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SUMMARY

This paper proposes a Cramér-von Mises (CM) test statistic to check the adequacy of weak
ARMA models. Without posing a martingale difference assumption on the error terms, the
asymptotic null distribution of the CM test is obtained. Moreover, this CM test is consistent,
and has nontrivial power against the local alternative of order n−1/2. Due to the unknown de- 15

pendence of error terms and the estimation effects, a new block-wise random weighting method
is constructed to bootstrap the critical values of the test statistic. The new method is easy to im-
plement and its validity is justified. The theory is illustrated by a small simulation study and an
application to S&P 500 stock index.
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1. INTRODUCTION

After the seminal work of Box and Pierce (1970) and Ljung and Box (1978), diagnostic check-
ing has been an important step in the application of the following ARMA(p, q) model: 25

yt =
p∑

i=1

φiyt−i +
q∑

i=1

ϕiεt−i + εt, (1)

where εt are error terms with mean zero. As usual, we say that model (1) is weak when {εt} is
an uncorrelated sequence, and that model (1) is strong when {εt} is an iid sequence; see, e.g.,
Francq and Zakoı̈an (1998). Up to now, the most famous diagnostic checking tools for model (1)
are the portmanteau tests in Box and Pierce (1970) and Ljung and Box (1978). However, their 30

asymptotic null distributions are only valid for strong ARMA models; see, e.g., Romano and
Thombs (1996) and Francq, Roy, and Zakoı̈an (2005). Moreover, empirical studies in Franses
and Van Dijk (1996) and Tsay (2005) demonstrated that many economic and financial series
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follow an ARMA model with uncorrelated errors (e.g., ARCH-type errors). In addition, Francq
and Zakoı̈an (1998) and Francq, Roy, and Zakoı̈an (2005) indicated that many nonlinear models35

admit a weak ARMA representation. Thus, it is meaningful to consider diagnostic checking for
weak ARMA models.

Based on either observable series (i.e., p = q = 0) or residual series, a huge literature so far
has been focused on testing model adequacy in weak ARMA models. These existing tests are
roughly categorized into two types: time domain correlation-based tests and frequency domain40

periodogram-based tests. The tests in the first category usually use the autocorrelations up to
lag m (a user-chosen integer), so they are unable to detect serial correlations beyond lag m;
see, e.g., Romano and Thombs (1996), Lobato (2001), and Horowitz, Lobato, Nankervis, and
Savin (2006) for observable series, or Francq, Roy, and Zakoı̈an (2005) and Delgado and Velasco
(2011) for residual series. To avoid selecting m, Escanciano and Lobato (2009) and Escanciano,45

Lobato, and Zhu (2013) derived a data-driven portmanteau test under the assumption that εt is a
martingale difference sequence (MDS). However, it is unclear whether their tests are applicable
if εt is not an MDS.

Since the correlation-based tests are inconsistent, the periodogram-based tests in the second
category have drawn more attention in the literature; see, e.g., Durlauf (1991) and Deo (2000)50

for earlier works. Under the assumption that εt admits a linear process of iid innovations, the
smoothing rescaled periodogram test in Paparoditis (2000, 2001) and generalised likelihood ratio
test in Fan and Zhang (2004) can be used to check the whiteness of residual series; see, e.g., Fan
and Jiang (2007) for more works on smoothed tests. However, the two aforementioned smoothed
tests are not applicable when εt follows some often used non-linear models (e.g., ARCH-type55

models). Under the assumption that εt is an MDS, many spectral tests have been constructed by
Delgado, Hidalgo, and Velasco (2005), Escanciano (2006, 2007), and Escanciano and Velasco
(2006). Recently, Shao (2011a) proposed a spectral test for observable series without the MDS
assumption on the error terms. A natural but important extension is to construct spectral tests
for residual series when εt is not an MDS. Under the assumption that εt is GMC(8) (a condition60

weaker than MDS), Shao (2011b) proved the validation of the kernel-based spectral test in Hong
(1996), where the definition of GMC is given in Remark 3 below, and the lag m as a bandwidth
grows slowly with the sample size.

This paper proposes a Cramér-von Mises (CM) spectral test statistic to check the adequacy of
weak ARMA models. Under certain conditions allowing for non-MDS error terms, the asymp-65

totic null distribution of the CM test is obtained. Moreover, this CM test is consistent, and has
nontrivial power against local alternatives of order n−1/2. Due to the unknown dependence struc-
ture of error terms and the estimation effects, our null distribution is no longer asymptotically
pivotal. This is also the main challenge for other spectral tests in weak ARMA models. To over-
come it, a new block-wise random weighting (BRW) method is constructed to bootstrap critical70

values of the CM test. The new method is easy to implement and its validity is justified. The
theory is illustrated by a small simulation study and an application to S&P 500 stock index.

This paper is organized as follows. Section 2 gives our test statistic and establishes its asymp-
totic theory. Section 3 proposes a BRW method and proves its validation. Simulation results are
reported in Section 4. A real example is provided in Section 5. Concluding remarks are offered in75

Section 6. All of the proofs are given in the Appendix. Throughout the paper, A′ is the transpose
of matrix A, |A| = (tr(A′A))1/2 is the Euclidean norm of a matrix A, ‖A‖s = (E|A|s)1/s is the
Ls-norm (s ≥ 1) of a random matrix, op(1)(Op(1)) denotes a sequence of random numbers con-
verging to zero (bounded) in probability, “→d” denotes convergence in distribution, and “→p”
denotes convergence in probability.80
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2. TEST STATISTIC AND ASYMPTOTIC THEORY

Denote by γ(j) = cov(εt, εt+j). Let

f(ω) =
1
2π

∞∑

j=−∞
γ(j)e−ijω for ω ∈ [−π, π]

and F (λ) =
∫ λ
0 f(ω)dω for λ ∈ [0, π] be the spectral density function and spectral distribution

function of εt, respectively. Note that F (λ) =
∑∞

j=0 γ(j)ψj(λ), where

ψj(λ) =
{

sin(jλ)/jπ if j 6= 0
λ/2π if j = 0 .

Then, following Shao (2011a), the sample spectral distribution function of εt is

Fn(λ) =
n−1∑

j=0

γ̂(j)ψj(λ),

where γ̂(j) = n−1
∑n

t=1+|j| εtεt−|j| is the sample autocovariance function of εt at lag j. Since
F (λ) = γ(0)ψ0(λ) under the null hypothesis

H0 : yt admits a weak ARMA(p, q) model representation as in (1),

the sample spectral distribution Fn(λ) becomes γ̂(0)ψ0(λ) in this case. Thus, as in Shao (2011a),
we consider the following Cramér von-Mises statistic

CMn =
∫ π

0
S2

n(λ)dλ

to detect H0, where the process

Sn(λ) =
√

n {Fn(λ)− γ̂(0)ψ0(λ)} :=
n−1∑

j=1

√
nγ̂(j)ψj(λ)

measures the distance between Fn(λ) and γ̂(0)ψ0(λ). However, the statistic CMn is not feasible 85

because εt is unobservable.
Next, let θ = (φ1, · · · , φp, ϕ1, · · · , ϕq)′ ∈ Θ be the unknown parameter of model (1). Then,

given the observations {y1, · · · , yn}, we can calculate the least squares estimator (LSE) θn de-
fined by

θn = arg min
Θ

L̃n(θ) where L̃n(θ) =
1
n

n∑

t=1

ε̃2
t (θ) =:

1
n

n∑

t=1

l̃t(θ), 90

and ε̃t(θ) is calculated recursively by

ε̃t(θ) = yt −
p∑

i=1

φiyt−i −
q∑

i=1

ϕiε̃t−i(θ) (2)

with ε̃0(θ) = ε̃−1(θ) = · · · = ε̃−q+1(θ) = y0 = y−1 = · · · = y−p+1 = 0. Now, by using the
residual ε̃t = ε̃t(θn), we can propose a feasible Cramér von-Mises statistic as follows:

C̃Mn =
∫ π

0
S̃2

n(λ)dλ, 95
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where S̃n(λ) =
∑n−1

j=1

√
nγ̃(j)ψj(λ) and γ̃(j) = n−1

∑n
t=1+|j| ε̃tε̃t−|j|.

In order to obtain the limiting distribution of C̃Mn, we regard S̃n(λ) as a random element in
the Hilbert space L2[0, π] of all square integrable functions with the inner product

〈f, g〉 =
∫ π

0
f(λ)gc(λ)dλ,

where gc(λ) denotes the complex conjugate of g(λ). Here, L2[0, π] is endowed with the natural
Borel σ-field induced by the norm ‖f‖ = 〈f, f〉1/2; see Parthasarathy (1967). Since the “‖ · ‖”
functional is a continuous mapping from L2[0, π] to R, the limiting distribution of C̃Mn follows
directly from the weak convergence of S̃n(λ) in L2[0, π]; see, e.g., Politis and Romano (1994),100

Escanciano (2006), Shao (2011a), and many others.
Let εt(θ) be the parametric model (1), i.e., given initial values {y0, y−1, · · · } and observations

{y1, · · · , yn}, εt(θ) is iteratively constructed from

εt(θ) = yt −
p∑

i=1

φiyt−i −
q∑

i=1

ϕiεt−i(θ).

To obtain the weak convergence of S̃n(λ) in L2[0, π], we make the following three assumptions:

Assumption 1. (i) The parametric space Θ ⊂ Rp+q is compact, and the true parameter θ0 of
model (1) belongs to the interior of Θ.

(ii) For each θ ∈ Θ, φ(z) := 1−∑p
i=1 φiz

i 6= 0 and ϕ(z) := 1 +
∑q

i=1 ϕiz
i 6= 0 when |z| ≤105

1, and φ(z) and ϕ(z) have no common root with φp 6= 0 or ϕq 6= 0.

Assumption 2. {yt} is strictly stationary with E|yt|4+2ν < ∞ and

(i)
∞∑

k=0

{αy(k)}ν/(2+ν) < ∞

for some ν > 0, where {αy(k)} is the sequence of strong mixing coefficients of {yt};

(ii)
∞∑

s1,s2,s3=−∞
|cum(y0, ys1 , ys2 , ys3)| < ∞.

Assumption 3. (i) There exists a unique interior point qθ0 ∈ Θ such that ‖θn − qθ0‖ = op(1).

(ii) The matrix Σ = E
[
∂2lt(qθ0)/∂θ∂θ′

]
exists and is positive definite, where lt(θ) = ε2

t (θ).

Assumption 1(i) is a basic set-up for model (1), and Assumption 1(ii) is the condition for the
stationarity, invertibility and identifiability of model (1); see, e.g., Brockwell and Davis (1991)
and Zhu and Ling (2012). Assumption 2(i) from Francq and Zakoı̈an (1998) is a technical condi-
tion for proving the asymptotic theory of θn. In addition, the mixing condition on yt is valid for
large classes of processes; see, e.g., Pham (1986) and Carrasco and Chen (2002). Assumption
2(ii) from Shao (2011a) is a cumulant summability condition, and a sufficient condition is given
in Doukhan and León (1989), that is, there exists a ν0 ∈ (0, 1] such that

∞∑

k=0

(k + 1)s−2{αy(k)}ν0/(s+ν0) < ∞ for s = 1, · · · , 4.
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Assumption 3(i) from Escanciano (2006) guarantees the weak convergence of θn. Assumption 110

3(ii) ensures that the inverse of Σ exists. According to Theorem 1 in Francq and Zakoı̈an (1998),
we know that qθ0 = θ0 under H0. However, if H0 fails, qθ0 and θ0 may be different.

Let qεt = εt(qθ0) and et,j = qεtqεt−j + ztj , where

ztj = −E

[
∂(qεtqεt−j)

∂θ′

]
Σ−1

[
∂lt(qθ0)

∂θ

]
. (3)

We are now ready to give our first main result: 115

THEOREM 1. Assume that Assumptions 1-3 hold. Then, as n →∞,

S̃n(λ)− E{qSn(λ)} ⇒ S(λ),

where “⇒” stands for weak convergence in L2[0, π] endowed with the norm metric,

qSn(λ) =
n−1∑

j=1

√
nqγ(j)ψj(λ) with qγ(j) = n−1

n∑

t=1+|j|
qεtqεt−|j|,

and S(λ) is a Gaussian process in C[0, π] with mean zero and covariance function

cov{S(λ), S(λ′)} =
∞∑

j=1

∞∑

k=1

∞∑

d=−∞
cov(et,j , et−d,k)ψj(λ)ψk(λ′).

COROLLARY 1. Assume that Assumptions 1-3 hold. Then, as n →∞,

(i) C̃Mn →d

∫ π

0
S2(λ)dλ under H0;

(ii)
C̃Mn

n
→p

∞∑

j=1

[E(qεtqεt−j)]
2
∫ π

0
ψ2

j (λ)dλ.

