( )Z π , and thus 

can reduce the computation difficulty, especially for the large-scale problems. The sub-algorithm in the 

next subsection is adopted to evaluate the function ˆ( )S π  and consequently evaluate the mapping 

function ˆ( )Z π  in Step 2 and also in Step 4. Step 3 updates the minimum perceived generalized travel 

cost and Step 4 updates the symmetric positive definite matrix. 

The advantage of the proposed solution algorithm (which incorporates BFGS as the main 

algorithm) for the DSUE-SRDTC problem is that it can avoid the requirement of the monotonicitiy of 
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the route travel cost functions for the convergence of the solution procedure. Many existing solution 

algorithms for the DSUE-SRDTC problems require the mapping function of the VI problem for the 

DSUE-SRDTC problem to be monotone. However, this requirement cannot be met, and many existing 

solution algorithms may fail to solve the DSUE-SRDTC problems (See numerical examples for 

details). 

The BFGS method has a norm descent property, and its global and superlinear convergence have 

been proved under mild conditions (Yuan and Lu, 2008):  

• ˆ( )Z π  is continuously differentiable on an open convex set containing the level set defined by 

{ }0ˆ ˆ ˆ| ( ) ( )ι ιΩ = ≤π Z π Z π . The Jacobian of ˆ( )Z π  is symmetric, bounded, and positive 

definite on the convex set. 

• ιH  is a good approximation to ˆ'( )ιZ π . 

• ˆ'( )ιZ π  is Hölder continuous at an optimal solution. 

However, the Jacobian matrix of ˆ( )Z π  is in general asymmetric, and hence the global and 

superlinear convergence of the above BFGS method for the DSUE-SRDTC problem is left for future 

investigation.  

Note that T1
2 ( )− ∇ +∇f fη η  is a diagonally dominant matrix is a sufficient but not necessary 

condition for guaranteeing the monotonicity of the mapping function. We did not guarantee this 

condition to be satisfied in the application of the solution method. If this condition is satisfied, an 

optimal solution can be obtained by starting with any initial solution. If not, the proposed solution 

method may not guarantee convergence and can only be considered a heuristic. In such case, we may 

need to repeatedly use the method with different initial solutions until we obtain an optimal solution. 

According to Proposition 3, the mapping function of the proposed system of nonlinear equations is 

monotone under Assumption 3. Therefore, some other BFGS methods developed for nonlinear 

monotone equations (e.g., Solodov and Svaiter, 1998; Zhou and Li, 2008) can also be adopted to solve 

the DSUE-SRDTC problem. The BFGS method developed by Zhou and Li (2008), denoted as 

M-BFGS, converges globally if the mapping function of the equations is monotone and Lipschitz 

continuous. Their method does not require the differentiability property of the equation. The global 

convergence of their method is independent of any merit function. For comparison, the M-BFGS 

method developed by Zhou and Li (2008) was also adopted to solve the DSUE-SRDTC problem, and 

the detailed algorithm is presented in Appendix B. 

5. Numerical example 

A great many dynamic network loading (DNL) models can be used to depict how traffic 

propagates inside a traffic network along assigned routes (see Mun, 2007 for a comprehensive review) 
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and hence governs the network performance in terms of travel time. The proposed DTA model is 

formulated in a general form, and any type of DNL models can be used to estimate the traffic pattern 

over time, and then calculate link travel times by link travel time models. The DNL model used in this 

paper is the point-queue (PQ) model (see Huang and Lam, 2002; Nie and Zhang, 2005 for details). 

The underlying reasons for choosing the PQ model are: (i) the PQ model is easy to calibrate since its 

parameters, including free-flow travel time and bottleneck capacity, are all well-defined physical 

quantities that are relatively easy to measure; (ii) the PQ model has an advantage of the computational 

efficiency, and behaves identically as Daganzo’s (1995) cell transmission model (CTM) if queue 

spillback does not occur (Nie and Zhang, 2005); and (iii) the path travel time and path travel cost 

obtained from the PQ model are continuous with respect to path flows (Huang and Lam, 2002; Szeto 

and Lo, 2006). The calculation of route travel time directly follows the method in the study by Huang 

and Lam (2002). The following example is developed to illustrate the performance of the proposed 

method for solving the DSUE-SRDTC problem. 

