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Abstract

The idea of taxation in risk process was first introduced by Albrecher and Hipp (2007), who
suggested that a certain proportion of the insurer’s income is paid immediately as tax whenever the
surplus process is at its running maximum. In this paper, a spectrally negative Lévy insurance risk
model under taxation is studied. Motivated by the concept of randomized observations proposed by
Albrecher et al. (2011b), we assume that the insurer’s surplus level is only observed at a sequence
of Poisson arrival times, at which the event of ruin is checked and tax may be collected from the
tax authority. In particular, if the observed (pre-tax) level exceeds the maximum of the previously
observed (post-tax) values, then a fraction of the excess will be paid as tax. Analytic expressions
for the Gerber-Shiu expected discounted penalty function (Gerber and Shiu (1998)) and the expected
discounted tax payments until ruin are derived. The Cramér-Lundberg asymptotic formula is shown
to hold true for the Gerber-Shiu function, and it differs from the case without tax by a multiplicative
constant. Delayed start of tax payments will be discussed as well. We also take a look at the case
where solvency is monitored continuously (while tax is still paid at Poissonian time points), as many
of the above results can be derived in a similar manner. Some numerical examples will be given at the
end.

Keywords: Lévy insurance risk model; Randomized observation periods; Poissonian observer; Gerber-
Shiu expected discounted penalty function; Discounted tax payments.

1 Introduction

In this paper, the baseline surplus process (before taxation) of an insurance company is assumed to follow
a spectrally negative Lévy process X = {Xt}t≥0 (see Kyprianou (2014)). For x ∈ R, let Px and Ex be the
probability law and the expectation operator respectively when X starts with an initial level X0 = x ≥ 0.
For notational convenience, we denote P = P0 and E = E0. The Lévy process X can be characterized
by the Laplace exponent

ψ(s) =
1

t
lnE[esXt ] = cs +

σ2

2
s2 +

∫

(0,∞)
(e−sx − 1 + sx1(x<1))ν(dx), (1.1)

where σ ≥ 0, and ν(·) is a non-negative measure on (0,∞) that satisfies the usual condition
∫
(0,∞)(1 ∧

x2)ν(dx) < ∞. We additionally assume
∫
(1,∞) xν(dx) < ∞ so that X has finite expectation. Moreover,
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the constant c in (1.1) is such that the safety loading condition ψ′(0+) = E[X1] > 0 is satisfied, and we
exclude the case where X has monotone sample paths.

The class of Lévy insurance risk processes has gained popularity among researchers in the past few
years. Formulas of the Gerber-Shiu expected discounted penalty function (Gerber and Shiu (1998)) in
Lévy risk models can be found in e.g. Asmussen and Albrecher (2010, Chapters XI and XII) and Kypri-
anou (2013), and related extensions to the cases of path dependent penalties have been proposed by Biffis
and Morales (2010), Biffis and Kyprianou (2010), and Feng and Shimizu (2013). Other recent contri-
butions in Lévy risk models with dividends and/or Parisian implementation delays include Kyprianou
and Palmowski (2007), Renaud and Zhou (2007), Loeffen (2008), Kyprianou and Loeffen (2010), Loeffen
and Renaud (2010), Czarna and Palmowski (2011, 2014), Loeffen et al. (2013), and Landriault et al.
(2014), among others. Apart from the classical compound Poisson risk model, the class of Lévy risk
processes contains a number of well known risk models as special cases, such as the perturbed compound
Poisson model (e.g. Gerber and Landry (1998), and Tsai and Willmot (2002)), Gamma risk process (e.g.
Dufresne et al. (1991)), α-stable risk model (e.g. Furrer (1998)), and perturbed risk model driven by
subordinator (e.g. Garrido and Morales (2006), and Morales (2007)). Therefore, with powerful tools
such as scale functions, resolvent measures and level-crossing arguments available for Lévy processes, the
analysis of Lévy risk models can serve to unify the study of the afore-mentioned risk models.

The concept of taxation under a loss-carry-forward system was first applied to insurance risk models
by Albrecher and Hipp (2007), who suggested that a certain proportion (known as the tax rate) of the
insurer’s income is paid immediately as tax whenever the surplus process is at its running maximum.
In the context of the classical compound Poisson risk process, they derived expressions for the survival
probability and the expected discounted tax payments until ruin. In particular, they showed that the
survival probability with tax simply equals a power of the survival probability without tax, and such
a result is now commonly referred to as the tax identity. Since then, risk models with taxation have
been studied by a number of researchers. A simple proof of a generalized version of the tax identity,
which assumes that the tax rate can possibly depend on the insurer’s surplus level, was presented in
Albrecher et al. (2009). These results were extended to the Lévy risk model by Albrecher et al. (2008b),
Kyprianou and Zhou (2009) and Renaud (2009), where the higher moments of discounted tax payments
until ruin were also analyzed. Moreover, related tax identity was established by Li et al. (2013) for a
time-homogeneous diffusion process. Compound Poisson risk model under taxation was also considered
with credit or debit interest by Wei (2009), Ming et al. (2010) and Wang et al. (2010), where the former
two papers contain some asymptotic results for the ruin probability. A further generalization in Cheung
and Landriault (2012), who studied the Gerber-Shiu function further incorporating the maximum surplus
before ruin, allows both the premium rate and the tax rate to be surplus-dependent. This encompasses
models with credit interest, threshold or multi-threshold dividend strategy. Another development was
made by Wei et al. (2010) and Albrecher et al. (2014), who looked at the effect of taxation in risk models
with Markovian claim arrivals. In addition, Albrecher et al. (2011a) discussed the idea of ruin excursions
and obtained asymptotic survival probability for a renewal risk model with tax; whereas Albrecher and
Ivanovs (2014) derived power identities for Lévy risk models under taxation and capital injections.

In all the afore-mentioned works concerning taxation, it is implicitly assumed that the insurer’s
surplus is observed continuously as tax payments are made immediately once the surplus process is at
its running maximum. As commented in Hao and Tang (2009), tax is usually collected periodically
(e.g. monthly, quarterly or annually) by the tax authority, leading them to study a model in which a
fixed portion of the net income (if positive) of each period (of length 1) is paid as tax. Note that their
taxation rule differs from the loss-carry-forward system, since a period of positive net income does not
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necessarily result in a new running maximum. In this paper, we shall apply periodic taxation to the Lévy
model (1.1) under a loss-carry-forward system. Specifically, it is assumed that {Zj}

∞
j=1 is the sequence

of time points where the insurance company reports its financial status, i.e. the insurer’s surplus level is
observed. At these time points, the event of ruin is checked and tax (if any) is paid. For convenience,
we denote Z0 = 0. At the jth observation time Zj (j = 1, 2, . . .), if the surplus level (before tax) exceeds
the running maximum of previous surplus levels (after tax) observed at the time points Z0, Z1, . . . , Zj−1,
then a fraction θ (0 ≤ θ < 1) of the excess will be paid as tax. On the other hand, if the observed surplus
level is below zero, then ruin is declared. The risk model after the above modifications will be denoted
by Xθ = {Xθ

t }t≥0, which can be mathematically described as follows. Let {CθZj
}∞j=1 be the sequence of

surplus levels observed at {Zj}
∞
j=1 just before any tax payment, and {Mθ

Zj
}∞j=0 be the sequence of running

maximums observed at {Zj}
∞
j=1 immediately after tax. The processes Xθ, {CθZj

}∞j=1 and {Mθ
Zj
}∞j=0 are

jointly described by

Xθ
t =

{
Xt, 0 ≤ t < Z1,
CθZj

− θ(CθZj
−Mθ

Zj−1
)+ +Xt −XZj

, Zj ≤ t < Zj+1; j = 1, 2, . . . ,

CθZj
= Xθ

Zj−1
+XZj

−XZj−1 , j = 1, 2, . . . ,

and
Mθ
Zj

= sup
0≤i≤j

Xθ
Zi
, j = 0, 1, . . . .

Note that the running maximum at time 0 is simply the initial surplus level Xθ
0 . Obviously, Xθ reduces

to X when θ = 0.

So far we have not made any specific assumptions on the sequence of observation times {Zj}
∞
j=1.

We first recall the idea of randomized observation periods proposed in Albrecher et al. (2011b, 2013),
who assumed Erlang(n) inter-observation times in the compound Poisson risk process with and without
dividends respectively. Such a randomized approach often leads to tractable expressions of ruin-related
quantities as opposed to deterministic intervals. In particular, the case of exponential inter-observation
times (i.e. n = 1) is known to result in nice explicit formulas (see Albrecher et al. (2011b, Sections 2 and
4.1; 2013, Section 2)). Since then, ruin theory under a Poissonian observer has been further developed
by Albrecher and Ivanovs (2013) and Albrecher et al. (2015), who looked at a Markov additive risk
process and a Lévy risk process respectively. Indeed, exponential inter-observation times are also related
to the case of constant bankruptcy rate in the (Gamma-)Omega risk model. See Albrecher et al. (2011c,
Section 9), Gerber et al. (2012a, Section 3), and Albrecher and Lautscham (2013, Section 2.1.1). In
the spirit of the above contributions, in this entire paper we shall assume that {Zj}

∞
j=1 are the arrival

epochs of a Poisson process with rate γ > 0, which is independent of the attributes of X. Therefore, the
inter-observation times {Zj−Zj−1}

∞
j=1 are independent and identically distributed (i.i.d.), each following

an exponential distribution with mean 1/γ.