120

Remark 1. When p = q = 0, the Gaussian process S(λ) is the same as the one in Theorem
2.1 of Shao (2011a). When some p or q is nonzero, the Gaussian process S(λ) depends on ztj ,
which is caused by the estimation effect. This phenomenon happens not only in our case but in
most specification tests.

Remark 2. When εt follows a GARCH model, Ling (2007) showed that a finite fourth moment 125

of yt is necessary to prove the asymptotic normality of the LSE in ARMA-GARCH models. In
view of this, our moment assumption on yt is not restrictive.

Remark 3. In the proof of Theorem 1, we use a mixing condition of yt to ensure the asymp-
totic normality theory; see Rosenblatt (1985). Recently, an alternative way for this is to use the
physical dependence condition of yt in Wu (2005) as done by Shao (2011a, b) and many others. 130

In general, the physical dependence condition is implied by the geometric-moment contraction
(GMC) condition defined as follows:

Definition [Wu (2005)]: Assume that yt = G(· · · , εt−1, εt), where G is a measurable func-
tion. Let {ε′k}k∈Z be an iid copy of {εk}k∈Z , and y′t = G(· · · , ε′−1, ε

′
0, ε1, · · · , εt) be a coupled

version of yt. Then, yt is GMC(α) for α > 0, if there exist C > 0 and ρ = ρ(α) ∈ (0, 1) such 135

that E (|yt − y′t|α) ≤ Cρt for t ∈ Z .
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The GMC condition indicates that the process {yt} forgets its past exponentially fast, and this
can not be implied from the α-mixing condition. Shao and Wu (2007) and Shao (2011b) have
verified the GMC condition for many nonlinear time series models such as GARCH models,
all-pass ARMA models, bilinear models, to name a few. Particularly, if yt satisfies the GMC(4)140

condition, Assumption 2(ii) holds according to Proposition 2 in Wu and Shao (2004). Needless to
say, the concepts of α-mixing and GMC are two parallel tools to depict the dependence structure
of yt. In this paper, we mainly focus on the α-mixing condition, and our results could be obtained
similarly in the GMC context.

Remark 4. Let r0 = s0 = 2 + 2ν/(4 + ν)(≤ 4). Under Assumption 2(i), the Davydov’s in-
equality in Davydov (1968) implies that

|cov(yt, yt−k)| ≤ O(1)‖yt‖r0‖yt−k‖s0 [αy(k)]1−1/r0−1/s0

for any k ≥ 0. Thus, it follows that
∞∑

k=0

|cov(yt, yt−k)|2 ≤ O(1)
∞∑

k=0

[αy(k)]ν/(2+ν) < ∞.

So, we know that
∑∞

k=−∞ [γ(k)]2 < ∞, and hence
∑∞

k=−∞ |γ(k)| < ∞, i.e., yt is a short mem-145

ory process under Assumption 2(i).

In practice, since θ0 is generally unknown, one may focus on the following alternative hypoth-
esis H1, where

H1 : yt does not admit a weak ARMA(p, q) model representation as in (1) with parameter qθ0.

Since at least one E(qεtqεt−j) 6= 0 under H1, the test statistic C̃Mn is consistent in detecting H1

by Corollary 1(ii).
In the end, as in Shao (2011a), we consider a Pitman’s local alternative as follows:

H1n : fn(ω) =
γ(0)
2π

(
1 +

g(ω)√
n

)
,

where ω ∈ [−π, π], g is a symmetric and 2π-periodic function that satisfies
∫ π
−π g(ω)dω = 0.

Clearly, fn is a valid spectral density function, and under H1n,150

γn(j) =

{
γ(0)

2π
√

n

∫ π
−π g(ω)eijωdω if j 6= 0

γ(0) if j = 0
. (4)

As in Escanciano (2006), we need one more assumption as follows:

Assumption 4. Under H1n, ‖θn − θ0‖ = op(1) (i.e., θ0 = qθ0).

COROLLARY 2. Assume that Assumptions 1-4 hold. Then, under H1n, as n →∞,

C̃Mn →d

∫ π

0
{S(λ) + Π(λ)}2 dλ,155

where Π(λ) = γ(0)
2π

∫ λ
0 g(ω)dω.

Corollary 2 shows that if the value of Π(λ) deviates from zero, C̃Mn has nontrivial power
against the local alternative of order n−1/2. Note that the kernel-based spectral test Tn in
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Hong (1996) and Shao (2011b) only has nontrivial power against the local alternative of order
(n/m

1/2
n )−1/2, where 160

Tn =
n−1∑

j=1

K2

(
j

mn

)
ρ̃2(j), (5)

with ρ̃(j) = γ̃(j)/γ̃(0) being the residual autocorrelation at lag j, K(·) being the kernel func-
tion satisfying Assumption 2.1 in Shao (2011b), and mn being the bandwidth such that log n =
o(mn) and mn = o(n1/2). However, this does not guarantee that C̃Mn is always more powerful
than Tn under H1n. To see the reason, on one hand, by (A20) in the Appendix, we have

Π(λ) ≈
n∑

j=1

√
nγn(j)ψj(λ) =

n∑

j=1

√
nγn(j)

sin(jπ)
jπ

,

from which we know that the impact of γn(j) to Π(λ) is proportional to j−1. So, it implies that
if γn(j) is only significantly different from zero at large lag j, the value of Π(λ) may not deviate
significantly from zero, and hence this will cause a low local power of C̃Mn. On the other hand,
the local power of Tn tends to be proportional to ‖g/m

1/4
n ‖ under H1n (see Theorem 4 in Hong 165

(1996)). From (4), we know that the value of ‖g‖ becomes large when the value of γn(j) is
significantly different from zero at any lag j. Thus, if the value of mn is not big enough, Tn will
not be deficient in local power even when γn(j) is only significantly different from zero at large
lag j. Generally speaking, under H1n, C̃Mn may be locally more (or less) powerful than Tn,
when γn(j) is significantly different from zero at small (or large) lag j; see, e.g., the simulation 170

results for Examples 1 and 2 in Section 4 below. Similar phenomenon has been well documented
by Eubank and LaRiccia (1992) and Paparoditis (2001). Moreover, if we consider Rosenblatt’s
(1975) sharp peak local alternative, the asymptotic theory of C̃Mn and Tn is still unclear. The
pioneering work in Ghosh and Huang (1991) and Paparoditis (2001) may be extended to both
tests, and we leave it for future study. 175

3. BOOTSTRAPPED CRITICAL VALUES

Since the limiting distribution of C̃Mn depends on the unknown model parameters and un-
known structure of dependent innovation, we use a block-wise random weighting (BRW) method
to bootstrap its critical values. The detailed steps are as follows:

1. Set a block size bn, such that 1 ≤ bn < n. Denote the blocks by Bs = {(s− 1)bn + 180

1, · · · , sbn} for s = 1, · · · , Ln, where Ln = n/bn is assumed to be an integer for the conve-
nience of presentation.

2. Generate a sequence of positive i.i.d. random variables {δ1, · · · , δLn}, independent of the
data, from a common distribution W , where E(W ) = 1 and var(W ) = 1. Define the random
weights w∗t = δs, if t ∈ Bs, for t = 1, · · · , n. Calculate θ∗n via 185

θ∗n = arg min
Θ

L̃∗n(θ), where L̃∗n(θ) =
1
n

n∑

t=1

w∗t ε̃
2
t (θ) =:

1
n

n∑

t=1

l̃∗t (θ).

3. Let ε̃∗t = ε̃t(θ∗n) for t = 1, · · · , n, with ε̃t(θ) being defined as in (2), and

S̃∗n(λ) =
n−1∑

j=1

√
nγ̃∗(j)ψj(λ) with γ̃∗(j) =

1
n

n∑

t=1+j

w∗t ε̃
∗
t ε̃
∗
t−j .
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Define the bootstrapped process ∆n(λ) = S̃∗n(λ)− S̃n(λ)− Z̃n(λ), where

Z̃n(λ) =
n−1∑

j=1





1√
n

n∑

t=1+j

[(w∗t − 1)γ̃(j)]



 ψj(λ). (6)

4. Compute the bootstrapped test statistic C̃M
∗
n =

∫ π
0 {∆n(λ)}2 dλ.

5. Repeat steps 2-4 J times and denote by C̃M
∗
n,α the empirical 100(1− α)% sample per-190

centile of C̃M
∗
n based on J bootstrapped values. Then we reject H0 at the significance level α if

C̃Mn > C̃M
∗
n,α.

We now offer some remarks on the BRW method. First, when p = q = 0, we set ε̃t = ε̃∗t = yt

for all t in step 2, and our BRW method reduces to the wild bootstrap method in Shao (2011a).
The novel feature of our BRW method is that it takes into account the estimation effect of the195

unknown model parameters in step 2. Second, the BRW method as a natural extension of the
RW method in Jin, Ying, and Wei (2001) is related to the wild dependent bootstrap in Wu (1986)
and Liu (1988), and the original RW method has been widely used for statistical inference in
regression based on the least absolute deviation estimation; see, e.g., Chen, Ying, Zhang, and
Zhao (2008) and Chen, Guo, Lin, and Ying (2010). Third, the BRW method has no need to200

generate the bootstrap pseudo series. Fourth, the terms [S̃∗n(λ)− S̃n(λ)] and Z̃n(λ) involved in
∆n(λ) are used to mimic S̃n(λ) and E{qSn(λ)} in Theorem 1, respectively; see Lemma A7 and
(A40) in the Appendix. Thus, Z̃n(λ) is a centering factor as in Shao (2011a). Without the use
of Z̃n(λ), our BRW bootstrap method is invalid under the alternative, because the term Eet,j

involved in the covariance function of S(λ) can not be captured in this case.205

Let dω be any metric that metricizes weak convergence in L2[0, π], and L(ξn|χn) be the distri-
bution of any random variable ξn given the sample χn := {y1, · · · , yn}; see Politis and Romano
(1994). Denote by P ∗, E∗ and var∗ the probability, expectation and variance conditional on χn;
by o∗p(1)(O∗

p(1)) a sequence of random variables converging to zero (bounded) in probability
conditional on χn. We are now ready to present our second main result:210

THEOREM 2. Assume that (a) Assumptions 1-3 hold; (b) E|yt|8+4ν < ∞ for some ν > 0 and
limk→∞ k2[αy(k)]ν/(2+ν) = 0; (c) b−1

n = o(1) and bn = o(n1/3); (d) E(w∗t )4 < ∞. Then, as
n →∞,

(i) dω [L{∆n(λ)|χn} ,L{S(λ)}] →p 0;

(ii) consequently,

C̃M
∗
n →d

∫ π

0
S2(λ)dλ in probability.

Remark 5. An exponentially fast decaying αy(k) is sufficient for the condition on αy(k) in
Theorem 2 to hold.

Compared to the conditions in Shao (2011a), our conditions in Theorem 2 are stronger. This
is a price we pay for not assuming a stronger cumulant summability condition:215

∞∑
s1,··· ,sK=−∞

|sk||cum(y0, ys1 · · · , ysK )| < ∞, k = 1, · · · ,K, (7)
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for K = 1, · · · , 7. Although (7) is implied by the GMC(8) condition of yt according to Proposi-
tion 2 of Wu and Shao (2004), a sufficient condition for (7) in the context of α-mixing condition
is still unknown. If (7) holds, following a similar proof in Shao (2011a, p.221-222), we can eas-
ily show that Theorem 2 holds under some weaker conditions. We summarize it in the following 220

theorem:

THEOREM 3. Assume that (a) Assumptions 1-3 and (7) hold; (b) Ey8
t < ∞; (c) b−1

n = o(1)
and (log n)bn = o(n); (d) E(w∗t )4 < ∞. Then, the conclusions in Theorem 2 hold.