Example 2. Sioux Falls network: Comparing the efficiency of the proposed algorithm with existing 
algorithms 

As shown in Fig. 1, the Sioux Falls network is adopted to illustrate the performance of the 

proposed methods. The Sioux Falls network consists of 24 nodes and 76 links (Leblanc, 1975). 

Following Han (2003), we considered only 12 OD pairs in the network, and adopted Dial’s (1971) 

STOCH method to generate the reasonable path set under the free-flow condition. The OD pairs and 

the number of paths in the reasonable path set are given in Table 1. The free flow link travel times and 

outflow capacities of all links are the same as those in Han (2003). Unless stated otherwise, the total 

trip demands for all OD pairs are 200 veh, and the parameters for the generalized travel cost function 

are: 1.0α = , 0.5β = , and 1.5γ = . The desired arrival time is 1500 s, and the arrival time 

flexibility is 100 s. The length of each time interval is 10 s. The parameters of the iterative method for 

the DSUE-SRDTC problem and the dynamic route choice problem are 0.01ρ =  and 0.05ρ = , 

respectively. The parameters for the BFGS method are as follows: 5
1 1.0 10ε −= × , 2

2 1.0 10ε −= ×  

veh, 0.4µ = , and 0.9ω = . The parameters for the M-BFGS method are as follows: 0.1σ = , 

0.01ϖ = . The Manhattan norm (1-norm) is adopted for the gap function 3 ˆ( )G π . The gap function 

4 ( )G f  was adopted to evaluate the efficiency of the solution algorithms. If the value of this gap 

function was achieved less than 4
3 1.0 10ε −= × , then the solution algorithm was terminated. 

Usually, CPU time is widely used to evaluate the efficiency of solution algorithms. However, CPU 

time relies on the compiler, the coding skills, the performance of the used computer, and so on. Since 

the implementation of DNL is the most time consuming step in solving DTA models, we mainly use 

the number of DNLs performed instead of CPU time to evaluate the performance of the solution 
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methods tested in this study. We set the maximum number of DNLs performed be 400000 and 

compared the performance of the proposed methods with three existing solution algorithms: PNL (see 

Han, 2003 for details), MSA, and SRAM (See Liu et al., 2009 for details). We also adopted IM to 

represent the iterative method described in Section 4.2, BFGS to represent the backtracking inexact 

BFGS method (Yuan and Lu, 2008), and M-BFGS to represent the BFGS method for nonlinear 

monotone equations (Zhou and Li, 2008) for short. 

The value of the dispersion parameters plays a significant role on the computation time required by 

the solution algorithms for the logit-based SUE traffic assignment (e.g., Han, 2003; Bekhor and 

Toledo, 2005; Long et al., 2010). Firstly, the special case of the DSUE-SRDTC problem, i.e., the 

DSUE-SRDTC problem with r tθ θ= , was considered. We changed the value of the dispersion 

parameter rθ  from 0.05 s-1 to 0.75 s-1, and solved the DSUE-SRDTC problem by six solution 

algorithms. Table 2 reports the number of DNLs required for each solution algorithm. The results 

presented in Table 2 show that the number of DNLs required is in general increasing for each solution 

algorithm as the value of the dispersion parameter rθ  grows up, and the first four solution algorithms 

(i.e., PNL, MSA, RAM, and IM) can fail to solve the DSUE-SRDTC problem. On the contrary, both 

the BFGS method and the M-BFGS method can solve the DSUE-SRDTC problem for all the settings 

of the values of the dispersion parameter rθ  shown in the table, but the BFGS method is much more 

efficient than the M-BFGS method when the value of the dispersion parameter rθ  grows up. We can 

also observe from Table 2 that the SRAM outperforms the PNL method and the MSA, and the IM 

outperforms the SRAM, in terms of the applicable range of rθ . 

We were also interested in studying the effect of the value of the dispersion parameter tθ  on the 

efficiency of the solution algorithms. We fixed 1.0rθ =  s-1, changed the value of the dispersion 

parameter tθ  from 0.05 s-1 to 1.00 s-1, and solved the DSUE-SRDTC problem by all six solution 

algorithms. The number of DNLs required for each solution algorithm is reported in Table 3. One can 

observe the following from the table. First, the PNL method fails to solve the DSUE-SRDTC problem 

for all cases. Second, the MSA converges very slow and only can solve the DSUE-SRDTC problem 

when 0.10rθ ≤  s-1 within 400000 DNLs. Third, the SRAM is very efficient when the value of tθ  

is very small and becomes inefficient when 0.3tθ ≥ . Fourth, the iterative method can solve more 

cases than that of the SRAM. Fifth, the two BFGS methods are efficient for all cases. The results 

presented in Table 3 imply that the smaller the value of tθ  is, the easier the DSUE-SRDTC problem 

can be solved. 