Under discrete monitoring of solvency, the time to ruin of the process Xθ is defined by τθ = ZJ∗
θ
,

where J∗
θ = inf{j ≥ 1 : Xθ

Zj
< 0} is the number of observations before ruin. Let w(·) be the penalty

function defined on [0,∞), which is assumed to be non-negative and bounded by some constant A (i.e.
0 ≤ w(·) ≤ A). A quantity of our interest is the Gerber-Shiu expected discounted penalty function (see
Gerber and Shiu (1998))

mθ,δ(u) = Eu[e
−δτθw(|Xθ

τθ
|)1(τθ<∞)], u ≥ 0, (1.2)
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where δ ≥ 0 can be regarded as the force of interest or a Laplace transform argument. A notable special
case of mθ,δ(u) is the ruin probability

Ψθ(u) = Pu(τθ <∞), u ≥ 0,

which can be retrieved by letting δ = 0 and w(·) ≡ 1. For a positive force of interest δ > 0, we are also
interested in the expected discounted tax payments before ruin defined by

Vθ,δ(u) = Eu

[ J∗
θ∑

j=1

e−δZjθ(CθZj
−Mθ

Zj−1
)+

]
, u ≥ 0. (1.3)

The remainder of this paper is organized as follows. In Section 2, we apply the discounted density
pertaining to the increment of the embedded random walk {XZj

}∞j=0 to study the time until the first
positive tax payment and the resulting amount. It will be shown that the amount of the first tax
payment (given that there is such a payment) is exponentially distributed, and the Laplace transform of
the time to the first tax payment is identified. Equipped with the above results, the Gerber-Shiu function
mθ,δ(u) and the expected discounted tax payments before ruin Vθ,δ(u) are analyzed in Section 3, where
both analytic expressions and asymptotic formulas are derived. In particular, the Cramér-Lundberg
asymptotic formula for mθ,δ(u) only differs from the case without tax by a multiplicative constant. A
taxation system with delayed tax payment is also studied. In Section 4, we consider the situation where
solvency is monitored continuously but tax is still payable at Poissonian time points (see Avanzi et
al. (2013, 2014), Zhang (2014) and Zhang and Cheung (2014a,b) for similar assumptions in dividend
problems), and results analogous to those in Section 3 can readily be obtained. Section 5 ends the paper
with some numerical illustrations.

2 Discounted density and the first tax payment

2.1 Discounted increment of X observed at Poissonian times

We begin by looking at the discounted density of the increment of the embedded random walk {XZj
}∞j=0.

Note that the pairs {(Zj − Zj−1,XZj−1 − XZj
)}∞j=1 form an i.i.d. sequence of bivariate random vector

with common joint Laplace transform E[e−δZ1+sXZ1 ]. As in Albrecher et al. (2011b, 2013), we introduce
the discounted density of X0 −XZ1 , namely gδ(·), which satisfies

E[e−δZ1+sXZ1 ] =

∫ ∞

−∞
e−sxgδ(x)dx.

Since gδ(·) is a two-sided density, it admits the decomposition

gδ(x) = gδ,−(−x)1(x<0) + gδ,+(x)1(x>0),

where the densities gδ,−(·) and gδ,+(·) respectively represent the cases of net gain and net loss of the
process X during the period (0, Z1]. Then

E[e−δZ1+sXZ1 ] =

∫ ∞

0
esxgδ,−(x)dx+

∫ ∞

0
e−sxgδ,+(x)dx. (2.1)

To identify gδ,−(·) and gδ,+(·), it will be helpful to write the above joint Laplace transform as

E[e−δZ1+sXZ1 ] = E[e−δZ1E[esXZ1 |Z1]] =

∫ ∞

0
e−δtE[esXt ]γe−γtdt = γ

∫ ∞

0
e−(γ+δ)t

∫ ∞

−∞
esxP (Xt ∈ dx)dt
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= γ

∫

x∈(−∞,∞)
esx
∫

t∈[0,∞)
e−(γ+δ)tP (Xt ∈ dx)dt = γ

∫ ∞

−∞
esxΘ(γ+δ)(0, dx), (2.2)

where Θ(q)(0, dx) is the q-potential density of X (starting at the origin) defined by

Θ(q)(0, dx) =

∫

t∈[0,∞)
e−qtP (Xt ∈ dx)dt, −∞ < x <∞.

From Kyprianou (2014, Corollary 8.9), one has that

Θ(q)(0, dx) =

(
1

ψ′(φ(q))
e−φ(q)x −W (q)(−x)

)
dx. (2.3)

In the above expressions, φ(·) is the right inverse of the Laplace exponent given by

φ(q) = sup{s ≥ 0 : ψ(s) = q}, q ≥ 0.

Due to the loading assumption ψ′(0+) > 0, it is known that φ(q) is the unique solution to ψ(s) = q in
[0,∞), and φ(γ+ δ) > 0 for all δ ≥ 0 (see Kyprianou (2014, p.85)). Moreover, W (q)(·) appearing in (2.3)
is the q-scale function (see Kyprianou (2014, Theorem 8.1(i))). In particular, W (q)(x) = 0 for x < 0,
while for x ≥ 0 it is characterized by the Laplace transform

Ŵ (q)(s) =

∫ ∞

0
e−sxW (q)(x)dx =

1

ψ(s)− q
, s > φ(q). (2.4)

Upon substitution of (2.3) into (2.2) followed by comparison with (2.1), one concludes that

gδ,−(x) = aγ,δe
−φ(γ+δ)x, x > 0, (2.5)

and
gδ,+(x) = aγ,δe

φ(γ+δ)x − γW (γ+δ)(x), x > 0, (2.6)

where aγ,δ = γ/ψ′(φ(γ + δ)). The exponential form of the discounted density gδ,−(·) in (2.5) plays a
crucial role in the derivations in Section 2.2.

Remark 1 Note that the joint Laplace transform E[e−δZ1+sXZ1 ] can also be represented as

E[e−δZ1+sXZ1 ] = E[e−δZ1E[esXZ1 |Z1]] = E[e(ψ(s)−δ)Z1 ] =
γ

γ + δ − ψ(s)
, (2.7)

which can be resolved into partial fractions if ψ(s) is a rational function in s. This leads to an alternative
way to identify gδ,−(·) and gδ,+(·) instead of using (2.5) and (2.6). See Examples 1 and 2. �

2.2 Discounted amount of the first tax payment

Let ǫ0 = 0, and for n = 1, 2, . . . define ǫn = infk∈N{k > ǫn−1 : XZk
−XZǫn−1

> 0} to be the number of
observations up to and including the nth record high in the sequence of observed surplus levels {XZj

}∞j=0.
Note that Zǫn (n = 1, 2, . . .) represents the time of the nth (positive) tax payment, if ruin has not been
observed in the interim for the process Xθ. Define

ζδ(u, x) = Eu

[
e−δZǫ1 ;XZǫ1

−XZ0 > x, inf
0≤k≤ǫ1−1

XZk
≥ 0
]
, u, x ≥ 0, (2.8)
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to be the discounted survival function of the amount of the first observed overshoot avoiding ruin enroute.
Then, the Laplace transform of the first passage time Zǫ1 avoiding ruin enroute is its special case, as

ζδ(u) = Eu

[
e−δZǫ1 ; inf

0≤k≤ǫ1−1
XZk

≥ 0
]
= ζδ(u, 0), u ≥ 0. (2.9)

Owing to the stationary and independent increments of X, one has that

ζδ(u, x) = Eu[e
−δZ1 ;XZ1 −XZ0 > x]

+
∞∑

k=1

∫ u

0
Ey[e

−δZ1 ;XZ1 −XZ0 > u+ x− y]Qk(u, dy), (2.10)

where
Qk(u, dy) = Eu

[
e−δZk ; 0 ≤ inf

0≤j≤k−1
XZj

≤ sup
0≤j≤k−1

XZj
≤ u,XZk

∈ dy
]
.

Because X is spatially homogeneous, the initial levels in the expectations Eu and Ey in (2.10) are
irrelevant. Thus, the discounted density gδ,−(·) in (2.5) is applicable, leading to

ζδ(u, x) =

∫ ∞

x

gδ,−(z)dz +

∞∑

k=1

∫ u

0

(∫ ∞

u+x−y
gδ,−(z)dz

)
Qk(u, dy)

=
aγ,δe

−φ(γ+δ)x

φ(γ + δ)

(
1 +

∞∑

k=1

∫ u

0
e−φ(γ+δ)(u−y)Qk(u, dy)

)
. (2.11)

Noting that the dependence of ζδ(u, x) on x only appears via the exponential term e−φ(γ+δ)x, one can
use (2.9) to represent ζδ(u, x) as

ζδ(u, x) = ζδ(u)e
−φ(γ+δ)x. (2.12)

The density of the overshoot corresponding to the survival function ζδ(u, x) is then

ζδ(u, x) = −
d

dx
ζδ(u, x) = ζδ(u)φ(γ + δ)e−φ(γ+δ)x, u, x ≥ 0. (2.13)

The implication of the above result is that the amount of the first observed overshoot over the initial
surplus level, given that such an overshoot occurs without ruin being observed in the interim, is ex-
ponentially distributed with mean 1/φ(γ + δ). Since a fraction θ of this overshoot is paid as tax, one
concludes that the amount of the first tax payment (conditional on it being paid) is exponential with
mean θ/φ(γ + δ).

With the representation (2.13) derived, it remains to analyze, ζδ(u), namely the Laplace transform of
the time of the first tax payment. Although ζδ(u) can in principle be obtained by putting x = 0 in (2.11),
the expression involves the quantity Qk(u, dy) which is unknown. Let J∗(b) = inf{j ≥ 1 : XZj

> b} be
the number of observations until the first overshoot of the sequence {XZj

}∞j=0 over a given level b ≥ X0.
We shall study the more general quantity defined by

χδ(u, b) = Eu[e
−δZJ∗(b) ;ZJ∗(b) < τ0], 0 ≤ u ≤ b, (2.14)

where τ0 = inf{Zk : XZk
< 0} is the time of ruin of the tax-free process X observed at Poissonian times.

Then we have ζδ(u) = χδ(u, u). The function χδ(u, b) will be useful in Section 3.4 concerning delayed
start of tax payments. By conditioning on the first increment of {XZj

}∞j=0 and using (2.5), we arrive at

χδ(u, b) =

∫ ∞

b−u
gδ,−(x)dx+

∫ b−u

0
χδ(u+ x, b)gδ,−(x)dx+

∫ u

0
χδ(u− x, b)gδ,+(x)dx
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=
aγ,δ

φ(γ + δ)
e−φ(γ+δ)(b−u) + aγ,δ

∫ b

u

χδ(x, b)e
−φ(γ+δ)(x−u)dx+

∫ u

0
χδ(u− x, b)gδ,+(x)dx. (2.15)

Application of the operator d/du− φ(γ + δ) to the above equation yields
(
d

du
− φ(γ + δ) + aγ,δ

)
χδ(u, b) =

(
d

du
− φ(γ + δ)

)∫ u

0
χδ(u− x, b)gδ,+(x)dx, 0 ≤ u ≤ b, (2.16)

which is a homogeneous integro-differential equation in u satisfied by χδ(u, b). Let vδ(·) be the solution
of the homogeneous integro-differential equation

(
d

du
− φ(γ + δ) + aγ,δ

)
vδ(u) =

(
d

du
− φ(γ + δ)

)∫ u

0
vδ(u− x)gδ,+(x)dx, u ≥ 0, (2.17)

with boundary condition vδ(0) = 1. From the theory of integro-differential equations (e.g. Lakshmikan-
tham and Rao (1995)), the solution vδ(·) is unique (and it is given in (2.24) below). Then, the general
solution of (2.16) is

χδ(u, b) = Aδ(b)vδ(u), (2.18)

for some constant Aδ(b) independent of u but dependent on b. Substituting (2.18) back into (2.15) with
u = b followed by rearrangements gives rise to

Aδ(b) =
aγ,δ/φ(γ + δ)

vδ(b)−
∫ b
0 vδ(b− x)gδ,+(x)dx

.