Remark 6. Theorems 2-3 guarantee that when J is large, our bootstrapped critical values from
the BRW method are valid for C̃Mn under the null or the alternative hypothesis. The reason why 225

our bootstrap method works is probably because the conditional distribution of
√

n(θ∗n − θn)
can always well mimic the distribution of

√
n(θn − qθ0), and this guarantees that we can handle

the estimation effect successfully without generating any pseudo series. To see it clearly, from
Lemma A3(ii) in the Appendix, we have

√
n(θn − qθ0) →d N(0, V ) as n →∞, (8) 230

where V = Σ−1ΩΣ−1 and

Ω = lim
n→∞ var

[
1√
n

n∑

t=1

∂lt(qθ0)
∂θ

]
(9)

is well defined by Lemma 3 in Francq and Zakoı̈an (1998). By (A39) in the Appendix, it is not
hard to see that under the conditions of Theorem 2 or 3, we have

L{√
n(θ∗n − θn)|χn

} →d N(0, V ) in probability as n →∞. (10) 235

By (8) and (10), it follows that we can estimate V by Ṽn even when model (1) is misspecified
(i.e., qθ0 6= θ0) under the alternative hypothesis, where

Ṽn := sample variance-covariance matrix of {√n(θ∗1n − θn), · · · ,
√

n(θ∗Jn − θn)}, (11)

and θ∗in for i = 1, · · · , J is calculated from step 2 in our BRW procedure. Particularly, by using
Ṽn, the classical Wald test is now applicable for model (1). 240

Remark 7. Since εt is unobservable with unknown dependent structure beyond MDS, another
intuitive way to bootstrap the null distribution of C̃Mn is using the residual-based block bootstrap
in Paparoditis and Politis (2003) or the residual-based stationary bootstrap in Parker, Paparoditis,
and Politis (2006). Both methods have been used for unit root testing. Their ideas are to generate
pseudo series {y∗∗t } from model (1) with parameter θn, where the error sequence is obtained by
sampling blocks of the residual series {ε̃t} randomly with replacement. Then, we can calculate
the bootstrapped samples {C̃M

∗∗
in}J

i=1 from the bootstrapped residuals {ε̃∗∗t (θ∗∗n )}, where θ∗∗n =
arg minΘ n−1

∑n
t=1[ε̃

∗∗
t (θ)]2, and

ε̃∗∗t (θ) = y∗∗t −
p∑

i=1

φiy
∗∗
t−i −

q∑

i=1

ψiε̃
∗∗
t (θ).

However, y∗∗t may not well mimic yt, because the residual series {ε̃t} is correlated under the
alternative hypothesis; see also Jentsch, Politis, and Paparoditis (2014) on a similar phenomenon
for integrated processes. Based on this concern, the empirical distribution of {C̃M

∗∗
in} can not
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properly mimic the null distribution, and hence we do not follow the residual-based block meth-
ods in this paper.245

Remark 8. In order to implement C̃Mn in practice, we need to first select the orders p and q.
When {εt} is an iid sequence, this can be done by many well-known information criteria such
as AIC, BIC, or EACF; see, e.g., Tsay and Tiao (1984). When {εt} is an MDS, Chen, Min, and
Chen (2013) proposed some order determination schemes based on the ACF and PACF of yt.
When {εt} is an uncorrelated sequence, there is no valid method to select the orders so far, and
we suggest using a Wald test Ξn to choose the orders by detecting the hypothesis Γqθ0 = 0s×1,
where Γ is a s× (p + q) constant matrix with rank s, and

Ξn = n(Γθn)′(ΓṼnΓ′)−1(Γθn)

with Ṽn being defined as in (11). By using Ξn, it is now possible to reduce the orders from a vast
fitted model, and this could enhance the power of our test.

Remark 9. By a repetitive but even simpler proof as in the Appendix, we can show that Theo-
rems 2-3 hold if bn = 1 when εt is an MDS. However, when εt is not an MDS, we need a block
technique (i.e., bn 6= 1) to capture the dependence of εt beyond MDS; see, e.g., Romano and250

Thombs (1996), Horowitz, Lobato, Nankervis, and Savin (2006), and Shao (2011a). Compared
to the proof of Theorem 1 in the unconditional case, the proofs of Theorems 2-3 in the conditional
case follow the same idea but with more nontrivial proofs caused by the block technique.

Finally, it is worth noting that Theorem 2 requires a stronger condition for bn than Theorem
3. This demonstrates that if we allow for a more general structure of yt, we may suffer from255

a smaller valid range of bn. Hence, there is a tradeoff between the dependence structure of yt

and the theoretical valid range of bn. Also, we should highlight that the often used block-wise
wild bootstrap method applies the random weight w∗t to the residual ε̃t directly, but this method
may fail in some cases as shown in Section 4.3 of Brüggemann, Jentsch, and Trenkler (2014).
Our BRW method essentially applies the random weight w∗t to the product of the residual ε̃tε̃t+j260

(j ≥ 1), and so it is different from the often used one. As one referee pointed out, this feature of
our BRW method may lead to a robust size performance in terms of bn, especially when the de-
pendence structure of εtεt+j(j ≥ 1) is weak; see, e.g., Figure 1 in Section 4 below. Nevertheless,
how to select the optimal bn under certain “criterion” is unknown up to now. This is a familiar
problem with all blocking methods. The heuristic work in Hall, Horowitz, and Jing (1995) and265

Politis, Romano, and Wolf (1999) may be extended in this case, and we leave it for future study.

4. SIMULATION STUDIES

In this section, we examine the finite-sample performance of C̃Mn for several weak ARMA
models. As a comparison, we also consider the kernel-based test Tn in (5). Under H0 and certain
conditions, Shao (2011b) showed that

nTn −mnC(K)√
2mnD(K)

→d N(0, 1) as n →∞,

where C(K) =
∫∞
0 K2(x)dx and D(K) =

∫∞
0 K4(x)dx with the kernel function K(·) and

the bandwidth mn being chosen as in (5). So, we reject H0 at the significance level α, if
nTn >

√
2mnD(K)cα + mnC(K), where cα is the (1− α)-th percentile of N(0, 1). Under H1270

and certain conditions, Shao (2011b) proved that P (nTn >
√

2mnD(K)cα + mnC(K)) = 1 as
n →∞, and hence this spectral test is consistent (see also Hong (1996)).
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Next, we introduce our basic set-up. In all calculations, we generate 1000 replications of sam-
ple size n = 400 and 1000 from each specified model in Examples 1-4 below, and choose the sig-
nificance level α = 1%, 5% or 10%. For C̃Mn, we use 500 bootstrap samples in each replication
with block size bn = n1/5, 2n1/5,

√
n/2,

√
n or 2

√
n to obtain its corresponding critical value for

every aforementioned significance level α. These choices of set-up deliver bn = 3, 6, 10, 20, 40
for n = 400 and 3, 7, 15, 31, 63 for n = 1000. Here, δt is employed from the following Bernoulli
distribution:

P

(
δt =

3−√5
2

)
=

1 +
√

5
2
√

5
and P

(
δt =

3 +
√

5
2

)
= 1− 1 +

√
5

2
√

5
,

although other choices like the standard exponential distribution are also suitable for δt. For Tn,
we use the Parzen kernel K(x) defined as

K(x) =





1− 6x2 + 6|x|3 for 0 ≤ |x| ≤ 1/2,
2(1− |x|)3 for 1/2 ≤ |x| ≤ 1,
0 otherwise.

275

In general, since there is no clear objective procedure for optimally choosing the bandwidth mn,
we carry out the calculation for mn = 1, · · · , 20 when n = 400 and 1, · · · , 32 when n = 1000.
In most cases of mn, we find that the sizes of Tn are distorted (see Figure 1 below). Hence,
only the results in which the sizes are close to their nominal ones are reported, although the
corresponding choices of mn may not be optimal in some sense. 280

Example 1. Consider the following weak ARMA(1, 1) model:

yt = κyt−1 + 0.8εt−1 + εt and εt = η2
t ηt−1, (12)

where ηt is a sequence of iid N(0, 1) random variables, and κ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. Clearly,
εt in (12) are uncorrelated but non-MDS. Next, we use C̃Mn and Tn to detect whether a weak
MA(1) model is adequate to fit the data sample generated from model (12). The empirical power 285

and sizes of both tests are reported in Table 1, and the sizes correspond to the cases where
κ = 0.0.

Example 2. Consider the following weak AR(2) model:

yt = 0.5yt−1 + κyt−2 + εt and εt = η2
t ηt−1, (13)

where ηt is a sequence of iid N(0, 1) random variables, and κ ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. We use 290

C̃Mn and Tn to detect whether a weak AR(1) model is adequate to fit the data sample generated
from model (13). The empirical power and sizes of both tests are reported in Table 2, and the
sizes correspond to the cases where κ = 0.0.

Example 3. Consider the following switching-regime Markov model (see, e.g., Hamilton
(1994)): 295

yt = κyt−1 + ηt + (0.2 + 0.3∆t)ηt−1, (14)

where ∆t is a sequence of Bernoulli random variables with P (∆t = 0) = 1/3 and P (∆t = 1) =
2/3, ηt is a sequence of iid N(0, 1) random variables, and κ ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. Here,
we assume that ∆t and ηt are independent. When κ = 0.0, Francq and Zakoı̈an (1998) showed
that model (14) admits a weak MA(1) representation: yt = εt + ϕεt−1, where εt are uncorrelated 300

but non-MDS. Thus, we can use C̃Mn and Tn to detect whether a weak MA(1) model is adequate
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to fit the data sample generated from model (14). The empirical power and sizes of both tests are
reported in Table 3, and the sizes correspond to the cases where κ = 0.0.

Table 1. Empirical sizes and power (×100) for C̃Mn and Tn in model (12).
κ = 0.0 κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4

Tests n bn(mn) 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

gCMn 400 3 1.3 6.8 12.5 3.9 14.1 26.0 22.0 49.0 64.4 54.9 80.2 89.1 80.1 93.7 96.8
6 1.1 5.5 11.5 3.3 14.0 26.5 19.9 44.1 59.7 50.2 77.8 87.3 73.2 91.2 95.5

10 1.6 5.5 10.9 4.2 15.3 27.1 22.0 47.3 60.7 49.6 75.6 87.1 68.6 88.0 95.6
20 1.3 6.6 13.3 5.4 17.1 26.2 21.8 46.8 59.7 47.9 72.4 82.7 64.9 85.7 93.7
40 3.2 7.8 13.3 8.4 16.8 25.0 25.1 44.3 56.4 48.5 68.4 80.1 63.8 80.5 89.9

Tn 3 1.4 2.0 3.8 8.9 12.9 16.6 37.4 46.5 52.1 80.2 86.0 89.3 97.1 98.3 98.6
4 3.1 6.6 8.2 15.5 20.7 24.6 53.8 61.4 65.8 88.4 91.2 92.9 98.1 99.0 99.5

gCMn 1000 3 1.2 5.1 11.6 13.2 35.6 48.1 63.8 82.7 88.8 94.4 98.4 99.2 99.1 99.8 99.9
7 1.0 4.3 9.3 13.9 31.9 46.0 60.1 82.1 89.6 93.5 97.8 99.2 98.9 99.8 99.9

15 1.2 5.3 11.8 13.8 33.4 44.8 62.6 82.7 90.5 91.5 97.8 99.0 97.9 99.7 99.8
31 0.9 6.2 12.5 13.2 34.3 47.9 62.9 83.9 91.1 90.2 98.7 99.7 94.6 99.2 99.8
63 2.1 6.3 11.7 17.1 31.6 46.2 65.7 82.3 88.4 86.5 95.8 97.9 88.5 96.6 99.0

Tn 3 2.9 4.9 6.2 21.5 30.2 35.5 79.3 84.1 86.7 98.9 99.5 99.7 100 100 100
4 5.4 8.2 11.1 33.0 41.2 46.2 87.3 91.2 92.6 99.9 100 100 100 100 100

Table 2. Empirical sizes and power (×100) for C̃Mn and Tn in model (13).
κ = 0.0 κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4

Tests n bn(mn) 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

gCMn 400 3 0.5 4.6 9.9 19.5 35.9 46.8 63.7 80.9 86.2 89.6 95.2 96.9 97.0 98.7 99.2
6 2.0 4.4 10.1 18.0 35.2 46.0 61.4 79.0 86.0 86.2 93.3 95.9 94.4 98.5 99.3

10 1.1 4.8 10.4 20.0 39.8 51.5 66.3 83.4 88.6 86.7 95.1 97.1 95.6 98.5 99.0
20 1.6 6.1 12.7 22.6 41.4 52.1 65.6 81.5 87.8 87.4 96.1 97.5 94.1 98.5 99.1
40 2.6 6.4 13.1 25.4 37.7 47.3 64.2 78.7 84.9 85.4 94.8 97.4 92.4 98.3 98.8

Tn 10 1.9 3.4 4.9 15.1 23.6 28.5 72.2 78.2 82.5 97.0 97.7 98.0 99.9 99.9 99.9
15 2.4 4.3 6.8 16.9 24.6 30.4 72.5 79.5 82.7 96.8 98.4 98.7 99.9 99.9 100

gCMn 1000 3 1.3 5.6 11.1 45.2 65.7 75.3 93.8 98.2 98.6 99.6 99.9 100 100 100 100
7 1.1 6.3 10.8 48.7 67.9 74.7 93.2 97.1 98.4 99.7 99.9 99.9 99.9 100 100

15 1.2 6.4 12.2 48.3 67.1 75.9 92.4 97.6 98.7 99.7 99.9 100 99.7 100 100
31 1.2 5.2 11.7 48.1 66.6 74.9 92.6 96.6 98.0 99.3 99.9 99.9 99.8 100 100
63 1.6 6.4 11.5 49.9 66.7 75.5 94.6 97.8 98.8 99.4 99.8 100 99.8 100 100

Tn 9 2.0 3.7 5.6 44.7 56.0 62.5 97.8 98.9 99.4 100 100 100 100 100 100
13 2.9 5.4 7.5 51.0 60.3 64.9 98.1 99.0 99.3 100 100 100 100 100 100

Example 4. Consider the following bilinear model (see, e.g., Granger and Andersen (1978)
and Pham (1986)):305

yt = κηt−1 + ηt + 0.2yt−1ηt−2, (15)
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where ηt is a sequence of iid N(0, 1) random variables, and κ ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. When
κ = 0.0, Francq and Zakoı̈an (1998) showed that model (15) admits a weak MA(3) representa-
tion: yt = εt + ϕεt−3, where εt are uncorrelated but non-MDS. Thus, we can use C̃Mn and Tn

to detect whether a weak MA(3) model is adequate to fit the data sample generated from model 310

(15). The empirical power and sizes of both tests are reported in Table 4, and the sizes correspond
to the cases where κ = 0.0.