We set higher values of dispersion parameters and implemented the BFGS method to solve the 

DSUE-SRDTC problem. The values of convergence indicators are presented in Fig. 2. From this 

figure, we can observe that the values of the gap functions quickly decrease as the number of iterations 
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grows up. This implies that the BFGS method can solve the DSUE-SRDTC problems with very large 

values of dispersion parameters. The results presented in Fig. 2 are consistent with those in Tables 2 

and 3, i.e., the lower the value of dispersion parameters, the easier the DSUE-SRDTC problem can be 

solved. 

The congestion level is also an important factor that can influence the efficiency of the solution 

algorithms for the DSUE-SRDTC problem. To illustrate this effect, we changed the OD demand of all 

OD pairs from 20 veh to 400 veh, and implemented all solution algorithms, respectively. The numbers 

of DNLs required for all solution algorithms are provided in Table 4. We can observe that the lower 

the level of congestion, the easier the DSUE-SRDTC problem can be solved. The results presented in 

Table 4 also show that the iterative method outperforms the three existing methods (i.e., PNL, MSA, 

and SRAM), and the BFGS method outperforms all other solution algorithms. This is consistent with 

the results presented in Tables 2 and 3. 

According to the first term on the right hand side of Eq. (32), the parameters β  and γ  (i.e., the 

unit cost of schedule delay time-early and the unit cost of schedule time-late) are the main sources for 

the non-monotonicity property of the perceived travel cost function. If the values of β  and γ  are 

reduced, then the DSUE-SRDTC problem is more likely to be strictly monotone, and hence can be 

solved easier. Since their effects on the performance of the algorithm are similar, we only chose one of 

them in the sensitivity analysis. We changed the value of γ  from 1.0 to 3.0, set 1.0r tθ θ= = s-1, and 

implemented all solution algorithms, respectively. The number of DNLs required for each solution 

algorithm is reported in Table 5. We can observe from the table that the three existing solution 

algorithms (i.e., PNL, MSA, and SRAM) fail to solve the DSUE-SRDTC problem. Moreover, the 

iterative method can only solve the DSUE-SRDTC problem when the value of γ  is very small, and 

both the BFGS method and the M-BFGS method can solve the DSUE-SRDTC problem with all the 

settings of the values of γ  shown in the table. The results presented in Table 5 also confirm that the 

smaller the value of γ  is, the easier the DSUE-SRDTC problem can be solved. 

The DSUE-SRDTC condition and the special case of the DSUE-SRDTC condition in Theorems 1 

and 2 state that the perceived travel costs are the same for all travelers of the same OD pair. We set 

0.2r tθ θ= = s-1, and solved the DSUE-SRDTC problem by the SRAM, the iterative method and the 

BFGS method, respectively. The values of 1 2( ) ( , )rs rsk k pπ π+  with respect to OD pair 6->15 are 

displayed in Fig. 3. We can observe that the solution obtained by the SRAM does not satisfy the 

DSUE-SRDTC condition. In other words, not all the values of 1 2( ) ( , )rs rsk k pπ π+  are the same, but 

the solutions obtained by the iterative method and the BFGS method agree with the DSUE-SRDTC 

conditions well. We also provide the route flow rates obtained by the three solution algorithms in Fig. 

4. One can observe from the figure that the route flow rates obtained by the SRAM do not agree with 
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those obtained by other three methods (i.e., IM, BFGS and M-BFGS) when departure time is greater 

than 1200 s. Although the absolute differences of the route flow rates obtained by different solution 

algorithms are very small, the solutions obtained by the proposed method are indeed better than those 

obtained by the other two existing methods. 