Hence,

χδ(u, b) =
[aγ,δ/φ(γ + δ)]vδ(u)

vδ(b)−
∫ b
0 vδ(b− x)gδ,+(x)dx

, 0 ≤ u ≤ b. (2.19)

In particular, setting b = u results in

ζδ(u) =
[aγ,δ/φ(γ + δ)]vδ(u)

vδ(u)−
∫ u
0 vδ(u− x)gδ,+(x)dx

, u ≥ 0. (2.20)

To determine vδ(·) which appears in both (2.19) and (2.20), we define v̂δ(s) =
∫∞
0 e−sxvδ(x)dx and

take Laplace transforms on both sides of (2.17) to obtain

[s− φ(γ + δ) + aγ,δ]v̂δ(s)− 1 = [s− φ(γ + δ)]v̂δ(s)ĝδ,+(s), (2.21)

where ĝδ,+(s) =
∫∞
0 e−sxgδ,+(x)dx is given by

ĝδ,+(s) =
γ

γ + δ − ψ(s)
+

aγ,δ
s− φ(γ + δ)

(2.22)

according to (2.4) and (2.6). Upon rearrangements of (2.21) along with the use of (2.22), one has that

v̂δ(s) =
1

s− φ(γ + δ) + aγ,δ − [s− φ(γ + δ)]ĝδ,+(s)
=

1
s−φ(γ+δ)

1−
aγ,δ

φ(γ+δ)−s − ĝδ,+(s)
=

1

δ − ψ(s)

γ + δ − ψ(s)

s− φ(γ + δ)
.

(2.23)
Hence, by inverting the Laplace transforms in (2.23) we get

vδ(u) = eφ(γ+δ)u − γ

∫ u

0
eφ(γ+δ)(u−x)W (δ)(x)dx, u ≥ 0. (2.24)

In what follows, we present two examples where explicit results for gδ,+(·) and vδ(·) are obtainable.
Note that these two quantities are required in (2.20) as far as the computation of ζδ(·) is concerned.
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Example 1 (Brownian motion risk model) Assuming ψ(s) = cs + (σ2/2)s2 where c, σ2 > 0, the
process X corresponds to the Brownian motion risk model. The equation ψ(s) = q is simply a quadratic
equation with roots

φ̃(q) = −
c

σ2
−

√
c2

σ4
+

2q

σ2
and φ(q) = −

c

σ2
+

√
c2

σ4
+

2q

σ2
.

First, upon substitution of ψ(s) along with the use of partial fractions, (2.7) can be represented as

E[e−δZ1+sXZ1 ] =
γ

−σ2

2 [s− φ(γ + δ)][s − φ̃(γ + δ)]

=
2γ/σ2

φ(γ + δ)− φ̃(γ + δ)

1

φ(γ + δ)− s
+

2γ/σ2

φ(γ + δ) − φ̃(γ + δ)

1

s− φ̃(γ + δ)
.

Therefore, comparison with (2.1) and (2.5) yields

aγ,δ =
2γ/σ2

φ(γ + δ) − φ̃(γ + δ)
and gδ,+(x) = aγ,δe

φ̃(γ+δ)x

by the uniqueness of Laplace transforms. The above results can also be found in Gerber et al. (2012a,
Equation (68); 2012b, Remark 3.2). Next, (2.23) implies

v̂δ(s) =
1

−σ2

2 [s− φ(δ)][s − φ̃(δ)]

−σ2

2 [s− φ(γ + δ)][s − φ̃(γ + δ)]

s− φ(γ + δ)
=

s− φ̃(γ + δ)

[s− φ(δ)][s − φ̃(δ)]

=
φ(δ) − φ̃(γ + δ)

φ(δ) − φ̃(δ)

1

s− φ(δ)
−
φ̃(δ) − φ̃(γ + δ)

φ(δ) − φ̃(δ)

1

s− φ̃(δ)
.

By Laplace transforms inversion, we obtain

vδ(u) =
φ(δ) − φ̃(γ + δ)

φ(δ) − φ̃(δ)
eφ(δ)u −

φ̃(δ) − φ̃(γ + δ)

φ(δ) − φ̃(δ)
eφ̃(δ)u, u ≥ 0. (2.25)

�

Example 2 (Compound Poisson risk model with exponential claims) In this example, it is as-
sumed that ψ(s) = βs−λs/(s+µ) where λ, µ > 0 and β > λ/µ. Then X is a classical compound Poisson
model under Poisson claim arrival rate λ and exponential claims each with mean 1/µ. The parameter β
can be interpreted as incoming premium rate. With the equation ψ(s) = q having solutions

φ̃(q) =
−(βµ − λ− q)−

√
(βµ− λ− q)2 + 4βqµ

2β
and φ(q) =

−(βµ− λ− q) +
√

(βµ − λ− q)2 + 4βqµ

2β
,

(2.26)
(2.7) can be represented as

E[e−δZ1+sXZ1 ] =
−γ(s+ µ)/β

[s− φ(γ + δ)][s − φ̃(γ + δ)]

=
γ[φ(γ + δ) + µ]/β

φ(γ + δ)− φ̃(γ + δ)

1

φ(γ + δ)− s
+

γ[φ̃(γ + δ) + µ]/β

φ(γ + δ) − φ̃(γ + δ)

1

s− φ̃(γ + δ)
.

Hence, we have

aγ,δ =
γ[φ(γ + δ) + µ]/β

φ(γ + δ)− φ̃(γ + δ)
and gδ,+(x) =

γ[φ̃(γ + δ) + µ]/β

φ(γ + δ)− φ̃(γ + δ)
eφ̃(γ+δ)x,

which are in agreement with Albrecher et al. (2011b, Equation (27); 2013, Example 4.1). Next, it is
easily seen from (2.23) that vδ(·) still takes the form (2.25), but with φ(·) and φ̃(·) defined in (2.26). �
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3 Analysis of mθ,δ(u) and Vθ,δ(u)

3.1 Analytic expressions for mθ,δ(u)

First, we assert that the regular condition

lim
u→∞

mθ,δ(u) = 0 (3.1)

holds for the Gerber-Shiu function (1.2) under the net profit condition E[X1] > 0. Since the penalty
function w(·) is assumed to be such that 0 ≤ w(·) ≤ A, it is immediate that mθ,δ(u) ≤ AΨθ(u) and
hence it suffices to argue that limu→∞Ψθ(u) = 0. Under the same tax rate θ, the ruin probability Ψθ(u)
in the present model with periodic taxation (and periodic monitoring of ruin) must be no larger than
the counterpart in a model where tax is paid immediately when the surplus process is at its running
maximum (which corresponds to γ → ∞). In the latter model with continuous observation, a sufficient
condition for limu→∞Ψθ(u) = 0 is the loading condition E[X1] > 0 according to Albrecher et al. (2008b,
Section 3). Therefore, one concludes that (3.1) holds true in our model.

When analyzing the Gerber-Shiu function mθ,δ(u), we need to distinguish between two situations
based on whether ruin is observed before the time Zǫ1 of the first overshoot. Applying the overshoot
density (2.13), we obtain the integral equation

mθ,δ(u) = αδ(u) +

∫ ∞

0
mθ,δ(u+ (1− θ)x)ζδ(u, x)dx

= αδ(u) + ζδ(u)

∫ ∞

0
mθ,δ(u+ (1− θ)x)φ(γ + δ)e−φ(γ+δ)xdx

= αδ(u) +
φ(γ + δ)

1− θ
ζδ(u)

∫ ∞

u

mθ,δ(x)e
−

φ(γ+δ)
1−θ

(x−u)dx, u ≥ 0, (3.2)

where
αδ(u) = Eu[e

−δτθw(|Xθ
τθ
|)1(τθ<Zǫ1 )

]. (3.3)

Since no tax is paid before Zǫ1 , on the set {τθ < Zǫ1}, we have τθ = τ0 and Xθ
τθ

= Xτ0 . Thus, αδ(u) does
not depend on θ. In particular, setting θ = 0 in (3.2) leads to

αδ(u) = m0,δ(u)− φ(γ + δ)ζδ(u)

∫ ∞

u

m0,δ(x)e
−φ(γ+δ)(x−u)dx, u ≥ 0, (3.4)

where m0,δ(·) is the Gerber-Shiu function pertaining to the tax-free risk model X based on Poissonian
monitoring of solvency. Expressions for m0,δ(·) are available in Gerber et al. (2012a, Section 3) and
Albrecher et al. (2013) for the Brownian motion risk model and the compound Poisson model respectively.
The Laplace transform of m0,δ(·) will be given in (3.15) for the general Lévy insurance risk process. This
together with ζδ(·) derived in (2.20) characterizes αδ(·) in (3.4).

To solve for mθ,δ(u), it is instructive to note that the integral equation (3.2) is structurally identical
to Equation (22) in Albrecher et al. (2008a), who studied taxation problems in a dual risk model
with exponential gains. Such a similarity is not surprising, since the amount of the first overshoot
(conditional on ruin not occurring in the interim) in their model is also exponentially distributed. Hence,
we can directly apply their Equation (26) if limu→∞mθ,δ(u) = limu→∞ αδ(u) = 0 and ζδ(u) > 0 (as
these conditions are used in their derivation). The first condition limu→∞mθ,δ(u) = 0 is simply (3.1),
which has already been proved. From (3.4), it is clear that αδ(u) ≤ m0,δ(u). Meanwhile, we also have
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m0,δ(u) ≤ AΨ0(u), where Ψ0(u) is the ruin probability of the tax-free process X with solvency monitored
at Poisson arrival times. Because Ψ0(u) is the ruin probability of the embedded random walk {XZj

}∞j=0

which has positive drift thanks to the loading assumption E[X1] > 0, by the theory of random walk one
has that limu→∞Ψ0(u) = 0. This in turn implies that the second condition limu→∞ αδ(u) = 0 holds.
Lastly, ζδ(u) defined by (2.9) is positive again because of the loading condition. Therefore, Albrecher et
al. (2008a, Equation (26)) gives the solution

mθ,δ(u) = αδ(u) +
φ(γ + δ)

1− θ
ζδ(u)

∫ ∞

u

αδ(x)e
−

φ(γ+δ)
1−θ

∫ x
u
[1−ζδ(y)]dydx. (3.5)

In particular, if δ = 0 and w(·) ≡ 1, then α0(u) = Pu(τθ < Zǫ1) = 1 − ζ0(u) according to (2.9) and
(3.3). In this case, (3.5) becomes the ruin probability which can be represented as

Ψθ(u) = 1− ζ0(u) +
φ(γ)

1− θ
ζ0(u)

∫ ∞

u

[1− ζ0(x)]e
−

φ(γ)
1−θ

∫ x
u
[1−ζ0(y)]dydx

= 1− ζ0(u)− ζ0(u)

∫

x∈[u,∞)
de−

φ(γ)
1−θ

∫ x

u
[1−ζ0(y)]dy

= 1− ζ0(u)e
−

φ(γ)
1−θ

∫ ∞
u

[1−ζ0(y)]dy.