Table 3. Empirical sizes and power (×100) for C̃Mn and Tn in model (14).
κ = 0.0 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

Tests n bn(mn) 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

gCMn 400 3 1.1 5.4 10.4 1.9 8.1 13.9 4.2 14.2 22.4 12.7 32.7 44.1 29.5 53.8 65.6
6 1.7 5.7 12.4 2.0 7.3 14.4 3.7 13.5 22.2 14.8 32.5 45.5 31.6 55.2 67.9
10 1.7 6.9 11.8 2.0 7.6 13.6 4.8 13.7 21.5 15.0 32.0 43.4 31.8 55.4 66.8
20 2.4 7.1 12.1 3.1 9.0 15.2 6.7 14.8 23.9 16.9 32.3 43.4 33.9 53.3 65.3
40 3.6 7.8 13.0 4.6 10.6 18.6 9.8 19.1 28.9 21.9 36.9 47.7 40.0 57.6 69.5

Tn 19 0.7 1.9 3.3 0.4 2.4 3.7 1.4 3.6 6.1 6.3 11.3 16.3 19.8 28.7 35.5
20 0.9 2.1 3.4 0.8 2.3 4.4 2.2 4.8 8.3 7.2 13.7 17.6 16.7 28.0 34.7

gCMn 1000 3 0.9 5.8 10.8 2.7 9.5 17.3 15.2 33.4 44.9 39.6 63.1 75.2 79.7 91.6 94.9
7 1.6 5.1 10.5 4.6 10.9 17.5 14.5 29.8 42.1 40.9 63.6 75.1 79.2 91.3 95.7
15 1.3 4.7 10.1 3.9 11.2 18.4 14.7 32.5 44.3 43.8 65.7 74.8 79.2 90.8 95.1
31 1.7 6.1 10.6 4.2 11.4 17.3 16.5 33.9 45.1 47.4 69.4 79.5 79.1 90.5 94.7
63 3.7 8.9 13.6 4.0 11.5 18.6 20.3 36.1 46.7 48.5 67.1 75.4 81.4 91.9 95.5

Tn 21 0.9 2.4 4.0 1.9 4.0 6.5 7.7 12.7 17.2 24.4 37.0 44.5 61.7 74.8 79.6
22 1.1 2.5 4.9 1.6 3.9 5.7 6.0 11.3 15.4 24.2 35.9 44.7 60.6 73.8 80.6

Table 4. Empirical sizes and power (×100) for C̃Mn and Tn in model (15).
κ = 0.0 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

Tests n bn(mn) 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

gCMn 400 3 1.0 4.4 9.1 5.7 17.2 25.1 20.6 43.4 53.9 51.9 77.5 85.0 83.9 94.4 97.1
6 2.4 7.9 12.7 4.9 15.6 24.0 21.8 43.3 55.3 53.8 76.3 83.5 82.5 95.2 97.9

10 1.4 5.8 10.6 5.6 16.3 25.8 21.5 43.6 55.2 52.1 76.2 84.3 82.9 94.3 96.9
20 2.9 8.6 15.9 5.2 14.0 22.6 26.4 46.6 57.5 58.7 78.9 86.7 82.2 93.7 97.1
40 3.6 10.4 16.7 9.4 18.3 25.9 26.9 44.9 57.7 61.0 76.4 86.2 85.8 95.1 97.9

Tn 16 1.1 3.2 5.9 4.9 7.7 10.7 19.6 30.0 35.8 48.2 61.9 68.0 76.2 85.5 89.2
17 1.1 3.5 5.2 3.0 7.9 10.7 19.1 28.5 33.3 46.2 58.7 65.1 75.8 84.6 88.7

gCMn 1000 3 1.0 5.0 8.9 12.8 30.1 41.4 60.9 81.3 88.1 94.6 99.4 99.7 100 100 100
7 0.8 5.5 10.9 13.2 31.7 44.2 58.5 80.6 88.0 94.7 98.5 99.3 100 100 100

15 1.2 6.7 12.0 14.3 29.4 39.2 61.5 81.5 88.7 95.2 98.9 99.5 99.8 100 100
31 2.3 7.3 11.8 15.1 30.5 42.6 62.2 81.7 89.2 94.8 98.6 99.6 99.7 99.9 99.9
63 3.3 8.2 13.3 20.1 34.9 45.1 63.7 81.9 89.6 94.7 98.1 99.3 99.7 100 100

Tn 29 1.4 4.5 6.2 7.7 14.2 19.3 42.1 54.5 63.5 88.9 93.1 95.2 99.2 99.6 99.7
30 1.5 4.2 6.9 8.4 15.1 19.8 43.7 57.1 64.9 87.6 93.0 95.3 99.2 99.7 99.8
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Fig. 1. In each panel, the dash (or dash-dot) lines from top to bottom are the sizes of Tn (or gCMn) at the significance
level α = 10%, 5% and 1% for each model with κ = 0.0, based on different values of mn (or bn), where the solid

lines from top to bottom are the nominal significance level α = 10%, 5% and 1%.

From Tables 1-4, we find that the sizes of C̃Mn are close to their nominal ones when bn is
small (e.g., bn = n1/5 or 2n1/5). When bn gets large, C̃Mn tends to be oversized in general, but
the size distortion becomes weaker as n increases. This finding is consistent with the one in Shao315

(2011a). For Tn, we find that its size performance is very sensitive to the choice of mn in models
(12) and (13). A visual understanding of this phenomenon can be obtained in Figure 1(a)-(d),
where we plot all the empirical sizes of Tn for different choices of mn. As a comparison, the
empirical sizes of C̃Mn for different choices of bn are also plotted in Figure 1(a)-(d). It is clear
that when mn is larger, the sizes of Tn are seriously distorted at each significance level α, and320

when mn is small, Tn tends to be seriously undersized at significance levels α = 5% and 10%.
This drawback of Tn is unchanged even when n becomes larger. By using other kernels (e.g., the
Bartlett kernel and the quadratic spectral kernel), similar result holds for Tn, and hence they are
not reported. Compared to Tn, the sizes of C̃Mn are much more robust at each significance level
especially when bn is small.325

Furthermore, it is worth noting that unlike models (12) and (13), Tn is always undersized for
different choices of mn in models (14)-(15). This problem becomes extremely serious when mn
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is small. However, like models (12) and (13), the size performance of C̃Mn is much more robust
in those cases; see also Figure 1(e)-(h) for more visual evidence. From Figure 1, we find that the
size performance of C̃Mn is more satisfactory when bn = 1 or bn ≈ 1. This is probably because 330

our C̃Mn test applies the random weight w∗t to ε̃tε̃t+h not to ε̃t, and the dependence structure
of ε̃tε̃t+h for h ≥ 1 in models (12)-(15) is very weak (e.g., the autocovariance of εtεt+h at each
lag j(> 0) is zero in models (12)-(13)). This feature of our C̃Mn test may help us to explain its
robust size performance, and a rigorous justification on this conjecture is an interesting topic for
future study. Overall, we know that the sizes of C̃Mn are precise especially when bn is small, 335

while the sizes of Tn could be seriously undersized or oversized in most cases of mn. It means
that the performance of Tn is heavily relied on whether we can obtain an optimal mn, but this is
not the case for C̃Mn. Considering the difficulty of selecting the optimal bandwidth in most of
the nonparametric methods for practitioners, C̃Mn has a size advantage over Tn in this direction.

Next, we consider the power performances for C̃Mn and Tn, and the conclusion is generally 340

as expected. First, all the powers become large as n increases. Second, C̃Mn is generally more
powerful than Tn for all examined alternatives in models (14)-(15), while Tn has a power ad-
vantage over C̃Mn in model (12) and model (13) with a large κ. The power advantage of Tn

over C̃Mn in model (12) is probably because the residuals of a fitted MA(1) model exhibit cer-
tain autocorrelations at some large lags. The power advantage of Tn over C̃Mn in model (13) is 345

quite reasonable, since the sample autocovariance of the residuals from the fitted AR(1) model
becomes more significantly different from zero when κ is larger. Overall, although C̃Mn does
not have a consistent power advantage over Tn, it is reasonable to recommend C̃Mn in practice
since it has a very robust size performance especially when the block size is small.

5. APPLICATION TO S&P 500 STOCK INDEX 350

In this section, we revisit the real example on S&P 500 stock index in Escanciano and Velasco
(2006). We consider two sample periods for the S&P 500 stock index. The first period is from
3 January 1994 until 31 December 1997 with a total of 1011 observations. The second period
is from 2 January 1998 until 28 August 2002 with a total of 1170 observations. Denote the log-
return of both series (after mean-adjusted) by y1t and y2t, respectively. The generalized spectral 355

tests in Escanciano and Velasco (2006, p.172) indicate that y1t is non-MDS at the significance
level α = 5%, while y2t is non-MDS at the significance level α = 10%. Thus, we are of interest
to test whether y1t or y2t is a weak white noise (i.e., an uncorrelated sequence) by using C̃Mn. As
in Section 4, we choose bn = n1/5, 2n1/5,

√
n/2,

√
n or 2

√
n, and it delivers bn = 3, 7, 15, 31 for

y1t and 4, 8, 16, 32 for y2t. The corresponding results for C̃Mn are listed in Table 5, from which 360

we can not reject the hypothesis that y1t or y2t is a weak white noise at the 5% significance
level, and this conclusion is unchanged for all choices of bn. Thus, a weak but non-MDS process
should be suitable to fit y1t or y2t.

Next, we use C̃Mn to check whether a weak MA(3) model defined as yt = εt + ϕεt−3 for
|ϕ| < 1, is adequate to fit y1t or y2t. Based on LS estimation, the fitted weak MA(3) models for 365

y1t and y2t are as follows:

y1t = ε1t − 0.0482ε1t−3, (16)
y2t = ε2t − 0.0423ε2t−3, (17)
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Table 5. p-values of C̃Mn for testing the adequacy of a weak white noise on two S&P 500 stock
indexes

bn

Series n1/5 2n1/5 √
n/2

√
n 2

√
n

y1t p-value† 0.6900 0.6537 0.5050 0.6257 0.5637

y2t p-value 0.5110 0.5180 0.4017 0.4157 0.2783

†
p-values bootstrapped by the BRW method with J = 3000.

where the estimated values of σ2
ε1

= 6.2× 10−5 and σ2
ε2

= 1.8× 10−4. The p-values of C̃Mn

in Table 6 indicate that models (16)-(17) are adequate at the 5% significance level, while the p-370

values of the Ljung-Box test statistics Q(M) and Li-Mak test statistics Q2(M) in Table 7 imply
that models (16)-(17) are not strong at the same significance level. Note that a Bilinear model
like (15) with κ = 0 has a weak MA(3) representation. Thus, it motivates us to fit y1t or y2t by
the following Bilinear-GARCH model:

{
yt = ηt + uyt−1ηt−2,
ηt =

√
htνt and ht = ω + αη2

t−1 + βht−1,
(18)375

where |u| < 1, ω > 0, α, β ≥ 0 and νt is an iid re-scaled error sequence. For each series, model
(18) is estimated by using the QMLE method (see, e.g., Ling (2007) and Francq and Zakoı̈an
(2010)). The related results are summarized in Table 8, from which we know that model (18) is
adequate to fit y2t, while a marginal autocorrelation up to lag 6 is detected in the fitted conditional
mean model for y1t. Based on this, we re-fit y1t by another Bilinear-GARCH model:380

{
yt = vηt−1 + ηt + uyt−1ηt−2,
ηt =

√
htνt and ht = ω + αη2

t−1 + βht−1,
(19)

where |v| < 1, |u| < 1, ω > 0, α, β ≥ 0 and νt is an iid re-scaled error sequence. The related
results for the fitted model (19) are given in Table 8, from which we know that model (19) is
adequate in fitting y1t.