6. Conclusion 

The DSUE-SRDTC problems cannot always be solved by many existing solution algorithms due 

to the non-monotonicity of route travel cost function. This paper formulates the DSUE-SRDTC 

problem with fixed demand as a system of nonlinear equations, whose mapping function is defined by 

a dynamic route choice problem. Since the dynamic route choice problem can be formulated as a VI 

problem with a strictly monotone mapping function under some assumptions, we can avoid the 

requirement of monotonicitiy of the route travel cost function for the convergence of the solution 

algorithm. We develop an iterative method to solve the dynamic route choice problem and adopt a 

BFGS method to solve the proposed system of nonlinear equations. The initial solution was found by 

the iterative scheme with a different smooth function. A numerical example was developed to illustrate 

the performance of the proposed method. The results show that many existing solution algorithms for 

the DSUE-SRDTC problem cannot converge when the values of dispersion parameters or traffic 

demand levels are high. On the contrary, the proposed method is convergent under all the settings of 

the dispersion parameter values and traffic demand levels, and obtains solutions that satisfy 

DSUE-SRDTC conditions.  

In this paper, the PQ model was adopted as the DNL model. This type of models ignores the 

interactions of adjacent links in a network under heavy congestion such as queue spillovers. This 

greatly simplifies the modeling framework but at the same time may be not really realistic. Some 

physical queue models, such as the CTM (Daganzo, 1994, 1995) and the link transmission model 

(LTM) (Yperman, 2007), can capture important and realistic traffic dynamics such as queue spillbacks 

that often occur in congested urban traffic networks. However, spillbacks may introduce 

discontinuities to DTA problems (Szeto and Lo, 2006), and Assumption 1 may not be satisfied. 

However, once Assumptions 1 and 2 are satisfied by DTA problems with physical queues, the 

proposed algorithm can be used to obtain their solutions. For future studies, we will develop more 

efficient solution algorithms, and apply the DTA model to evaluate the effect of various traffic 

management and transport planning measures such as road pricing (Lo and Szeto, 2005), network 

design (e.g., Szeto et al., 2010, 2014; Miandoabchi et al., 2012a,b), staggered work hours (e.g., 

Yushimito et al., 2014), incident detection (e.g., Ghosh and Smith, 2014), and traffic flow/density 

forecasting (e.g., Szeto et al., 2009; Ye et al., 2012; Anand et al., 2014; Chiou et al., 2014). 



 

 26 

Acknowledgements 

This work is jointly supported the National Natural Science Foundation of China (71271075, 

71431003, 71271183), the Fok Ying Tung Education Foundation (141081), the Program for New 

Century Excellent Talents in University (NCET-13-0766), a grant from the Research Grants Council 

of the Hong Kong Special Administrative Region, China (HKU 17207214E), and a grant 

(201311159123) from the University Research Committee of the University of Hong Kong. The 

authors are grateful to the three reviewers for their constructive comments. 
 

Appendix A 

In the single bottleneck model, the queue length obeys the following dynamic equation (Yang and 

Huang, 2005): 
( ) ( ) ,  for ( ) 0.dq t r t s q t

dt
= − >  (72) 

Under the equilibrium condition, the queue length and the travel time are given as follows: 

( ),  for [ , ],
( )

( ) ( ),  for [ , ],

s s o

o s o o e

s t t t t t
q t

s t t s t t t t t

β
α β
β γ

α β α γ

 − ∈ −= 
 − − − ∈
 − +

 and (73) 

( ),  for [ , ],
( )( )

( ) ( ),  for [ , ].

s s o

o o s o e

t t t t t
q tT t

s t t t t t t t

β
α β

γ β
α γ α β

 − ∈ −= =  − − + − ∈
 + −

 (74) 

The linear travel cost function is given as follows: 

*

*

( ) ( ) ,  for [ , ],
( )

( ) ( ) ,  for [ , ].

s o

o e

q t q tt t t t t
s s

C t
q t q tt t t t t

s s

α β

α γ

   + − + ∈      = 
   + + − ∈     

 (75) 

The equilibrium flow pattern after a fluctuation, the corresponding queue length, the travel time 

and the generalized travel cost are given as follows: 

1

1 2

( ),  for [ , ],
( )

( ) ( ),  for [ , ],

s s o

o s o o e

s t t t t t
q t

s t t s t t t t t

β
α β

β γ
α β α γ

 
+ ∆ − ∈ − = 

   − + ∆ − + + ∆ − ∈    − +   

  (76) 
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1

1 2

( ),  for [ , ],
( )( )