When θ = 0, this further reduces to the ruin probability without tax (but solvency is still monitored at
Poissonian times), leading to

Ψ0(u) = 1− ζ0(u)e
−φ(γ)

∫∞

u
[1−ζ0(y)]dy .

Combining the above two equations, we obtain the power relationship

1−Ψθ(u) = [ζ0(u)]
1− 1

1−θ [1−Ψ0(u)]
1

1−θ , (3.6)

which can be regarded as the tax identity in the present model.

Remark 2 As γ → ∞ (i.e. the insurer’s surplus is observed continuously for both taxation and solvency),
overshoot ofX over the initial level occurs immediately because of the diffusion component (if any) and/or
the loading condition. Consequently, for any u ≥ 0, one has ζ0(u) → 1 as γ → ∞. Therefore, the tax
identity in Albrecher and Hipp (2007, Theorem 1) and Albrecher et al. (2008b, Corollary 3.1) is recovered
from (3.6). �

Apart from the exact expression (3.5) for the Gerber-Shiu function mθ,δ(u), we can also obtain an
alternative solution as follows. Defining

ζδ,1(u, x) =
1

1− θ
ζδ

(
u,
x− u

1− θ

)
= ζδ(u)

φ(γ + δ)

1− θ
e−

φ(γ+δ)
1−θ

(x−u), x > u ≥ 0, (3.7)

(3.2) can be rewritten as

mθ,δ(u) = αδ(u) +

∫ ∞

u

ζδ,1(u, x)mθ,δ(x)dx,

which is a linear Volterra integral equation of the second kind (see e.g. Polyanin and Manzhirov (2008,
Chapter 11.9)). It follows from successive substitution that its solution admits the representation

mθ,δ(u) = αδ(u) +
∞∑

n=1

∫ ∞

u

ζδ,n(u, x)αδ(x)dx, (3.8)
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where ζδ,n(u, x) is given recursively via, for n = 2, 3, . . .,

ζδ,n(u, x) =

∫ x

u

ζδ,n−1(u, y)ζδ,1(y, x)dy =

∫ x

u

ζδ,1(u, y)ζδ,n−1(y, x)dy, x > u ≥ 0, (3.9)

with the starting point (3.7). The solution (3.8) allows for probabilistic interpretation. Indeed, from (3.7)
and (3.9) (as well as the Markov property), it is clear that ζδ,n(u, x) represents the discounted density of
the process Xθ being at level x immediately after the nth tax payments (without ruin being observed in
the interim). More specifically, the quantity ζδ,n(u, x) is such that, for n = 1, 2, . . .,

ζδ,n(u, x)dx = Eu

[
e−δZǫn ;Xθ

Zǫn
∈ dx, inf

0≤k≤ǫn−1
Xθ
Zk

≥ 0
]
, x > u ≥ 0. (3.10)

Together with (3.3), we easily see that

∫ ∞

u

ζδ,n(u, x)αδ(x)dx = Eu[e
−δτθw(|Xθ

τθ
|)1(Zǫn<τθ<Zǫn+1 )

].

Hence, (3.8) is actually a decomposition of the Gerber-Shiu function according to the number of tax
payments before ruin. See also Remark 6 for further application of (3.8) in relation to asymptotics of
mθ,δ(u).

3.2 Asymptotic formula for mθ,δ(u)

Although two formulas for the Gerber-Shiu function mθ,δ(u) have been derived in Section 3.1, both (3.5)
and (3.8) are expressed in terms of ζδ(·) and αδ(·). Examination of (2.6), (2.20), (2.24) and (3.4) reveals
that the quantities m0,δ(·) andW

(γ+δ)(·) are required. While explicit expressions for m0,δ(·) are available
in the literature only for certain models, W (γ+δ)(·) is generally characterized by its Laplace transform in
(2.4). In this subsection, we aim at obtaining some asymptotic results for mθ,δ(u) as u→ ∞.

First, we consider the Gerber-Shiu function m0,δ(u) in the tax-free case. By conditioning on the
first increment of {XZj

}∞j=0 and taking into account appropriate discounting (see Albrecher et al. (2013,
Equation (3.20))), one has that

m0,δ(u) =

∫ ∞

0
m0,δ(u+ x)gδ,−(x)dx +

∫ u

0
m0,δ(u− x)gδ,+(x)dx+

∫ ∞

u

w(x− u)gδ,+(x)dx

= aγ,δTφ(γ+δ)m0,δ(u) +

∫ u

0
m0,δ(u− x)gδ,+(x)dx+ ω(u), u ≥ 0, (3.11)

where (2.5) has been used in the last equality, and

ω(u) =

∫ ∞

u

w(x − u)gδ,+(x)dx. (3.12)

The Dickson-Hipp operator Ts appearing in (3.11) is defined as (see Dickson and Hipp (2001))

Tsf(y) =

∫ ∞

y

e−s(x−y)f(x)dx =

∫ ∞

0
e−sxf(x+ y)dx, y ≥ 0,

for some function f(·) on (0,∞). The above definition is valid as long as the integral exists, which must
be the case if f(·) is an integrable function and s is a complex number such that ℜ(s) ≥ 0. Define the
Laplace transforms m̂0,δ(s) =

∫∞
0 e−sum0,δ(u)du and ω̂(s) =

∫∞
0 e−suω(u)du. Taking Laplace transforms
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on both sides of (3.11) followed by application of Properties 1 and 2 in Li and Garrido (2004, Section 3)
leads to

m̂0,δ(s) = aγ,δ
m̂0,δ(s)− m̂0,δ(φ(γ + δ))

φ(γ + δ)− s
+ m̂0,δ(s)ĝδ,+(s) + ω̂(s).

Rearrangements result in

m̂0,δ(s) =
ω̂(s)−

aγ,δ
φ(γ+δ)−s m̂0,δ(φ(γ + δ))

1−
aγ,δ

φ(γ+δ)−s − ĝδ,+(s)
=
ω̂(s)−

aγ,δ
φ(γ+δ)−sm̂0,δ(φ(γ + δ))

1− γ
γ+δ−ψ(s)

=
γ + δ − ψ(s)

δ − ψ(s)

(
ω̂(s)−

aγ,δ
φ(γ + δ) − s

m̂0,δ(φ(γ + δ))

)
, (3.13)

where (2.22) is utilized in the second equality. Since m̂0,δ(s) is analytic for ℜ(s) ≥ 0 and ψ(φ(δ)) = δ,
the term inside the big brackets in the above expression must be zero when s = φ(δ), i.e.

m̂0,δ(φ(γ + δ)) =
φ(γ + δ) − φ(δ)

aγ,δ
ω̂(φ(δ)).

Back substitution into (3.13) yields

m̂0,δ(s) =
γ + δ − ψ(s)

δ − ψ(s)

(
ω̂(s)−

φ(γ + δ)− φ(δ)

φ(γ + δ)− s
ω̂(φ(δ))

)
(3.14)

=
γ + δ − ψ(s)

δ − ψ(s)

1

φ(γ + δ)− s
{φ(γ + δ)[ω̂(s)− ω̂(φ(δ))] − [sω̂(s)− φ(δ)ω̂(φ(δ))]}

=
γ + δ − ψ(s)

δ − ψ(s)

φ(δ) − s

φ(γ + δ)− s
ξ̂δ(s), (3.15)

where

ξ̂δ(s) =
φ(γ + δ)[ω̂(s)− ω̂(φ(δ))] − [sω̂(s)− φ(δ)ω̂(φ(δ))]

φ(δ) − s

= φ(γ + δ)
ω̂(s)− ω̂(φ(δ))

φ(δ) − s
−

[s− φ(δ)]ω̂(s) + φ(δ)[ω̂(s)− ω̂(φ(δ))]

φ(δ) − s

= [φ(γ + δ)− φ(δ)]TsTφ(δ)ω(0) + ω̂(s)

is the Laplace transform of

ξδ(u) = [φ(γ + δ)− φ(δ)]Tφ(δ)ω(u) + ω(u), u ≥ 0, (3.16)

i.e. ξ̂δ(s) =
∫∞
0 e−suξδ(u)du. By applying the initial value theorem for Laplace transforms to (3.14) (see

Remark 3) and noting that ψ(∞) = ∞ (see Kyprianou (2014, p.85)), we obtain

m0,δ(0) = lim
s→∞

sm̂0,δ(s) = lim
s→∞

sω̂(s) + [φ(γ + δ) − φ(δ)]ω̂(φ(δ))

= ω(0) + [φ(γ + δ)− φ(δ)]

∫ ∞

0
e−φ(δ)xω(x)dx

=

∫ ∞

0
w(y)gδ,+(y)dy + [φ(γ + δ) − φ(δ)]