Table 6. p-values of C̃Mn for testing the adequacy of a weak MA(3) model on two S&P 500 stock
indexes

bn

Series n1/5 2n1/5 √
n/2

√
n 2

√
n

y1t p-value† 0.9087 0.8923 0.8637 0.9707 0.9627

y2t p-value 0.8420 0.8630 0.6720 0.5560 0.4940

†
p-values bootstrapped by the BRW method with J = 3000.
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Table 7. p-values of Q(M) and Q2(M) for testing the adequacy of a strong MA(3) model on
two S&P 500 stock indexes

Series Q(6) Q(12) Q(24) Q2(6) Q2(12) Q2(24)

y1t p-value 0.3453 0.0106 0.0588 0.0000 0.0000 0.0000

y2t p-value 0.2756 0.1774 0.2689 0.0000 0.0000 0.0000

Table 8. QMLE-fitted model and its corresponding portmanteau tests on two S&P 500 stock
indexes

QMLE

Series vn un ωn αn βn σ2
ν Q(6) Q(24) Q2(6) Q2(24)†

Model (18) y1t −−− 0.9961 0.0000 0.1045 0.8686 0.9984 0.0461 0.2591 0.9517 0.9945

y2t −−− 0.8004 0.0000 0.1129 0.8213 0.9984 0.4106 0.3525 0.2549 0.6193

Model (19) y1t 0.0703 0.8001 0.0000 0.1083 0.8650 0.9971 0.4310 0.6353 0.9614 0.9951

† p-values for the Ljung-Box test statistics Q(6) and Q(24), and the Li-Mak test statistics Q2(6) and Q2(24).

6. CONCLUDING REMARKS 385

In this paper, we study the asymptotic property of a CM-type spectral test statistic C̃Mn for
checking the adequacy of an ARMA model with uncorrelated errors. By releasing the martingale
difference assumption on the error terms, C̃Mn is applicable to a large class of uncorrelated
nonlinear processes. Since we do not specify the form of error terms, the limiting distribution of
C̃Mn is not pivotal, and so a novel BRW method is necessary to bootstrap the critical values of 390

C̃Mn. Simulation studies show that the size and power performances of C̃Mn are robust to the
selection of block size bn in BRW method especially when the sample size is large, while the size
of kernel-based test Tn in Shao (2011b) is always sensitive to the choice of the bandwidth mn.
In addition, C̃Mn has a power advantage over Tn under most of the examined alternatives. By
revisiting two S&P 500 stock index series in Escanciano and Velasco (2006), C̃Mn suggests that 395

the Bilinear-GARCH models are adequate to fit both series. This empirical example illustrates
that although some economic or financial series is not a martingale difference sequence, it is
still very likely to be an uncorrelated sequence. Our test statistic C̃Mn now gives us a way to
check for the adequacy of ARMA models driven by an uncorrelated error sequence. Moreover,
once a weak ARMA model is found to be adequate in fitting the given series, some non-linear 400

processes with a weak ARMA representation may also be considered to fit this series adequately.
This point of view should be important for practitioners.
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APPENDIX: PROOFS410

Denote by Wh(j) =
∫ π

0
h(λ)ψj(λ)dλ for any h ∈ L2[0, π]; by Pj =

∫ π

0
ψ2

j (λ)dλ for j ∈ N ; by C a
positive generic constant which may vary from place to place. Note that Pj ≤ Cj−2 uniformly in j ∈ N ,
and

∫ π

0
ψj(λ)ψk(λ)dλ = 0 when j 6= k and j, k ∈ N . In order to prove Theorem 1, we rewrite

S̃n(λ) =
[
S̃n(λ)− S̆n(λ)

]
+ S̆n(λ)

=
[
S̃n(λ)− S̆n(λ)

]
+

[
S̆n(λ)− qSn(λ)

]
+ qSn(λ)415

= I1n(λ) + I2n(λ) + qSn(λ) say. (A1)

where S̆n(λ) =
∑n−1

j=1

√
nγ̆(j)ψj(λ) with γ̆(j) = n−1

∑n
t=1+|j| ε̆tε̆t−|j| and ε̆t = εt(θn). Then, we

need the following five lemmas:

LEMMA A1. Suppose that Assumption 1 holds. Then, there exist C > 0 and ρ ∈ (0, 1) such that

(i) sup
Θ
|εt(θ)| < Cξρt, sup

Θ

∥∥∥∥
∂εt(θ)

∂θ

∥∥∥∥ < Cξρt−1, and sup
Θ

∥∥∥∥
∂2εt(θ)
∂θ∂θ′

∥∥∥∥ < Cξρt−1;420

(ii) sup
Θ
|εt(θ)− ε̃t(θ)| ≤ O(ρt)ξρ0, sup

Θ

∥∥∥∥
∂εt(θ)

∂θ
− ∂ε̃t(θ)

∂θ

∥∥∥∥ ≤ O(ρt)ξρ0,

and sup
Θ

∥∥∥∥
∂2εt(θ)
∂θ∂θ′

− ∂2ε̃t(θ)
∂θ∂θ′

∥∥∥∥ ≤ O(ρt)ξρ0,

where ξρt = 1 +
∑∞

i=0 ρi|yt−i|.
Proof. The proof follows directly from Lemmas A.1 and A.4 in Ling (2007). ¤

LEMMA A2. Suppose that Assumptions 1-2 hold. Then, ‖I1n(λ)‖2 = op(1).425

Proof. By direct calculation, we have

E‖I1n(λ)‖2 =
1
n

n−1∑

j=1

E




n∑

t=1+j

btj(θn)




2

Pj ,

where btj(θ) = εt(θ)εt−j(θ)− ε̃t(θ)ε̃t−j(θ). By Minkowski inequality, it follows that

E‖I1n(λ)‖2 ≤ 1
n

n−1∑

j=1




n∑

t=1+j

{
E [btj(θn)]2

}1/2




2

Pj

≤ 1
n

n−1∑

j=1




n∑

t=1+j

{
E

[
sup
Θ
‖btj(θ)‖

]2
}1/2




2

Pj . (A2)430

By Lemma A1, we know that there exists a constant ρ ∈ (0, 1) such that

sup
Θ
‖btj(θ)‖ ≤ sup

Θ
‖ [εt(θ)− ε̃t(θ)] εt−j(θ)‖+ sup

Θ
‖ε̃t(θ) [εt−j(θ)− ε̃t−j(θ)] ‖

≤ O(ρt)ξρ0ξρt−j + O(ρt−j)ξρ0ξρt.
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Note that E|ξρt|4 < ∞ by Assumption 2. Thus, from (A2), by Hölder inequality, we can show that

E‖I1n(λ)‖2 ≤ 1
n

n−1∑

j=1




n∑

t=1+j

{
O(ρ2t)E [ξρ0ξρt−j ]

2 + O(ρ2(t−j))E [ξρ0ξρt]
2
}1/2




2

Pj 435

≤ 1
n

n−1∑

j=1




n∑

t=1+j

{
O(ρ2t)

(
E [ξρ0]

4
E [ξρt−j ]

4
)1/2

+O(ρ2(t−j))
(
E [ξρ0]

4
E [ξρt]

4
)1/2

}1/2
)2

Pj

≤ 1
n

n−1∑

j=1




n∑

t=1+j

{
O(ρt) + O(ρt−j)

}



2

Pj = O

(
1
n

)
,

which implies that ‖I1n(λ)‖2 = op(1). ¤

LEMMA A3. Suppose that Assumptions 1-3 hold. Then, 440

(i) E

[
∂lt(qθ0)

∂θ

]
= 0;

(ii)
√

n(θn − qθ0) = Op(1) with
√

n(θn − qθ0) = −Σ−1

[
1√
n

n∑
t=1

∂lt(qθ0)
∂θ

]
+ op(1),

where lt(θ) is defined as in Assumption 3(ii).

Proof. (i) By Lemma A1, it is not hard to show that

sup
Θ

∥∥∥∥∥
1√
n

n∑
t=1

[
∂lt(θ)

∂θ
− ∂l̃t(θ)

∂θ

]∥∥∥∥∥ = op(1), (A3) 445

sup
Θ

∥∥∥∥∥
1
n

n∑
t=1

[
∂2lt(θ)
∂θ∂θ′

− ∂2 l̃t(θ)
∂θ∂θ′

]∥∥∥∥∥ = op(1). (A4)

Then, since ∂l̃t(θn)/∂θ = 0, by Taylor’s expansion and (A3)-(A4), we have

θn − qθ0 = −
[

1
n

n∑
t=1

∂2 l̃t(ζn)
∂θ∂θ′

]−1 [
1
n

n∑
t=1

∂l̃t(qθ0)
∂θ

]

= −
[

1
n

n∑
t=1

∂2lt(ζn)
∂θ∂θ′

]−1 [
1
n

n∑
t=1

∂lt(qθ0)
∂θ

]
+ op(1), (A5)

where ζn lies between θn and qθ0. By Lemma A1(i) and Assumption 2, we know that

E sup
Θ

∥∥∥∥
∂2lt(θ)
∂θ∂θ′

∥∥∥∥ ≤ CE
(
ξ2
ρt−1 + ξρtξρt−1

)
< ∞

for some ρ ∈ (0, 1). Thus, by Theorem 3.1 in Ling and McAleer (2003), we have 450

1
n

n∑
t=1

∂2lt(ζn)
∂θ∂θ′

= E

[
∂2lt(ζn)
∂θ∂θ′

]
+ op(1) = Σ + op(1), (A6)
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where the last equality holds by the dominated convergence theorem and the fact that ξn →p
qθ0 as n →∞

by Assumption 3. By (A5)-(A6) and the ergodic theorem, it follows that

θn − qθ0 = −Σ−1

[
1
n

n∑
t=1

∂lt(qθ0)
∂θ

]
+ op(1) = −Σ−1E

[
∂lt(qθ0)

∂θ

]
+ op(1).

Since θn − qθ0 = op(1) by Assumption 3, it implies that (i) holds.455

(ii) By (A3)-(A5), it is not hard to see that

√
n(θn − qθ0) = −

[
1
n

n∑
t=1

∂2lt(ζn)
∂θ∂θ′

]−1 [
1√
n

n∑
t=1

∂lt(qθ0)
∂θ

]
+ op(1).

Note that ∂lt(qθ0)/∂θ = 2qεt(∂qεt/∂θ). Thus, by Assumptions 1 and 2(i), Lemmas 3-4 in Francq and
Zakoı̈an (1998) implies that n−1/2

∑n
t=1 ∂lt(qθ0)/∂θ = Op(1). By (A6), it follows that (ii) holds. ¤

LEMMA A4. Suppose that Assumptions 1-3 hold. Then,460

‖I2n(λ)−A′n(λ)[
√

n(θn − qθ0)]‖2 = op(1),

where

An(λ) =
n−1∑

j=1

E

[
∂(qεtqεt−j)

∂θ

]
ψj(λ).