( ) ( ),  for [ , ],

s s o

o s o o e

t t t t t
sq tT t

s
t t t t t t t

s s

β
α β

β γ
α β α γ

 ∆
+ − ∈ − = = 

   ∆ ∆− + − + + − ∈    − +   

  and  (77) 

*

*

( ) ( ) ,  for [ , ],
( )

( ) ( ) ,  for [ , ].
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C t
q t q tt t t t t

s s

α β

α γ
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 
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
 



 (78) 

where  

0 1
0

1

( )
( )
st s tt

s
α α β
α α β

+ ∆ −
=

+ ∆ −
 . (79) 

Using Eqs. (28), (75), (30) and (78), we have 
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 (80) 

Substituting Eqs. (73) and (76) into the first term on the right hand side of Eq. (80), we have 

[ ] [ ]{ }1 2( ) ( ) ( ) ( ) 0.o e

s o

t t

t t
q t q t dt q t q t dt

s
α

− ∆ + − ∆ =∫ ∫   (81) 

Substituting Eqs. (73), (76), (79) and (81) into Eq. (80), we have 
2 2
1

1

( ) ( ),
2[ ( )]

o st t
s

α β γ
α α β
+ ∆ −

− − = −
+ ∆ −

c c r r  . (82) 

Let φ  and φ , respectively, be the vectors of the perceived component of the perceived trip cost 

with respect to the flow patterns r  and r , i.e., ( )1 ln ( ),
t

r t tθ= ∀φ  and ( )1 ln ( ),
t

r t tθ= ∀φ  . We 

have 
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Hence, we have 
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1 1 1
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α α β θ α α β γ
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+ ∆ − −∆ −

c c r r c φ c φ r r c c r r φ φ r r        

 (84) 

Appendix B 

The M-BFGS method proposed by Zhou and Li (2008) can be adopted to solve the nonlinear 

equations (46), and is outlined as follows: 

Step 0. Initialization. Select an initial solution 0π̂ , an initial symmetric positive definite matrix 0H , 

the constant , , (0,1)µ ω ϖ ∈ , the convergence tolerances 2 3, 0ε ε > , and set 0ι = . 

Step 1. Checking stopping criterion. If 3 2ˆ( )G ι ε<π , then terminates the algorithm.  

Step 2. Determination of the descent direction and stepsize. Obtain the descent direction 

ˆ( )ι ι ι= −d H Z π . Set iι  be the smallest nonnegative integer i such that  
2Tˆ ˆ( ) ( )i i i

ι ι ι ι ι ιω σω ω− + ≥ +Z π d d Z π d d . (85) 

Set iι
ιλ ω=  and ˆι ι ι ιλ= +ν π d . If 3( )ι ε≤Z ν , then stop the algorithm; Otherwise, go 

to Step 3. 

Step 3. Update of the minimum generalized travel cost. Compute  
T

1 2

ˆ( ) ( )ˆ ˆ ( )
( )

ι ι ι
ι ι ι

ι
+

−
= +

Z ν π νπ π Z ν
Z ν

. (86) 

Step 4. Update of the symmetric positive definite matrix. Compute 1ι+H  by the following update 

process  

1 2

( )( )
( )

T T T T T

T T
ι ι ι ι ι ι ι ι ι ι ι ι ι

ι ι
ι ι ι ι

+

+ +
= + −

s y y H y s s H y s s y HH H
s y s y

; (87) 

where,  

ˆι ι ι= −s ν π , and ˆ( ) ( )ι ι ι ιϖ= − +y Z ν Z π s .  

Set 1+=ιι , and return to Step 1. 

Similar to the BFGS method presented in Subsection 4.3.1, we also use the iterative method to 

obtain the initial solution 0π̂ , and set the initial symmetric positive definite matrix 0H  be an 

identity matrix in Step 0. The major differences in terms of procedure between the M-BFGS and the 

BFGS methods are: (i) different line search methods are used in Step 2, and (ii) different methods to 

update the minimum generalized travel cost in Step 3. The convergence requirement of the M-BFGS 

method is weaker than that of the BFGS method. The M-BFGS method has been proved to converge 

globally if the nonlinear equation is monotone and Lipschitz continuous without the differentiability 
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requirement on the equation, which makes it possible to solve some nonsmooth equations (Zhou and 