∫ ∞

0
e−φ(δ)x

∫ ∞

x

w(y − x)gδ,+(y)dydx

=

∫ ∞

0
w(y)h∗δ(y|0)dy, (3.17)

where
h∗δ(y|0) = gδ,+(y) + [φ(γ + δ)− φ(δ)]Tφ(δ)gδ,+(y), y > 0. (3.18)
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Remark 3 Application of the initial value theorem in obtaining (3.17) requires that the functionsm0,δ(·)
and ω(·) are differentiable on [0,∞) (and therefore also continuous at zero). To check this, we first rewrite
(3.11) as

m0,δ(u) = aγ,δe
φ(γ+δ)u

∫ ∞

u

m0,δ(x)e
−φ(γ+δ)xdx+

∫ u

0
m0,δ(x)gδ,+(u− x)dx+ ω(u), u ≥ 0, (3.19)

where ω(u) =
∫∞
0 w(x)gδ,+(u+x)dx according to (3.12). Obviously, the first term on the right-hand side

of (3.19) is continuous in u. The second and third terms are continuous as well because gδ,+(·) given in
(2.6) is continuous thanks to the continuity of W (γ+δ)(·) (see Kyprianou (2014, Theorem 8.1(i))). Hence,
m0,δ(·) is continuous on [0,∞). Having established the continuity of m0,δ(·), the first term in (3.19) is
clearly differentiable. For the second and third terms to be differentiable, a sufficient condition is that
W (γ+δ)(·) is differentiable (so that gδ,+(·) is differentiable). From Lemma 8.2 of Kyprianou (2014) (and
the discussions following it) along with Exercise 8.4 therein, it is known that W (γ+δ)(·) is differentiable if
(i) X has unbounded variation; or (ii) X has bounded variation and the Lévy measure ν(·) has no atoms.
Therefore, the use of the initial value theorem is justified for a wide range of Lévy processes. �

From the representation (3.17) of the Gerber-Shiu function m0,δ(0), it is clear that h∗δ(·|0) in (3.18)
is the discounted density of the deficit observed at ruin when the risk process X starts with zero initial
surplus. Owing to the spatial homogeneity of X, the quantity h∗δ(·|0) is also the discounted density of the
amount of the first observed drop of X below its initial level X0 = u. Therefore, analogous to Albrecher
et al. (2013, Equation (3.1)), we have

m0,δ(u) =

∫ u

0
m0,δ(u− y)h∗δ(y|0)dy +

∫ ∞

u

w(y − u)h∗δ(y|0)dy, u ≥ 0. (3.20)

Because of the loading condition E[X1] > 0, we have that
∫∞
0 h∗δ(y|0)dy = E[e−δτ01(τ0<∞)] < 1 and

therefore one asserts that (3.20) is a defective renewal equation satisfied by m0,δ(·). With (3.12) and
(3.18), it is straightforward to verify that the non-homogeneous term of the above defective renewal
equation can be written as ∫ ∞

u

w(y − u)h∗δ(y|0)dy = ξδ(u), (3.21)

where ξδ(u) is given in (3.16). In the rest of the paper, we shall use the notation f1(u) ∼ f2(u) to denote
limu→∞[f1(u)/f2(u)] = 1. It follows from e.g. Willmot and Lin (2001, Theorem 9.1.3) that if eKδxξδ(x)
is directly Riemann integrable on x ∈ (0,∞) (see Remark 4) and Kδ > 0 is the adjustment coefficient
satisfying ∫ ∞

0
eKδyh∗δ(y|0)dy = 1, (3.22)

then the Cramér-Lundberg asymptotic formula

m0,δ(u) ∼ Cδe
−Kδu (3.23)

holds true, where

Cδ =

∫∞
0 eKδyξδ(y)dy∫∞

0 yeKδyh∗δ(y|0)dy
=

ξ̂δ(−Kδ)∫∞
0 yeKδyh∗δ(y|0)dy

. (3.24)

Although the constants Kδ and Cδ are in principle obtainable from (3.22) and (3.24), in what follows
we shall provide an alternative (and more direct) way to compute them. Taking Laplace transforms on
both sides of (3.20) along with the use of (3.21) results in

m̂0,δ(s) =
1

1− ĥ∗δ(s|0)
ξ̂δ(s),
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where ĥ∗δ(s|0) =
∫∞
0 e−syh∗δ(y|0)dy. Comparison with (3.15) yields the identity

1

1− ĥ∗δ(s|0)
=
γ + δ − ψ(s)

δ − ψ(s)

φ(δ) − s

φ(γ + δ) − s
. (3.25)

(This can also be proved using (3.18) and (2.22) together with Properties 1 and 2 in Li and Garrido
(2004, Section 3) about Dickson-Hipp operators.) Note that (3.22) is equivalent to 1 − ĥ∗δ(−Kδ|0) = 0.
Assuming that the Laplace exponent ψ(·) exists in a neighbourhood of the origin (as far as asymptotics
of Gerber-Shiu functions are concerned), it is clear from the above identity that −Kδ < 0 must be the
root of the equation ψ(s) = δ which has the largest real part in the left half of the complex plane. As for
Cδ, the asymptotic formula (3.23) implies

Cδ = lim
u→∞

eKδum0,δ(u). (3.26)

With m̂0,δ(s) being analytic for ℜ(s) > −Kδ, from the damping property of Laplace transforms we know
that m̂0,δ(s−Kδ) =

∫∞
0 e−(s−Kδ)um0,δ(u)du represents the Laplace transform of eKδum0,δ(u). Application

of the final value theorem for Laplace transforms to (3.26) followed by the use of (3.15) and the L’Hospital
rule gives

Cδ = lim
s→0

sm̂0,δ(s−Kδ) = lim
s→0

(
s
γ + δ − ψ(s−Kδ)

δ − ψ(s −Kδ)

φ(δ) − s+Kδ

φ(γ + δ)− s+Kδ
ξ̂δ(s−Kδ)

)

= γ
φ(δ) +Kδ

φ(γ + δ) +Kδ
ξ̂δ(−Kδ) lim

s→0

s

δ − ψ(s −Kδ)
=

φ(δ) +Kδ

φ(γ + δ) +Kδ

γ

[−ψ′(−Kδ)]
ξ̂δ(−Kδ). (3.27)

See Asmussen and Albrecher (2010, Chapter IV, Remark 5.6) for comments on the above procedure.
(One may also use (3.25) and the fact that

∫∞
0 yeKδyh∗δ(y|0)dy = −(d/ds)ĥ∗δ(s|0)|s=−Kδ

to prove that
(3.24) and (3.27) are identical.)

Remark 4 Recall that −Kδ is a root of ψ(s) = δ. We shall show that a sufficient condition for eKδxξδ(x)
to be directly Riemann integrable on x ∈ (0,∞) is that ψ(·) is continuous in the neighborhood of −Kδ.
For example, it can be checked that such a condition is satisfied by a (perturbed) compound Poisson risk
model where each claim size is distributed as a combination of exponentials (and this includes Examples
1 and 2 as special cases). Since the penalty w(·) is bounded by a constant A, use of (3.18) and (3.21)
leads to

eKδxξδ(x) ≤ AeKδx

∫ ∞

x

h∗δ(y|0)dy = AeKδxT0gδ,+(x) +A[φ(γ + δ)− φ(δ)]eKδxT0Tφ(δ)gδ,+(x). (3.28)

From the definition (2.1), the first Dickson-Hipp operator above can be represented as

T0gδ,+(x) =

∫ ∞

x

gδ,+(y)dy = E[e−δZ11(−XZ1
≥x)] = γ

∫ ∞

0
e−(γ+δ)tP (−Xt ≥ x)dt.

Applying the Markov’s inequality to P (−Xt ≥ x) = P (e−rXt ≥ erx) for any r > 0 such that E[e−rXt ] <
∞, one has that

T0gδ,+(x) ≤ γ

∫ ∞

0
e−(γ+δ)tE[e−rXt ]

erx
dt = γe−rx

∫ ∞

0
e−(γ+δ)t+ψ(−r)tdt =

γ

γ + δ − ψ(−r)
e−rx. (3.29)

Under the assumption that ψ(·) is continuous in the neighborhood of −Kδ, we can find a small constant
ε > 0 such that |ψ(−(Kδ + ε)) − ψ(−Kδ)| ≤ γ/2, or equivalently, γ/2 ≤ γ + δ − ψ(−(Kδ + ε)) ≤ 3γ/2
since ψ(−Kδ) = δ. Utilizing the lower bound, (3.29) with r = Kδ + ε gives

T0gδ,+(x) ≤ 2e−(Kδ+ε)x. (3.30)
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Because the operators T0 and Tφ(δ) commute according to Property 2 of Li and Garrido (2004, Section
3), the above result implies

T0Tφ(δ)gδ,+(x) =

∫ ∞

0
e−φ(δ)yT0gδ,+(x+ y)dy ≤ 2

∫ ∞

0
e−φ(δ)ye−(Kδ+ε)(x+y)dy =

2e−(Kδ+ε)x

φ(δ) +Kδ + ε
. (3.31)

Plugging (3.30) and (3.31) into (3.28) yields

eKδxξδ(x) ≤ 2A
φ(γ + δ) +Kδ + ε

φ(δ) +Kδ + ε
e−εx. (3.32)

Since the exponential function on the right-hand side of (3.32) is non-negative, decreasing and Riemann
integrable on x ∈ (0,∞), it is directly Riemann integrable (see e.g. Willmot and Lin (2001, p.157,
condition (a))). As eKδxξδ(x) is bounded by a directly Riemann integrable function, it is directly Riemann
integrable according to e.g. Willmot and Lin (2001, p.157, condition (c)). �

Now, we analyze the limit limu→∞ ζδ(u) = ζδ(∞), which is needed to derive asymptotic formulas for
αδ(u) via (3.4) and then mθ,δ(u) via (3.5). Utilizing (2.7), (3.25) can be rewritten as

1

1− ĥ∗δ(s|0)
=

1

1− E[e−δZ1+sXZ1 ]

(
1−

φ(γ + δ)− φ(δ)

φ(γ + δ) − s

)
. (3.33)

On the other hand, the Wiener-Hopf factorization of the embedded random walk {XZj
}∞j=0 (see Tang

and Wei (2010, Lemma 4.6)) means that

1−E[e−δZ1+sXZ1 ] = (1− E[e
−δZǫ̃1

+sXZǫ̃1 1(Zǫ̃1
<∞)])(1 −E[e−δZǫ1+sXZǫ1 ]). (3.34)

In the above equation, ǫ̃1 is defined as ǫ̃1 = infk∈N{k > 0 : XZk
−XZ0 ≤ 0}, so that Zǫ̃1 represents the

first (weak) descending ladder epoch of the random walk {XZj
}∞j=0. Also recall from Section 2.2 that

Zǫ1 is the first (strict) ascending ladder epoch. It is instructive to note that the words ‘weak’ and ‘strict’
in the descriptions of ladder epochs are not necessary, since XZ1 is a continuous random variable with
discounted distribution characterized by the densities gδ,−(·) and gδ,+(·). Moreover, under the initial
surplus X0 = 0, the time of ruin τ0 equals the descending ladder epoch Zǫ̃1 almost surely (if ruin occurs),
and the resulting deficit at ruin |Xτ0 | coincides almost surely with the height of the descending ladder
|XZǫ̃1

|. Hence, upon substitution of w(y) = e−sy into (3.17), one sees that

ĥ∗δ(s|0) = E[e−δτ0e−s|Xτ0 |1(τ0<∞)] = E[e
−δZǫ̃1

+sXZǫ̃11(Zǫ̃1
<∞)].