Proof. By Taylor’s expansion, we have ε̂t − qεt = (∂εt(ζn)/∂θ′)(θn − qθ0), where ζn lies between θn

and qθ0. Then, it follows that

I2n(λ) =
n−1∑

j=1





1
n

n∑

t=1+j

[
∂εt(ζn)

∂θ′
ε̂t−j + qεt

∂εt−j(ζn)
∂θ′

]
ψj(λ)



 [
√

n(θn − qθ0)],

which entails465

I2n(λ) =
{

I
(1)
2n (λ, ζn, θn) + I

(2)
2n (λ, ζn) + I

(3)
2n (λ)

}
[
√

n(θn − qθ0)], (A7)

where

I
(1)
2n (λ, θ1, θ2) =

n−1∑

j=1





1
n

n∑

t=1+j

[
∂εt(θ1)

∂θ′
εt−j(θ2)− E

(
∂qεt

∂θ′
qεt−j

)]
ψj(λ)



 ,

I
(2)
2n (λ, θ1) =

n−1∑

j=1





1
n

n∑

t=1+j

[qεt
∂εt−j(θ1)

∂θ′
− E

(qεt
∂qεt−j

∂θ′

)]
ψj(λ)



 ,

I
(3)
2n (λ) =

n−1∑

j=1

{
n− j

n

[
E

(
∂qεt

∂θ′
qεt−j

)
+ E

(qεt
∂qεt−j

∂θ′

)]
ψj(λ)

}
.470

We first consider I
(1)
2n (λ, ζn, θn). By direct calculation, we have

E‖I(1)
2n (λ, ζn, θn)‖2 =

n−1∑

j=1

(Ec2
nj)Pj , (A8)

where

cnj =
1
n

n∑

t=1+j

[
∂εt(ζn)

∂θ′
εt−j(θn)− E

(
∂qεt

∂θ′
qεt−j

)]
.
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As for (A6), by Assumptions 2 and 3(i) and Lemma A1(i), we can show that uniformly in j ∈ {1, · · · , n− 475

1}, Ec2
nj = o(1). Thus, since

∑∞
j=1 Pj < ∞, by (A8), it is straightforward to see that

E‖I(1)
2n (λ, ζn, θn)‖2 =

n−1∑

j=1

o (Pj) = o(1),

which implies that ‖I(1)
2n (λ, ζn, θn)‖2 = op(1). Similarly, ‖I(2)

2n (λ, ζn)‖2 = op(1).
Next, we consider I

(3)
2n (λ). By direct calculation and the fact Pj = O(j−2), we have

E‖I(3)
2n (λ)−An(λ)‖2 =

n−1∑

j=1

j2

n2

[
E

(
∂qεt

∂θ′
qεt−j

)
+ E

(qεt
∂qεt−j

∂θ′

)]2

Pj = O(n−1). 480

Now, the conclusion follows from (A7) and Lemma A3(ii). ¤

LEMMA A5. Suppose that Assumptions 1-3 hold. Then,
∥∥∥∥∥∥

n−1∑

j=1

(
1√
n

j∑
t=1

ztj

)
ψj(λ)

∥∥∥∥∥∥

2

= op(1),

where ztj is defined as in (3).

Proof. First, by Lemma A3(i), we have Eztj = 0. Then, as for (A6), by Assumptions 1-2, it is not hard
to show that

E

[
1
j

j∑
t=1

ztj

]2

→ 0 as j →∞. 485

Thus, ∀ε > 0, there exists a n0(ε) such that when j ≥ n0,

E

[
1
j

j∑
t=1

ztj

]2

< ε.

Next, by direct calculation, for n ≥ max(n0 + 1, bε−1c), we have

E

∥∥∥∥∥∥

n−1∑

j=1

(
1√
n

j∑
t=1

ztj

)
ψj(λ)

∥∥∥∥∥∥

2

=
1
n

n−1∑

j=1

j2E

[
1
j

j∑
t=1

ztj

]2

Pj

=
1
n

n0−1∑

j=1

j2E

[
1
j

j∑
t=1

ztj

]2

Pj +
1
n

n−1∑

j=n0

j2E

[
1
j

j∑
t=1

ztj

]2

Pj

≤ O

(
1
n

)
+

ε

n

n−1∑

j=n0

j2Pj 490

= O

(
1
n

)
+ O (ε) = O(ε).

Thus, it follows that the conclusion holds. ¤

PROOF OF THEOREM 1. By (A1) and Lemmas A2, A4 and A5, it suffices to show that Sn(λ)−
E{Sn(λ)} ⇒ S(λ) as n →∞, where Sn(λ) =

∑n−1
j=1

√
nλ(j)ψj(λ) with λn(λ) = n−1

∑n
t=1+|j| et,j .
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Here, we have used the fact that E{qSn(λ)} = E{Sn(λ)} by Lemma A3(i). For each fixed integer K ∈
{1, · · · , n− 1}, we rewrite

Sn(λ) =
K∑

j=1

√
nλ(j)ψj(λ) +

n−1∑

j=K+1

√
nλ(j)ψj(λ) =: S

K

n (λ) + RK
n (λ).

Then, as in Shao (2011a), the conclusion holds from the following three claims:
(a). For any h ∈ L2[0, π], the finite dimensional distributions of 〈SK

n − E(S
K

n ), h〉 converge to those
of 〈SK(λ), h〉, where SK(λ) is a Gaussian process with zero mean and asymptotic projected variances495

σ2
h,K = var[〈SK , h〉] =

K∑

j=1

K∑

k=1

∞∑

d=−∞
cov(et,j , et−d,k)Wh(j)Wh(k).

(b). The sequence {SK

n (λ)} is tight.
(c). For ∀ε > 0, limK→∞ limn→∞ P

(‖RK
n (λ)− E{RK

n (λ)}‖ > ε
)

= 0. Q.E.D.

PROOF OF CLAIM (a). By a direct calculation, we can show that500

〈SK

n − E(S
K

n ), h〉 =
1√
n

K∑

j=1

n∑

t=j+1

{et,j − E(et,j)}Wh(j)

=
1√
n

K+1∑
t=2

t−1∑

j=1

{et,j − E(et,j)}Wh(j)

+
1√
n

n∑

t=K+2

K∑

j=1

{et,j − E(et,j)}Wh(j), (A9)

where the first summand above is op(1) since K is finite. Rewrite

Yt :=
K∑

j=1

et,jWh(j) = 1′K+1 ×
(qεtqεt−1Wh(1), · · · , qεtqεt−KWh(K), κqεt

∂qεt

∂θ′

)′
505

=: 1′K+1 × vt, (A10)

where 1K+1 = (1, · · · , 1)′ ∈ R(K+1)×1 and κ = −2
∑K

j=1 E [∂(qεtqεt−j)/∂θ′]Wh(j). By the finiteness
of Wh(j) and κ and the same argument as in Francq, Roy, and Zakoı̈an (2005, page 543), we have

1√
n

n∑

t=K+2

(vt − Evt) →d N (0,Ω∗) as n →∞, where Ω∗ = lim
n→∞

var

[
1√
n

n∑

t=K+2

vt

]
< ∞.
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Hence, it follows that for the second summand, n−1/2
∑n

t=K+2 (Yt − EYt) →d N(0, qI) as n →∞,
where qI = lim

n→∞
var

(
1√
n

n∑

t=K+2

Yt

)

= lim
n→∞

1
n

K∑

j=1

K∑

k=1

(
n∑

t=K+2

n∑

t′=K+2

cov(et,j , et′,k)

)
Wh(j)Wh(k) 510

= lim
n→∞

1
n

K∑

j=1

K∑

k=1




n−K−2∑

d=K+2−n

n+min(0,d)∑

t=K+2+max(0,d)

cov(et,j , et−d,k)


 Wh(j)Wh(k)

= lim
n→∞

K∑

j=1

K∑

k=1

(
n−K−2∑

d=K+2−n

n−K − 2− |d|
n

cov(et,j , et−d,k)

)
Wh(j)Wh(k)

= σ2
h,K . (A11)

Thus, it follows that claim (a) holds. Q.E.D.
515

PROOF OF CLAIM (b). First, as for (A9), we have

S
K

n − E(S
K

n ) =
1√
n

K∑

j=1

n∑

t=j+1

{et,j − E(et,j)}ψj(λ)

=
1√
n

K+1∑
t=2

t−1∑

j=1

{et,j − E(et,j)}ψj(λ) +
1√
n

n∑

t=K+2

GK
t , (A12)

where the first term in (A12) is tight since each summand is tight, and

GK
t =

K∑

j=1

{et,j − E(et,j)}ψj(λ).

Next, we use Theorem 2.1 in Politis and Romano (1994) to prove the tightness of the second term in
(A12). Note that GK

t is independent of n. We only need to verify that 520

(i) E‖GK
t ‖2 < ∞;

(ii) lim
n→∞

n∑

t=K+2

E
[〈GK

K+2, G
K
t 〉

]
=

∞∑

t=K+2

E
[〈GK

K+2, G
K
t 〉

]
< ∞, and the last series

converges absolutely;

(iii) lim
n→∞

var
[〈S̄K

n − E(S̄K
n ), h〉] = σ2

h,K .

The proof of (i) is trivial, and the proof of (iii) is directly from the one as for (A11). We now consider the 525

proof of (ii). Note that

∞∑

t=K+2

∣∣E [〈GK
K+2, G

K
t 〉

]∣∣ =
∞∑

t=K+2

∣∣∣∣∣∣

K∑

j=1

cov(et,j , eK+2,j)Pj

∣∣∣∣∣∣
. (A13)

Using the same argument as for Lemma 3 in Francq and Zakoı̈an (1998), it is not hard to show that for
each j ∈ {1, · · · ,K}, there exists a ρ ∈ (0, 1) such that

|cov(et,j , eK+2,j)| ≤ C

{
ρ|t−K−2|/2 +

[
αy

(⌊ |t−K − 2|
2

⌋)]ν/(2+ν)
}

. (A14) 530
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By (A13)-(A14), it follows that

∞∑

t=K+2

∣∣E [〈GK
K+2, G

K
t 〉

]∣∣ ≤ C




K∑

j=1

Pj




∞∑
s=0

{
ρ|s|/2 +

[
αy

(⌊ |s|
2

⌋)]ν/(2+ν)
}

< ∞,

which implies that (ii) holds. This completes the proof of claim (b). Q.E.D.

PROOF OF CLAIM (c). First, by direct calculation, we have535

E‖RK
n (λ)− E{RK

n (λ)}‖2 =
1
n

n−1∑

j=K+1

n∑

t,t′=j+1

cov(et,j , et′,j)Pj . (A15)

Since et,j = qεtqεt−j + ztj , there are four terms in cov(et,j , et′,j). For simplicity, we only prove the
conclusion for the term cov(ztj , zt′j), since the proofs for other terms are similar. Note that for any
m ∈ {1, · · · , p + q}, the m-th entry of ztj satisfies that

ztj,m = O(1)qεt
∂εt(qθ0)
∂θm

= O(1)

[ ∞∑

i=0

ciyt−i

][ ∞∑

k=0

ck,myt−k

]
, (A16)540

where ci = O(ρi) and ci,m = O(ρi) for some ρ ∈ (0, 1). Then, for any (m,m′) ∈ {1, · · · , p + q}2, we
have

1
n

n−1∑

j=K+1

n∑

t,t′=j+1

cov(ztj,m, zt′j,m′)

≤ O

(
1
n

) n−1∑

j=K+1

n∑

t,t′=j+1

∑

i,k,i′,k′≥0

|cick,m′ci′ck′,m′ | |cov(yt−iyt−k, yt′−i′yt′−k′)|Pj

≤ O(1)
∑

i,k,i′,k′≥0

|cick,m′ci′ck′,m′ |
n−1∑

j=K+1





1
n

n∑

t,t′=j+1

|cov(y0yi−k, yt′−t+i−i′yt′−t+i−k′)|


 Pj .545

Furthermore, by Assumption 2, we can show that for any i, k, i′, k′, j,

1
n

n∑

t,t′=j+1

|cov(y0yi−k, yt′−t+i−i′yt′−t+i−k′)|

≤ 1
n

n∑

t,t′=j+1

{|cum(y0, yi−k, yt′−t+i−i′ , yt′−t+i−k′)|

+|γ(t′ − t + i− i′)γ(t′ − t + k − k′)|+ |γ(t′ − t + i− k′)γ(t′ − t + k − i′)|}

≤
n−1−j∑

d=−(n−1−j)

n− 1− j − |d|
n

{|cum(y0, yi−k, yd+i−i′ , yd+i−k′)|550

+|γ(d + i− i′)γ(d + k − k′)|+ |γ(d + i− k′)γ(d + k − i′)|}

≤
∞∑

s1,s2,s3=−∞
|cum(y0, ys1 , ys2 , ys3)|+ 2

∞∑
s=−∞

[γ(s)]2 < ∞.

Thus, it follows that

1
n

n−1∑

j=K+1

n∑

t,t′=j+1

cov(ztj,m, zt′j,m′) ≤ O(1)
∞∑

j=K+1

Pj → 0 as K →∞. (A17)
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By (A15) and (A17), we know that limK→∞ limn→∞E‖RK
n (λ)− E{RK

n (λ)}‖2 = 0. Now, claim (c) 555

follows directly from Chebyshev’s inequality. Q.E.D.

PROOF OF COROLLARY 1. Under H0, we have θ0 = qθ0 and γ(j) = 0 for j ≥ 1. Then, it is straightfor-
ward to see that ‖E{qSn(λ)}‖ = o(1). Thus, (i) follows directly from continuous mapping theorem. For
(ii), since n−1/2S̃n(λ)− E

{
n−1/2 qSn(λ)

}
⇒ 0 in L2[0, π] by Theorem 1, it follows that 560

C̃Mn

n
=

∥∥∥∥∥E

[ qSn(λ)√
n

]∥∥∥∥∥ +

∥∥∥∥∥
S̃n(λ)√

n

∥∥∥∥∥−
∥∥∥∥∥E

[ qSn(λ)√
n

]∥∥∥∥∥

=
∞∑

j=1

[E(qεtqεt−j)]
2
Pj + o(1),

which entails that (ii) holds. Q.E.D.