Li, 2008).  
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Table 1. 
Reasonable path set for each OD pair. 
OD pair Number of paths OD pair Number of paths OD pair Number of paths 
1->10 6 12->19 6 20->9 7 
4->19 8 13->10 5 22->8 6 
6->15 4 14->8 8 2->15 4 
7->15 6 18->5 4 3->16 9 

 
Table 2. 
The effect of dispersion parameters on the number of DNLs required for each solution algorithm. 

rθ  and tθ  (s-1) 
Number of DNLs required 

PNL MSA SRAM IM M-BFGS BFGS 
0.05 9 513 20 43 43 43 
0.1 - 20778 51 100 101 101 

0.15 - 163590 176 178 177 177 
0.2 - - 900 267 265 265 

0.25 - - 14531 462 461 461 
0.3 - - 74343 731 731 731 

0.35 - - - 1174 1174 1174 
0.4 - - - 1742 1742 1742 

0.45 - - - 2653 2653 2653 
0.5 - - - 32073 51364 14964 

0.55 - - - - 55392 20562 
0.6 - - - - 83785 22647 

0.65 - - - - 68666 25681 
0.7 - - - - 171750 25709 

0.75 - - - - 164865 27834 
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Table 3. 

The effect of the dispersion parameter tθ  on the number of DNLs required for each solution 

algorithm ( 1rθ = .00 s-1). 

tθ  (s-1) 
Number of DNLs required 

PNL MSA SRAM IM M-BFGS BFGS 
0.05 - 51872 42 943 943 943 
0.10 - 157186 104 956 956 956 
0.15 - - 209 986 986 986 
0.20 - - 479 976 976 976 
0.25 - - 4905 994 994 994 
0.30 - - - 1055 1055 1055 
0.35 - - - 1627 1627 1627 
0.40 - - - 4622 4622 4622 
0.45 - - - - 98610 35996 
0.50 - - - - 95268 38307 
0.55 - - - - 105098 36651 
0.60 - - - - 127071 36273 
0.65 - - - - 335945 36988 
0.70 - - - - 232170 35388 
0.75 - - - - 125743 37283 
0.80 - - - - 111014 42083 
0.85 - - - - 429875 41201 
0.90 - - - - 166203 40904 
0.95 - - - - 112805 43074 
1.00 - - - - 96272 38185 
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Table 4. 
The effect of traffic demand on the number of DNLs required for each solution algorithm 

( 0.50r tθ θ= = s-1). 

Demand 
Number of DNLs required 

PNL MSA SRAM IM M-BFGS BFGS 
20 2 2 19 495 495 495 
40 2 2 21 529 529 529 
60 - 3617 48 552 552 552 
80 - 237734 732 632 632 632 

100 - - 9296 755 755 755 
120 - - 94491 909 909 909 
140 - - - 1387 1387 1387 
160 - - - 1412 1412 1412 
180 - - - 1975 1975 1975 
200 - - - 32033 51364 14964 
220 - - - - 132134 18005 
240 - - - - 96137 18630 
260 - - - - 73938 18203 
280 - - - - 48072 18569 
300 - - - - 47231 17890 
320 - - - - 54131 17803 
340 - - - - 50905 15241 
360 - - - - 63463 16313 
380 - - - - 317944 16909 
400 - - - - 203539 14406 

Table 5. 

The effect of γ  on the number of DNLs required for each solution algorithm ( 1.00r tθ θ= =  s-1). 

γ  Number of DNLs required 
PNL MSA SRAM IM M-BFGS BFGS 

1.0 - - - 2324 2324 2324 
1.2 - - - 4765 40718 9857 
1.4 - - - 7647 47325 11880 
1.6 - - - - 53264 17608 
1.8 - - - - 55603 19309 
2.0 - - - - 64214 21032 
2.2 - - - - 68864 22732 
2.4 - - - - 78117 24085 
2.6 - - - - 74363 27880 
2.8 - - - - 79031 27296 
3.0 - - - - 88794 30488 
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Fig. 1. The Sioux Falls network. 

 
Fig. 2. Convergence of the BFGS method for solving the DSUE-SRDTC problem with high values of 

dispersion parameters. 
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Fig. 3. The values of 1 2( ) ( , )rs rsk k pπ π+  with respect to OD pair 6->15 .when 0.2r tθ θ= = s-1. 

 

Fig. 4. Flow rates on routes between OD pair 6->15 obtained by different solution algorithms 

( 0.2r tθ θ= = s-1). 
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