Thus, by comparing (3.33) and (3.34), we arrive at

E[e−δZǫ1+sXZǫ1 ] =
φ(γ + δ)− φ(δ)

φ(γ + δ)− s
. (3.35)

To see how ζδ(∞) can be obtained from the above result, we utilize monotone convergence to the limit
of the definition (2.9) as u→ ∞, so that

ζδ(∞) = lim
u→∞

ζδ(u) = lim
u→∞

Eu

[
e−δZǫ1 ; inf

0≤k≤ǫ1−1
XZk

≥ 0
]
= lim

u→∞
E
[
e−δZǫ1 ; u+ inf

0≤k≤ǫ1−1
XZk

≥ 0
]

= E[e−δZǫ1 ],
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where the spatial homogeneity of X and the loading condition E[X1] > 0 have also been used. Therefore,
setting s = 0 in (3.35) leads to

ζδ(∞) = 1−
φ(δ)

φ(γ + δ)
. (3.36)

In particular, when δ = 0, we have ζ0(∞) = 1 as φ(0) = 0.

Next, application of (3.26) and (3.36) to the limit of (3.4) yields the asymptotic result

lim
u→∞

eKδuαδ(u) = lim
u→∞

eKδu

(
m0,δ(u)− φ(γ + δ)ζδ(u)

∫ ∞

0
m0,δ(u+ x)e−φ(γ+δ)xdx

)

= lim
u→∞

eKδum0,δ(u)− φ(γ + δ)
(
lim
u→∞

ζδ(u)
)(

lim
u→∞

∫ ∞

0
eKδum0,δ(u+ x)e−φ(γ+δ)xdx

)

= Cδ − φ(γ + δ)

(
1−

φ(δ)

φ(γ + δ)

)∫ ∞

0

(
lim
u→∞

eKδ(u+x)m0,δ(u+ x)
)
e−[Kδ+φ(γ+δ)]xdx

= Cδ − [φ(γ + δ) − φ(δ)]
Cδ

Kδ + φ(γ + δ)

=
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδ, (3.37)

where dominated convergence has been used in the third equality. Finally, asymptotic formula formθ,δ(u)
can be obtained in a similar manner using (3.5), (3.36), (3.37) and dominated convergence, giving

lim
u→∞

eKδumθ,δ(u)

= lim
u→∞

eKδuαδ(u) +
φ(γ + δ)

1− θ

(
lim
u→∞

ζδ(u)
) ∫ ∞

0

(
lim
u→∞

eKδuαδ(u+ x)
)
e−

φ(γ+δ)
1−θ

∫ x
0 [1−limu→∞ ζδ(u+y)]dydx

=
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδ +

φ(γ + δ)

1− θ

(
1−

φ(δ)

φ(γ + δ)

)∫ ∞

0

Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδe

−Kδxe−
φ(δ)
1−θ

xdx

=
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδ

(
1 +

φ(γ + δ) − φ(δ)

1− θ

1

Kδ +
φ(δ)
1−θ

)

=
Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
Cδ.

Thus, one has the asymptotic formula

mθ,δ(u) ∼
Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
Cδe

−Kδu ∼ Aθ,δm0,δ(u), (3.38)

where the last relationship is due to (3.23), and

Aθ,δ =
Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
. (3.39)

In other words, the Cramér-Lundberg asymptotic expression for the Gerber-Shiu function with tax is just
a constant multiple of that without tax. By some simple algebra, it can be easily checked that Aθ,δ > 1
for 0 < θ < 1, i.e. the Gerber-Shiu function in the presence of taxation is asymptotically larger than the
counterpart without tax. This is not surprising because ruin of Xθ occurs no later than X for the same
sample path of X and any realization of {Zj}

∞
j=1.
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Remark 5 Since φ(0) = 0, if δ = 0 then the asymptotic formula (3.38) simplifies to

mθ,0(u) ∼
(1− θ)K0 + φ(γ)

(1− θ)(K0 + φ(γ))
C0e

−K0u ∼ Aθ,0m0,0(u),

which can be rewritten asmθ,0(u)/m0,0(u) ∼ Aθ,0. SinceAθ,0 does not depend on the choice of the penalty
function w(·), for the ruin probability (i.e. w(·) ≡ 1) we also have Ψθ(u)/Ψ0(u) ∼ Aθ,0. Comparing
these asymptotics, one has mθ,0(u)/m0,0(u) ∼ Ψθ(u)/Ψ0(u). Rearrangements yield mθ,0(u)/Ψθ(u) ∼
m0,0(u)/Ψ0(u), or equivalently,

Eu[w(|X
θ
τθ
|)|τθ <∞] ∼ Eu[w(|Xτ0 |)|τ0 <∞].

In particular, when w(y) = e−sy, both sides of the above relationship correspond to the Laplace transform
of the deficit at ruin conditional on ruin occurring. Therefore, we conclude that the asymptotic conditional
distribution of the deficit with taxation is the same as that without taxation. �

Remark 6 Instead of using the solution (3.5), we can also utilize the series expression (3.8) to obtain the
asymptotic formula (3.38) for the Gerber-Shiu functionmθ,δ(u). First, because X is spatial homogeneous,
by sample path arguments one observes from the definition (2.9) that ζδ(u) is increasing (i.e. non-
decreasing) in u. This together with (3.7) gives the inequality

ζδ,1(u, x) ≤ ζδ(∞)
φ(γ + δ)

1− θ
e−

φ(γ+δ)
1−θ

(x−u), x > u ≥ 0. (3.40)

Now we want to prove that, for n = 1, 2, . . .,

(
ζδ(u)

φ(γ + δ)

1− θ

)n (x− u)n−1e−
φ(γ+δ)
1−θ

(x−u)

(n− 1)!
≤ ζδ,n(u, x) ≤

(
ζδ(∞)

φ(γ + δ)

1− θ

)n (x− u)n−1e−
φ(γ+δ)
1−θ

(x−u)

(n− 1)!
,

x > u ≥ 0. (3.41)

We can verify (3.41) by mathematical induction. Obviously, the starting point n = 1 holds true due to
(3.7) and (3.40). Suppose that (3.41) holds true for some n ≥ 1. For the case of n + 1, by (3.7), (3.9),
the first inequality in (3.41) and the fact that ζδ(y) ≥ ζδ(u) for y ≥ u, we get

ζδ,n+1(u, x) =

∫ x

u

ζδ,1(u, y)ζδ,n(y, x)dy

≥

(
φ(γ + δ)

1− θ

)n+1 ∫ x

u

ζδ(u)e
−

φ(γ+δ)
1−θ

(y−u)[ζδ(y)]
n (x− y)n−1e−

φ(γ+δ)
1−θ

(x−y)

(n− 1)!
dy

≥

(
ζδ(u)

φ(γ + δ)

1− θ

)n+1

e−
φ(γ+δ)
1−θ

(x−u)
∫ x

u

(x− y)n−1

(n− 1)!
dy

=

(
ζδ(u)

φ(γ + δ)

1− θ

)n+1 (x− u)ne−
φ(γ+δ)
1−θ

(x−u)

n!
.

Similarly, (3.40) together with the second inequality in (3.41) implies

ζδ,n+1(u, x) ≤

(
ζδ(∞)

φ(γ + δ)

1− θ

)n+1 ∫ x

u

e−
φ(γ+δ)
1−θ

(y−u) (x− y)n−1e−
φ(γ+δ)
1−θ

(x−y)

(n− 1)!
dy

=

(
ζδ(∞)

φ(γ + δ)

1− θ

)n+1 (x− u)ne−
φ(γ+δ)
1−θ

(x−u)

n!
.
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Hence, the inductive step of n+ 1 is completed and one asserts that (3.41) holds true for n = 1, 2, . . ..

Next, we apply (3.37), the first inequality in (3.41) and dominated convergence to (3.8). This leads
to

mθ,δ(u) ≥ αδ(u) +

∞∑

n=1

∫ ∞

u

(
ζδ(u)

φ(γ + δ)

1− θ

)n (x− u)n−1e−
φ(γ+δ)
1−θ

(x−u)

(n− 1)!
αδ(x)dx

= αδ(u) +
∞∑

n=1

(
ζδ(u)

φ(γ + δ)

1− θ

)n ∫ ∞

0

xn−1e−
φ(γ+δ)
1−θ

x

(n− 1)!
αδ(u+ x)dx

∼
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδe

−Kδu +
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδ

∞∑

n=1

(
ζδ(u)

φ(γ + δ)

1− θ

)n ∫ ∞

0

xn−1e−
φ(γ+δ)
1−θ

x

(n− 1)!
e−Kδ(u+x)dx

=
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδe

−Kδu

[
1 +

∞∑

n=1

(
ζδ(u)

φ(γ+δ)
1−θ

Kδ +
φ(γ+δ)
1−θ

)n]

=
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδe

−Kδu
1

1−
ζδ(u)

φ(γ+δ)
1−θ

Kδ+
φ(γ+δ)
1−θ

∼
Kδ + φ(δ)

Kδ + φ(γ + δ)
Cδe

−Kδu
1

1−
ζδ(∞)

φ(γ+δ)
1−θ

Kδ+
φ(γ+δ)
1−θ

=
Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
Cδe

−Kδu, (3.42)

where the last line follows from the use of (3.36) along with some straightforward simplifications. Omitting
the details, similar procedure results in

mθ,δ(u) ≤ αδ(u) +
∞∑

n=1

∫ ∞

u

(
ζδ(∞)

φ(γ + δ)

1− θ

)n (x− u)n−1e−
φ(γ+δ)
1−θ

(x−u)

(n − 1)!
αδ(x)dx

∼
Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
Cδe

−Kδu. (3.43)

Finally, the asymptotic formula (3.38) is recovered by combining (3.42) and (3.43). �

3.3 Analysis of Vθ,δ(u)

In this subsection, we turn our attention to the expected discounted tax payments payable until ruin
Vθ,δ(u) defined in (1.3). If ruin has not been observed before the first overshoot of X over the initial
level, the tax payments for Xθ consist of a fraction θ of the overshoot plus potential future payments.
Hence, the use of the density (2.13) leads to