PROOF OF COROLLARY 2. Rewrite 565

S̃n(λ) = Sn(λ) +
[
S̃n(λ)− Sn(λ)

]

=
[
Sn(λ)− E

{
Sn(λ)

}]
+ E

{
Sn(λ)

}
+

[
S̃n(λ)− Sn(λ)

]
. (A18)

On one hand, by Assumptions 1-3, from the proof of Theorem 1, we have

Sn(λ)− E
{
Sn(λ)

} ⇒ S(λ) and E‖S̃n(λ)− Sn(λ)‖2 → 0 as n →∞. (A19)

On the other hand, since qθ0 = θ0 by Assumption 4, we can show that under H1n, 570

E
{
Sn(λ)

}
= E

{qSn(λ)
}

= E




n−1∑

j=1

√
nγ̂(j)ψj(λ)




=
n−1∑

j=1

√
nγn(j)ψj(λ)

=
n−1∑

j=1

γ(0)
2π

∫ π

−π

[
g(ω)eijωdω

]
ψj(λ) → γ(0)

2π

∫ λ

0

g(ω)dω (A20)

as n →∞, where γn(j) is defined as in (5). Now, the conclusion holds from (A18)-(A20) and continuous 575

mapping theorem. Q.E.D.

Next, in order to prove Theorem 2, we need three more lemmas:

LEMMA A6. Assume that Assumptions 1-3 hold and b−1
n = o(1). Then,

(i) ‖θ∗n − qθ0‖ = o∗p(1); 580

(ii)
√

n(θ∗n − qθ0) = O∗p(1) with
√

n(θ∗n − qθ0) = −Σ−1

[
n−1/2

n∑
t=1

w∗t
∂lt(qθ0)

∂θ

]
+ o∗p(1).
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Proof. By the definition of θ∗n, we have

θ∗n − qθ0 = −
[

1
n

n∑
t=1

∂2 l̃∗t (ζn)
∂θ∂θ′

]−1 [
1
n

n∑
t=1

∂l̃∗t (qθ0)
∂θ

]

= −
[

1
n

n∑
t=1

w∗t
∂2 l̃t(ζn)
∂θ∂θ′

]−1 [
1
n

n∑
t=1

(w∗t − 1)
∂l̃t(qθ0)

∂θ
+

1
n

n∑
t=1

∂l̃t(qθ0)
∂θ

]

=: − [s1n]−1 [s2n + s3n] ,585

where ζn lies between θ∗n and qθ0. First, by Lemma A1, it is straightforward to see that

E∗‖s1n‖ ≤ 1
n

n∑
t=1

E∗(w∗t ) sup
Θ

∥∥∥∥∥
∂2 l̃t(θ)
∂θ∂θ′

∥∥∥∥∥ =
1
n

n∑
t=1

sup
Θ

∥∥∥∥
∂2lt(θ)
∂θ∂θ′

∥∥∥∥ + op(1) = Op(1),

which entails s1n = O∗p(1). Next, by direct calculation and Lemma A1, we have

E∗ [s2ns′2n] =
1
n2

Ln∑
s=1


 ∑

t,t′∈Bs

∂l̃t(qθ0)
∂θ

∂l̃t′(qθ0)
∂θ′




=
1
n2

Ln∑
s=1


 ∑

t,t′∈Bs

∂lt(qθ0)
∂θ

∂lt′(qθ0)
∂θ′


 + op(1) =: s4n + op(1), (A21)

where Bs is defined in step 1 of the BRW procedure in Section 3. Moreover, since lt(θ) is stationary and
E∂lt(qθ0)/∂θ = 0 by Lemma A3(i), it is straightforward to see that590

E (s4n) =
bn

n2

Ln∑
s=1

var

[
1√
bn

∑

t∈Bs

∂lt(qθ0)
∂θ

]
=

bnLn

n2
var

[
1√
bn

bn∑
t=1

∂lt(qθ0)
∂θ

]
= O

(
1
n

)
, (A22)

where the last equality holds due to the fact that b−1
n = o(1) and (9). Then, by (A21)-(A22), we have

s2n = O∗p(n−1/2). Note that s3n = op(1) by the ergodic theorem and Lemmas A1 and A3(i). Thus, it
follows that (i) holds. Consequently, by Lemma A1, it is not hard to show that

1
n

n∑
t=1

(w∗t − 1)
∂2 l̃t(ζn)
∂θ∂θ′

= o∗p(1) and
1
n

n∑
t=1

∂2 l̃t(ζn)
∂θ∂θ′

= Σ + o∗p(1),595

and hence s1n = Σ + o∗p(1). Note that
√

ns2n = O∗p(1) and
√

ns3n = Op(1) by Lemma A3(ii). Thus, it
follows that (ii) holds. ¤

LEMMA A7. Assume that Assumptions 1-3 hold, b−1
n = o(1), and bnn−1 = o(1). Then, E∗‖Z̃n(γ)−

Zn(γ)‖2 = op(1), where Z̃n(γ) is defined in (6), and

Zn(γ) =
n−1∑

j=1


 1√

n

n∑

t=1+j

(w∗t − 1)E(et,j)


ψj(λ).600

Proof. Note that

E∗‖Z̃n(γ)− Zn(γ)‖2 ≤ 2E∗‖Z̃n(γ)− qZn(γ)‖2 + 2E∗‖ qZn(γ)− Zn(γ)‖2, (A23)

where

qZn(γ) =
n−1∑

j=1


 1√

n

n∑

t=1+j

(w∗t − 1)(n− j)
n

E (qεtqεt−j)


ψj(λ).
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By direct calculation, we have 605

E∗‖Z̃n(γ)− qZn(γ)‖2 =
n−1∑

j=1





1
n

E∗




n∑

t=1+j

(w∗t − 1)dnj




2




Pj

=
n−1∑

j=1





1
n

Ln∑
s=1


 ∑

t∈Bs∩[1+j,n]

dnj




2




Pj

≤
n−1∑

j=1

{
Lnb2

n

n
d2

nj

}
Pj

=
bn

n

n−1∑

j=1

(√
ndnj

)2
Pj , (A24)

where dnj = n−1
∑n

t′=1+j [ε̃t′ ε̃t′−j − E (qεt′qεt′−j)]. By Lemma A1, it is straightforward to see that 610

√
ndnj =

1√
n

n∑

t=1+j

[ε̆tε̆t−j − E (qεtqεt−j)] + op(1). (A25)

Next, by Taylor’s expansion, we have

ε̆tε̆t−j = qεtqεt−j +
∂(qεtqεt−j)

∂θ′
(θn − qθ0) + (θn − qθ0)′

[
1
2

∂2(εt(θ)εt−j(θ))
∂θ∂θ′

∣∣
θ=ζn

]
(θn − qθ0),

where ζn lies between θn and qθ0. Note that
√

n(θn − qθ0) = Op(1) by Lemma A3(ii). Thus, by (A25) it
follows that for all j ∈ {1, · · · , n− 1}, 615

√
ndnj =

1√
n

n∑

t=1+j

[qεtqεt−j − E (qεtqεt−j)]

+
1
n

n∑

t=1+j

∂(qεtqεt−j)
∂θ′

[
√

n(θn − qθ0)] + op(1)

=
1√
n

n∑

t=1+j

[qεtqεt−j − E (qεtqεt−j)] + Op(1). (A26)

As for (A17), we can show that for all j ∈ {1, · · · , n− 1},

E





1√
n

n∑

t=1+j

[qεtqεt−j − E (qεtqεt−j)]





2

=
1
n

n∑

t,t′=1+j

cov (qεtqεt−j , qεt′qεt′−j) = O(1). 620

Thus, by (A26), we know that
√

ndnj = Op(1) for all j. Since bnn−1 = o(1) and
∑∞

j=1 Pj < ∞, by
(A24), it entails that

E∗‖Z̃n(γ)− qZn(γ)‖2 =
bn

n

n−1∑

j=1

Op (Pj) = op(1). (A27)
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Next, since E(et,j) = E(qεtqεt−j) and bnn−1 = o(1), it is straightforward to see that

E∗‖ qZn(γ)− Zn(γ)‖2 = E∗

∥∥∥∥∥∥

n−1∑

j=1


 j

n3/2

n∑

t=1+j

(w∗t − 1)E (qεtqεt−j)


ψj(λ)

∥∥∥∥∥∥

2

625

=
n−1∑

j=1

j2

n3
E∗




n∑

t=1+j

(w∗t − 1)E (qεtqεt−j)




2

Pj

=
n−1∑

j=1

j2

n3

Ln∑
s=1


 ∑

t∈Bs∩[1+j,n]

E (qεtqεt−j)




2

Pj

≤
n−1∑

j=1

j2

n3
Lnb2

nPj

= O
(
bnn−1

)
= o(1). (A28)

Now, the conclusion follows directly from (A23) and (A27)-(A28). ¤630

LEMMA A8. Suppose that Assumptions 1-3 hold, b−1
n = o(1), and (log n)bnn−1 = o(1). Then,

E∗

∥∥∥∥∥∥

n−1∑

j=1

[
1√
n

j∑
t=1

(w∗t − 1)z̃tj

]
ψj(λ)

∥∥∥∥∥∥

2

= op(1),

where z̃tj is defined in the same way as ztj in (3) with l̃t(qθ0) replacing lt(qθ0).

Proof. By direct calculation, we have

E∗

∥∥∥∥∥∥

n−1∑

j=1

[
1√
n

j∑
t=1

(w∗t − 1)z̃tj

]
ψj(λ)

∥∥∥∥∥∥

2

=
n−1∑

j=1

1
n

E∗
(

j∑
t=1

(w∗t − 1)z̃tj

)2

Pj

=
n−1∑

j=1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

z̃tj




2

Pj .

By Lemma A1, it is straightforward to see that635

n−1∑

j=1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

z̃tj




2

Pj =
n−1∑

j=1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj + op(1) =: Hn + op(1).

Note that
∑∞

j=1 Pj < ∞. For ∀ε > 0, there exists a j0(ε) > 0 such that

∞∑

j=j0+1

Pj < ε.
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Since bn →∞ as n →∞, we rewrite

Hn =
j0∑

j=1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj +
bn∑

j=j0+1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj 640

+
n−1∑

j=bn+1

1
n

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj

=: H1n + H2n + H3n. (A29)

First, for H1n, we know that as n is large enough,

EH1n ≤
j0∑

j=1

1
n

Ln∑
s=1

O(j2
0)Pj = O

(
Ln

n

)
< ε. (A30)

Next, for H2n, direct calculation gives us that 645

H2n =
bn∑

j=j0+1

1
n

1∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj =
bn∑

j=j0+1

1
n

( ∑

t∈B1

ztj

)2

Pj .

By Lemma 3 in Francq and Zakoı̈an (1998), it follows that as n is large enough,

EH2n =
bn∑

j=j0+1

bn

n
E

(
1√
bn

bn∑
t=1

ztj

)2

Pj =
bn∑

j=j0+1

bn

n
O(Pj) ≤ O

(
bn

n
ε

)
< ε. (A31)

Third, for H3n, we truncate it as

H3n =
1
n

Ln∑

s′=2

∑

j∈Bs′

Ln∑
s=1


 ∑

t∈Bs∩[1,j]

ztj




2

Pj 650

=
1
n

Ln∑

s′=2

∑

j∈Bs′

(∑

s<s′
+

∑

s=s′

)
 ∑

t∈Bs∩[1,j]

ztj




2

Pj , (A32)

where the summand in the case of s > s′ is zero since Bs ∩ [1, j] = ∅. As for (A31), by the stationarity
of ztj , we can show that

E


 1

n

Ln∑

s′=2

∑

j∈Bs′

∑

s<s′


 ∑

t∈Bs∩[1,j]

ztj




2

Pj


 =

1
n

Ln∑

s′=2

∑

j∈Bs′

∑

s<s′
E

( ∑

t∈Bs

ztj

)2

Pj

=
bn

n

Ln∑

s′=2

∑

j∈Bs′

∑

s<s′
O(Pj) 655

≤ bnLn

n

Ln∑

s′=2

∑

j∈Bs′

O(Pj)

≤
∞∑

j=j0+1

O(Pj) < ε. (A33)
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Furthermore, since (log n)bnn−1 = o(1), it is not hard to see that

E


 1

n

Ln∑

s′=2

∑

j∈Bs′

∑

s=s′


 ∑

t∈Bs∩[1,j]

ztj




2

Pj


 =

1
n

Ln∑

s′=2

∑

j∈Bs′

O(b2
n)Pj

=
1
n

n−1∑

j=bn+1

O(b2
n)

1
j2

660

≤ bn

n

n−1∑

j=bn+1

O(1)
1
j

= O

(
bn log n

n

)
< ε. (A34)

Now, the conclusion follows from (A29)-(A34). ¤

PROOF OF THEOREM 2. By Taylor’s expansion we have

ε̃∗t ε̃
∗
t−j = ε̃tε̃t−j +

∂(ε̃tε̃t−j)
∂θ′

(θ∗n − θn) + (θ∗n − θn)′
[
1
2

∂2(ε̃t(θ)ε̃t−j(θ))
∂θ∂θ′

∣∣
θ=ζn

]
(θ∗n − θn),665

where ζn lies between θ∗n and θn. Then, it follows that

S̃∗n(λ)− S̃n(λ) =
n−1∑

j=1

1√
n




n∑

t=1+j

(w∗t − 1)ε̃tε̃t−j


ψj(λ) + I∗1n(λ)[

√
n(θ∗n − θn)]

+ [
√

n(θ∗n − θn)′]I∗2n(λ)[
√

n(θ∗n − θn)], (A35)

where

I∗1n(λ) =
n−1∑

j=1

1
n

n∑

t=1+j

w∗t
∂(ε̃tε̃t−j)

∂θ′
ψj(λ),670

I∗2n(λ) =
n−1∑

j=1

1
n3/2

n∑

t=1+j

w∗t

[
1
2

∂2(ε̃t(θ)ε̃t−j(θ))
∂θ∂θ′

∣∣
θ=ζn

]
ψj(λ).

By Lemma A4, we can easily show that

E∗

∥∥∥∥∥∥
I∗1n(λ)−

n−1∑

j=1

E

[
∂(qεtqεt−j)

∂θ′

]
ψj(λ)

∥∥∥∥∥∥

2

= Op

(
bnn−1

)
. (A36)

On the other hand, it is straightforward to see that

E∗ ‖I∗2n(λ)‖2 = Op(n−1). (A37)675

Since
√

n(θ∗n − θn) = O∗p(1) by Lemma A3(ii) and Lemma A6(ii), under (A35)-(A37), we have

S̃∗n(λ)− S̃n(λ) =
n−1∑

j=1

1√
n




n∑

t=1+j

(w∗t − 1)ε̃tε̃t−j


ψj(λ)

+





n−1∑

j=1

E

[
∂(qεtqεt−j)

∂θ′

]
ψj(λ)



 [
√

n(θ∗n − θn)] + negligible terms. (A38)
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Moreover, by Lemma A3(ii), Lemma A6(ii) and (A3), we have

√
n(θ∗n − θn) = −Σ−1

[
1√
n

n∑
t=1

(w∗t − 1)
∂lt(qθ0)

∂θ

]
+ o∗p(1) 680

= −Σ−1

[
1√
n

n∑
t=1

(w∗t − 1)
∂l̃t(qθ0)

∂θ

]
+ o∗p(1). (A39)

By (A38)-(A39) and Lemma A8, it follows that

S̃∗n(λ)− S̃n(λ) =
n−1∑

j=1

1√
n




n∑

t=1+j

(w∗t − 1)ẽt,j


ψj(λ) + negligible terms, (A40)

where ẽt,j = ε̃tε̃t−j + z̃tj and z̃tj is defined as in Lemma A8.
Let γ̆∗(j) = n−1{∑n

t=1+j(w
∗
t − 1) [ẽt,j − E(et,j)]}. By (A40) and Lemma A7, it follows that 685

∆n(λ) =
√

n
n−1∑

j=1

γ̆∗(j)ψj(λ) + negligible terms =: S̆∗n(λ) + negligible terms.

Finally, for each fixed integer K ∈ {1, · · · , n− 1}, we rewrite

S̆∗n(λ) =
√

n
K∑

j=1

γ̆∗(j)ψj(λ) +
√

n
n−1∑

j=K+1

γ̆∗(j)ψj(λ) =: S̆K∗
n (λ) + R̆K∗

n (λ).

Then, as in Shao (2011a), the conclusion holds from the following three claims:
(d). For any h ∈ L2[0, π], the finite dimensional distributions of 〈S̆K∗

n , h〉 converge to those of
〈SK(λ), h〉 in probability conditional on χn.

(e). For ∀ε > 0, limK→∞ limn→∞ P ∗
(
‖R̆K∗

n (λ)‖ > ε
)

= 0 in probability conditional on χn. 690

(f). The sequence {S̆∗n(λ)} is tight in probability conditional on χn.
The proofs of claims (e) and (f) are similar to these of part (a,ii) and part (b) in Shao (2011a, p.222).
Thus, we only need to prove claim (d). Q.E.D.

PROOF OF CLAIM (d). Let GK∗
t =

∑K
j=1(w

∗
t − 1) [ẽt,j − E(et,j)]ψj(λ). As for (A9), it suffices to 695

show the asymptotic normality of JK∗
n , where

JK∗
n =

n∑

t=K+2

1√
n
〈GK∗

t , h〉 =
n∑

t=K+2

1√
n

K∑

j=1

(w∗t − 1) [ẽt,j − E(et,j)]Wh(j)

=
Ln∑
s=1

δs − 1√
n

∑

t∈Bs∩[K+2,n]

K∑

j=1

[ẽt,j − E(et,j)]Wh(j)

=:
Ln∑
s=1

H∗
sn.

Note that conditional on χn, {H∗
sn} is a sequence of independent random variables. Thus, we only need 700

to verify that

(i) lim
n→∞

var∗
(
JK∗

n

) →p σ2
h,K ;

(ii) lim
n→∞

Ln∑
s=1

E∗ {|H∗
sn|2I(|H∗

sn| > ε)
} →p 0.
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Without loss of generality, we assume that K + 2 ≤ bn. For (i), by Lemma A1, Taylor’s expansion, and
Lemma A3(ii), it is not hard to show that705

var∗
(
JK∗

n

)
=

1
n

Ln∑
s=1





∑

t∈Bs∩[K+2,n]

K∑

j=1

[ẽt,j − E(et,j)]Wh(j)





2

=
1

Ln

Ln∑
s=2





1√
bn

∑

t∈Bs

K∑

j=1

[ĕt,j − E(et,j)]Wh(j)





2

+ op(1)

=
1

Ln

Ln∑
s=2





1√
bn

∑

t∈Bs

K∑

j=1

[et,j − E(et,j)]Wh(j)





2

+ Op

(
bn

n

)
+ op(1)

=: Zn + op(1),

where ĕt,j = ε̆tε̆t−j + ztj . As for (A11), we have EZn → σ2
h,k as n →∞. Thus, we only need to prove710

that var(Zn) → 0 as n →∞. By direct calculation, we have

var(Zn) =
1
n2

Ln∑

s,s′=1

∑

t1,t2∈Bs

∑

t′1,t′2∈Bs′

K∑

j1,j2=1

K∑

j′1,j′2=1

C(t1, t2, t′1, t
′
2, j1, j2, j

′
1, j

′
2)

×Wh(j1)Wh(j2)Wh(j′1)Wh(j′2)

=:
1
n2

Ln∑

s,s′=1

z(s, s′),

where γe(j) = E(et,j) and C(t1, t2, t′1, t
′
2, j1, j2, j

′
1, j

′
2) equals to

cov
{
[(et1,j1 − γe(j1)) (et2,j2 − γe(j2))], [

(
et′1,j′1 − γe(j′1)

) (
et′2,j′2 − γe(j′2)

)
]
}

.

Rewrite715

var(Zn) =
1
n2

Ln∑
s=1

∑

|s′−s|≤1

z(s, s′) +
1
n2

Ln∑
s=1

∑

|s′−s|>1

z(s, s′). (A41)

Fort the first summand in (A41), since bn = o(n1/3), it is straightforward to see that

1
n2

Ln∑
s=1

∑

|s′−s|≤1

z(s, s′) = O

(
Lnb4

n

n2

)
= O

(
b3
n

n

)
= o(1). (A42)

Next, for the second summand in (A41), C(t1, t2, t′1, t
′
2, j1, j2, j

′
1, j

′
2) can be divided into 16 terms, since

et,j = qεtqεt−j + ztj . We only consider the proof for the term cov
(
zt1j1zt2j2 , zt′1j′1zt′2j′2

)
, because the720
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proofs for other terms are similar. In view of (A16), for any (m1,m2,m
′
1,m

′
2) ∈ {1, p + q}4, we have

∣∣cov [
zt1j1,m1zt2j2,m2 , zt′1j′1,m′

1
zt′2j′2,m′

2

]∣∣

=

∣∣∣∣∣∣
∑

i1,k1,i2,k2,i′1,k′1,i′2,k′2

ci1ck1,m1ci2ck2,m2ci′1ck′1,m′
1
ci′2ck′2,m′

2
M(i1, k1, i2, k2, i

′
1, k

′
1, i

′
2, k

′
2)

∣∣∣∣∣∣

≤

 ∑

i1>bn/4

+
∑

k1>bn/4

+
∑

i2>bn/4

+
∑

k2>bn/4

+
∑

i′1>bn/4

+
∑

k′1>bn/4

+
∑

i′2>bn/4

+
∑

k′2>bn/4

∑

i1,k1,i2,k2,i′1,k′1,i′2,k′2≤bn/4


 ∣∣ci1ck1,m1ci2ck2,m2ci′1ck′1,m′

1
ci′2ck′2,m′

2
M(i1, k1, i2, k2, i

′
1, k

′
1, i

′
2, k

′
2)

∣∣ 725

=:
9∑

i=1

gi,

where M(i1, k1, i2, k2, i
′
1, k

′
1, i

′
2, k

′
2) = cov

(
yt1−i1yt1−k1yt2−i2yt2−k2 , yt′1−i′1yt′1−k′1yt′2−i′2yt′2−k′2

)
. By

Cauchy-Schwarz inequality, we can show that

|M(i1, k1, i2, k2, i
′
1, k

′
1, i

′
2, k

′
2)| ≤

√
E (yt1−i1yt1−k1yt2−i2yt2−k2)

2
E

(
yt′1−i′1yt′1−k′1yt′2−i′2yt′2−k′2

)2

≤ Ey8
t < ∞. 730

Since ci = O(ρi) and ci,m = O(ρi) for some ρ ∈ (0, 1), it is straightforward to see that

gi ≤ Cρbn/4, for 1 ≤ i ≤ 8.

Furthermore, the Davydov’s inequality in Davydov (1968) implies that

g9 ≤ C
∑

i1,k1,i2,k2,i′1,k′1,i′2,k′2≤bn/4

‖yt1−i1yt1−k1yt2−i2yt2−k2‖2+ν‖yt′1−i′1yt′1−k′1yt′2−i′2yt′2−k′2‖2+ν

×
[
αy

(⌊
bn

2

⌋)]ν/(2+ν) ∣∣ci1ck1,m1ci2ck2,m2ci′1ck′1,m′
1
ci′2ck′2,m′

2

∣∣

≤ C
(
Ey8+4ν

t

) [
αy

(⌊
bn

2

⌋)]ν/(2+ν)

×
∑

i1,k1,i2,k2,i′1,k′1,i′2,k′2≤bn/4

∣∣ci1ck1,m1ci2ck2,m2ci′1ck′1,m′
1
ci′2ck′2,m′

2

∣∣ 735

≤ C

[
αy

(⌊
bn

2

⌋)]ν/(2+ν)

.

Therefore, since limk→∞ k2[αy(k)]ν/(2+ν) = 0, it follows that

1
n2

Ln∑
s=1

∑

|s′−s|>1

z(s, s′) ≤ O

(
L2

nb4
n

n2

) [
ρbn/4 +

[
αy

(⌊
bn

2

⌋)]ν/(2+ν)
]

= o(1). (A43)

By (A41)-(A43), we know that (i) holds.
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For (ii), since E(w∗t )4 < ∞, by Holder’s inequality and the fact that bn = o(n1/3), we have740

Ln∑
s=1

E
{
E∗ [|H∗

sn|2I(|H∗
sn| > ε)

]} ≤ C

Ln∑
s=1

E
(
E∗|H∗

sn|4
)

= O

(
1
n2

) Ln∑
s=1

E





∑

t∈Bs

K∑

j=1

[et,j − E(et,j)]





4

= O

(
Lnb4

n

n2

)
= o(1),

i.e., (ii) holds. This completes the proof of claim (d). Q.E.D.
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