Vθ,δ(u) = θ

∫ ∞

0
xζδ(u, x)dx +

∫ ∞

0
Vθ,δ(u+ (1− θ)x)ζδ(u, x)dx

= θζδ(u)

∫ ∞

0
xφ(γ + δ)e−φ(γ+δ)xdx+ ζδ(u)

∫ ∞

0
Vθ,δ(u+ (1− θ)x)φ(γ + δ)e−φ(γ+δ)xdx

=
θ

φ(γ + δ)
ζδ(u) +

φ(γ + δ)

1− θ
ζδ(u)

∫ ∞

u

Vθ,δ(x)e
−φ(γ+δ)

1−θ
(x−u)dx, u ≥ 0. (3.44)
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The above equation is the same as Equation (35) in Albrecher et al. (2008a) with n = 1. Thus, the
solution given in their Equation (41) is applicable (see Remark 7), yielding

Vθ,δ(u) =
θ

1− θ
ζδ(u)

∫ ∞

0
e−

φ(γ+δ)
1−θ

∫ x

0
[1−ζδ(u+y)]dydx. (3.45)

On the other hand, by rewriting (3.44) as the Volterra integral equation

Vθ,δ(u) =
θ

φ(γ + δ)
ζδ(u) +

∫ ∞

u

ζδ,1(u, x)Vθ,δ(x)dx,

successive substitution results in the alternative expression

Vθ,δ(u) =
θ

φ(γ + δ)
ζδ(u) +

θ

φ(γ + δ)

∞∑

n=1

∫ ∞

u

ζδ,n(u, x)ζδ(x)dx, (3.46)

where ζδ,n(u, x) is defined via (3.7) and (3.9). Because each tax payment (if paid) is exponential with
mean θ/φ(γ + δ)), one can follow (3.10) and the subsequent discussion to observe that (3.46) is indeed
equivalent to the decomposition

Vθ,δ(u) =
∞∑

n=1

Eu[e
−δZǫn θ(CθZǫn

−Mθ
Zǫn−1

)1(Zǫn<τθ)
].

Remark 7 To apply Equation (41) of Albrecher et al. (2008a), we need to check two conditions that
are used in their derivation. First, because ζδ(y) is increasing in y, we can utilize (3.36) to assert that
1 − ζδ(y) ≥ 1 − ζδ(∞) = φ(δ)/φ(γ + δ) > 0. (The last inequality is due to φ(δ) > 0 as we are only
concerned with the case δ > 0 for discounted tax payments.) Hence, one has the condition

lim
x→∞

e−
φ(γ+δ)
1−θ

∫ x
u
[1−ζδ(y)]dy = 0.

The next required condition is limu→∞ Vθ,δ(u) <∞, which can be proved using arguments analogous to
those in Remark 6. In fact, it is easy to see that

Vθ,δ(u) ∼
θ

φ(γ + δ)
ζδ(∞)

(
1 +

∞∑

n=1

[ζδ(∞)]n
)

= θ

(
1

φ(δ)
−

1

φ(γ + δ)

)
<∞, (3.47)

where (3.36) is used to simplify the expression in the last equality. �

3.4 Tax payments with delayed start

In this subsection, we analyze an extension of the tax system, in which the first tax payment starts only
when the surplus process overshoots a fixed threshold level b (that is no less than the initial surplus u)
for the first time without ruin being observed in the interim. If the first tax payment occurs, the amount
will be a fraction θ of the overshoot. The resulting Gerber-Shiu function and expected discounted tax
payments until ruin are denoted bymθ,δ(u, b) and Vθ,δ(u, b) respectively. Clearly, mθ,δ(u, u) = mθ,δ(u) and
Vθ,δ(u, u) = Vθ,δ(u). Following almost identical proof as in Section 2.2, we can show that the discounted
amount of the overshoot over the threshold b is again exponentially distributed with mean 1/φ(γ + δ),
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given that the overshoot occurs avoiding ruin enroute. Hence, similar to (3.2), we can apply χδ(u, b)
defined in (2.14) to obtain

mθ,δ(u, b) = αδ(u, b) +
φ(γ + δ)

1− θ
χδ(u, b)

∫ ∞

b

mθ,δ(x)e
−

φ(γ+δ)
1−θ

(x−b)dx, 0 ≤ u ≤ b, (3.48)

where
αδ(u, b) = Eu[e

−δτθw(|Xθ
τθ
|)1(τθ<ZJ∗(b))]

is the Gerber-Shiu function for ruin occurring before the surplus is observed to overshoot level b. Letting
θ = 0 in (3.48) gives

αδ(u, b) = m0,δ(u)− φ(γ + δ)χδ(u, b)

∫ ∞

b

m0,δ(x)e
−φ(γ+δ)(x−b)dx

= m0,δ(u)− χδ(u, b)
m0,δ(b)− αδ(b)

ζδ(b)
, 0 ≤ u ≤ b, (3.49)

where (3.4) at u = b has been utilized in the last line. Note that αδ(u, b) can be regarded as a generaliza-
tion of the quantity αδ(u) defined in (3.3) with solution (3.4), since αδ(u, u) = αδ(u). Moreover, αδ(u, b)
does not depend on θ. Using (3.2) (at u = b) along with (3.49), we can rewrite (3.48) neatly as

mθ,δ(u, b) = m0,δ(u)− χδ(u, b)
m0,δ(b)− αδ(b)

ζδ(b)
+ χδ(u, b)

mθ,δ(b)− αδ(b)

ζδ(b)

= m0,δ(u) + χδ(u, b)
mθ,δ(b)−m0,δ(b)

ζδ(b)
. (3.50)

For the expected discounted tax payments until ruin Vθ,δ(u, b) (where δ > 0) under delayed start, (3.44)
is extended to

Vθ,δ(u, b) =
θ

φ(γ + δ)
χδ(u, b) +

φ(γ + δ)

1− θ
χδ(u, b)

∫ ∞

b

Vθ,δ(x)e
−

φ(γ+δ)
1−θ

(x−b)dx

= χδ(u, b)
Vθ,δ(b)

ζδ(b)
, 0 ≤ u ≤ b, (3.51)

where the last step again follows from (3.44) at u = b.

Motivated by the optimization problems considered in Dickson and Waters (2004, Section 6.1) and
Gerber at al. (2006), we look at the optimal threshold level b∗ (if it exists) that maximizes with respect
to b the function

ηθ,δ(u, b) = Vθ,δ(u, b) −mθ,δ(u, b), 0 ≤ u ≤ b,

which represents the tax payments minus a penalty applied at ruin. (We further restrict θ > 0, otherwise
no tax will ever be paid regardless of the value of b.) Note that the optimal threshold when the surplus
process is monitored continuously for both solvency and taxation was also analyzed by Cheung and
Landriault (2012, Section 4.2). Using (3.50) and (3.51), it is immediate that

ηθ,δ(u, b) = −m0,δ(u) + χδ(u, b)

(
Vθ,δ(b)−mθ,δ(b) +m0,δ(b)

ζδ(b)

)
. (3.52)

Following the same arguments leading to Equation (45) in Albrecher et al. (2008a), an expression for
χδ(u, b) can be obtained as

χδ(u, b) = ζδ(u)e
−

φ(γ+δ)
1−θ

∫ b
u
[1−ζδ(y)]dy , 0 ≤ u ≤ b, (3.53)
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which is in terms of ζδ(·). This result can be regarded as an alternative solution to (2.19). Hence,
substitution of (3.53) into (3.52) followed by differentiation with respect to b yields

d

db
ηθ,δ(u, b) =−

φ(γ + δ)

1− θ
[1− ζδ(b)]χδ(u, b)

(
Vθ,δ(b)−mθ,δ(b) +m0,δ(b)

ζδ(b)

)

+ χδ(u, b)
d

db

(
Vθ,δ(b)−mθ,δ(b) +m0,δ(b)

ζδ(b)

)
.

Since χδ(u, b) is always positive, if a positive b∗ exists then it is a root of the equation (in b),

d

db

(
Vθ,δ(b)−mθ,δ(b) +m0,δ(b)

ζδ(b)

)
=
φ(γ + δ)

1− θ
[1− ζδ(b)]

(
Vθ,δ(b)−mθ,δ(b) +m0,δ(b)

ζδ(b)

)
,

which is independent of the initial surplus u. In other words, if a positive b∗ satisfying the above equation
exists, then it is the same b∗ that maximizes ηθ,δ(u, b) with respect to b for all u such that 0 ≤ u ≤ b∗.

4 Continuous monitoring of solvency

In this section, we analyze the situation in which the event of ruin is monitored continuously but tax is
only paid at Poissonian time points, i.e. the model dynamics of the taxed surplus process still follows Xθ

with the time of ruin now defined by τ cθ = inf{t > 0 : Xθ
t < 0}. Such a model assumption can be viewed

as a complement to risk processes with periodic dividend barrier strategy and continuous monitoring
of solvency, which were studied by Avanzi et al. (2013, 2014), Zhang (2014) and Zhang and Cheung
(2014a,b). In addition, one can also treat the present model as the reverse case of Albrecher and Ivanovs
(2014, Section 6), which is concerned with Poissonian monitoring of ruin but continuous checking for tax
payments. Similar to (1.2) and (1.3), we are interested in the Gerber-Shiu function

mc
θ,δ(u) = Eu[e

−δτcθw(|Xθ
τcθ
|)1(τc

θ
<∞)], u > 0, (4.1)

under δ ≥ 0, as well as the expected discounted tax payments until ruin

V c
θ,δ(u) = Eu

[ ∑

Zj<τ
c
θ

e−δZjθ(CθZj
−Mθ

Zj−1
)+

]
, u ≥ 0,

under δ > 0. Clearly, mc
θ,δ(u) contains the ruin probability Ψc

θ(u) = Pu(τ
c
θ < ∞) as a special case.

Because the surplus process possibly drops below zero level between the time points {Zj}
∞
j=0, we have

τ cθ ≤ τθ and hence Ψθ(u) ≤ Ψc
θ(u).

Remark 8 Although the domain of the initial surplus is written as u > 0 instead of u ≥ 0 in the
definition (4.1), our upcoming results indeed also hold true for u = 0 when (i) X has bounded variation;
or (ii) X has unbounded variation due to Brownian motion but not jumps. If X has unbounded variation
and σ = 0, some formulas (e.g. Equation (4.6)) are only valid for u > 0, but the case u = 0 is not
interesting anyway since ruin occurs immediately (see Kyprianou (2014, Lemma 8.6)). �

Since many of the subsequent analyses under the modified assumption still resemble those in earlier
sections, we shall only highlight the key steps and omit the straightforward details wherever appropriate.
Because the Gerber-Shiu function mc

θ,δ(u) will be analyzed by considering the discounted amount of the
first tax payment, we define the analogues of (2.8) and (2.9) in the present model as

ζ
c

δ(u, x) = Eu[e
−δZǫ1 ;XZǫ1

−XZ0 > x, τ c0 > Zǫ1 ], u, x ≥ 0,
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and
ζcδ (u) = Eu[e

−δZǫ1 ; τ c0 > Zǫ1 ] = ζ
c
δ(u, 0), u ≥ 0,

respectively, where τ c0 = inf{t > 0 : Xt < 0} is the traditional ruin time for the Lévy insurance risk
process X without tax. From Zhang and Cheung (2014b, Proposition 6), one has that

ζ
c
δ(u, x) =

γ

φ(γ + δ)
e−φ(γ+δ)(u+x)

(
W (γ+δ)(u) +

∞∑

k=1

∫ u

0
W (γ+δ)(y)Qck(u, dy)

)
, (4.2)

where
Qck(u, dy) = Eu

[
e−δZk ; τ c0 > Zk, sup

0≤j≤k−1
XZj

≤ u,XZk
∈ dy

]
.

Equation (4.2) implies ζ
c

δ(u, x)/ζ
c
δ (u) = e−φ(γ+δ)x (which is the analogue of (2.12)). It follows that the

amount of the first observed overshoot XZǫ1
−XZ0 is again exponentially distributed with mean 1/φ(γ+δ),

even it is now conditional on that X has never dropped below zero in the interim. Thus, similar to (3.2),
we arrive at

mc
θ,δ(u) = αcδ(u) +

φ(γ + δ)

1− θ
ζcδ(u)

∫ ∞

u

mc
θ,δ(x)e

−φ(γ+δ)
1−θ

(x−u)dx, u > 0, (4.3)

where
αcδ(u) = Eu[e

−δτcθw(|Xθ
τc
θ
|)1(τc

θ
<Zǫ1)

]

has solution

αcδ(u) = mc
0,δ(u)− φ(γ + δ)ζcδ (u)

∫ ∞

u

mc
0,δ(x)e

−φ(γ+δ)(x−u)dx, u > 0. (4.4)

In the above expression, mc
0,δ(·) is the Gerber-Shiu function for the tax-free Lévy risk model X under

continuous monitoring of solvency. Defining the q-potential measure for X killed on exiting [0,∞) as

R(q)(u, dx) =

∫ ∞

0
e−qtPu(Xt ∈ dx, τ c0 > t)dt, u, x ≥ 0,

it is known that R(q)(u, dx) = r(q)(u, x)dx, where

r(q)(u, x) = e−φ(q)xW (q)(u)−W (q)(u− x). (4.5)

See the proof of Theorem 8.7 in Kyprianou (2014). According to e.g. Asmussen and Albrecher (2010,
Chapter XII.4), mc

0,δ(·) can be represented as

mc
0,θ(u) =

σ2

2
[W (δ)′(u)− φ(δ)W (δ)(u)]w(0) +

∫ ∞

0

∫ ∞

0
w(y)r(δ)(u, x)ν(x+ dy)dx, u > 0. (4.6)

With the regular condition limu→∞mc
θ,δ(u) = 0 (which follows from limu→∞Ψc

θ(u) = 0 thanks to Al-
brecher et al. (2008b, Section 3) again) and αcδ(u) given in (4.4), we can solve (4.3) to obtain the solution

mc
θ,δ(u) = αcδ(u) +

φ(γ + δ)

1− θ
ζcδ (u)

∫ ∞

u

αcδ(x)e
−

φ(γ+δ)
1−θ

∫ x
u
[1−ζcδ(y)]dydx.

In particular, for the ruin probability one easily observes power relationship in the form of (3.6) also holds
true with Ψθ(·), Ψ0(·) and ζ0(·) replaced by Ψc

θ(·), Ψ
c
0(·) and ζ

c
0(·) respectively. Note that the traditional
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ruin probability for the Lévy risk model X based on continuous monitoring of solvency admits the simple
representation (see Kyprianou (2014, Theorem 8.1(ii)))

Ψc
0(u) = Pu(τ

c
0 <∞) = 1− ψ′(0+)W (0)(u), u ≥ 0.

It remains to fully identify ζcδ(·).

As in Section 2.2, similar to (2.14) we shall study the more general quantity

χcδ(u, b) = Eu[e
−δZJ∗(b) ;ZJ∗(b) < τ c0 ], 0 ≤ u ≤ b,

so that ζcδ(u) = χcδ(u, u). Letting τ+b = inf{t > 0 : Xt = b} be the first upcrossing time at level b, it is
well known that (see Kyprianou (2014, Theorem 8.1(iii)))

Eu[e
−δτ+b ; τ+b < τ c0 ] =

W (δ)(u)

W (δ)(b)
, 0 ≤ u ≤ b.

Hence, use of the strong Markov property of X and the memoryless property of exponential inter-
observation times yields

χcδ(u, b) =
W (δ)(u)

W (δ)(b)
χcδ(b, b). (4.7)

On the other hand, conditioning on the surplus level at time Z1 gives

χcδ(u, b) =

∫ ∞

0
γe−(γ+δ)t

∫ ∞

b

Pu(Xt ∈ dx; τ
c
0 > t)dt+

∫ ∞

0
γe−(γ+δ)t

∫ b

0
χcδ(x, b)Pu(Xt ∈ dx; τ c0 > t)dt

= γ

∫ ∞

b

r(γ+δ)(u, x)dx + γ

∫ b

0
χcδ(x, b)r

(γ+δ)(u, x)dx

=
γ

φ(γ + δ)
e−φ(γ+δ)bW (γ+δ)(u) + γχcδ(b, b)

∫ b

0

W (δ)(x)

W (δ)(b)
[e−φ(γ+δ)xW (γ+δ)(u)−W (γ+δ)(u− x)]dx,

where the last equality follows from the application of (4.5) and (4.7). Plugging in b = u in above
equation and solving for ζcδ(u) = χcδ(u, u) leads to

ζcδ(u) =

γ
φ(γ+δ)e

−φ(γ+δ)uW (γ+δ)(u)

1− γ
∫ u
0
W (δ)(x)

W (δ)(u)
[e−φ(γ+δ)xW (γ+δ)(u)−W (γ+δ)(u− x)]dx

, u ≥ 0.

Concerning asymptotic formula for mc
θ,δ(u) as u → ∞, we need to first derive an asymptotic result

for mc
0,δ(u) in the absence of taxation. By substituting (4.5) into (4.6), taking Laplace transforms and

applying (2.4), we arrive at

m̂c
0,δ(s) =

σ2

2
[sŴ (δ)(s)−W (δ)(0) − φ(δ)Ŵ (δ)(s)]w(0) +

∫ ∞

0

∫ ∞

0
w(y)e−φ(q)xŴ (δ)(s)ν(x+ dy)dx

−

∫ ∞

0

∫ ∞

0
w(y)e−sxŴ (δ)(s)ν(x+ dy)dx

=
σ2

2 [s− φ(δ)]w(0) +
∫∞
0 (e−φ(δ)x − e−sx)

∫∞
0 w(y)ν(x+ dy)dx

ψ(s)− δ
. (4.8)

Note that we have used the fact that σ2W (δ)(0) = 0 in the last equality, since σ2 > 0 implies W (δ)(0) = 0
(see Kyprianou (2014, Lemma 8.6)). As in Section 3.2, it is assumed that the Laplace exponent ψ(·)
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is well defined in a neighborhood of the origin, and we follow the same definition of the adjustment
coefficient Kδ therein. We further assume

∫ ∞

0
eKδx

∫ ∞

0
w(y)ν(x+ dy)dx <∞.

Suppose that the Cramér-Lundberg asymptotic formula

mc
0,δ(u) ∼ Ccδe

−Kδu (4.9)

holds true (see Remark 9). Use of the final value theorem for Laplace transforms and (4.8) yields

Ccδ = lim
u→∞

eKδumc
0,δ(u) = lim

s→0
sm̂c

0,δ(s−Kδ)

=
σ2

2 [−Kδ − φ(δ)]w(0) +
∫∞
0 (e−φ(δ)x − eKδx)

∫∞
0 w(y)ν(x+ dy)dx

ψ′(−Kδ)
.

Remark 9 From Biffis and Morales (2010, Theorem 4.1) and Feng and Shimizu (2013, Section 3.3 and
Proposition 5.1), it is known that mc

0,δ(·) satisfies a defective renewal equation if the process X belongs
to the class (i) or (ii) in Remark 8. In this case, it follows from Feng and Shimizu (2013, Theorem 5.1
and Proposition 5.1) that the asymptotic expression (4.9) is valid. �

Next, following the arguments leading to (3.36) and (3.37), it is easy to see that

ζcδ(∞) = 1−
φ(δ)

φ(γ + δ)

and

lim
u→∞

eKδuαcδ(u) =
Kδ + φ(δ)

Kδ + φ(γ + δ)
Ccδ .

Hence, analogous to (3.38), we arrive at

mc
θ,δ(u) ∼

Kδ + φ(δ)

Kδ + φ(γ + δ)

(1− θ)Kδ + φ(γ + δ)

(1− θ)Kδ + φ(δ)
Ccδe

−Kδu ∼ Aθ,δm
c
0,δ(u), (4.10)

where Aθ,δ is given in (3.39). Similar comments as in Remark 5 concerning the asymptotic conditional
distribution of the deficit are also applicable.

For the expected discounted tax payments before ruin V c
θ,δ(u), in parallel to (3.44), (3.45) and (3.47),

we observe that V c
θ,δ(·) satisfies the integral equation

V c
θ,δ(u) =

θ

φ(γ + δ)
ζcδ (u) +

φ(γ + δ)

1− θ
ζcδ (u)

∫ ∞

u

V c
θ,δ(x)e

−
φ(γ+δ)
1−θ

(x−u)dx, u ≥ 0,

which has analytic solution

V c
θ,δ(u) =

θ

1− θ
ζcδ (u)

∫ ∞

0
e−

φ(γ+δ)
1−θ

∫ x

0
[1−ζc

δ
(u+y)]dydx,

and asymptotic expression

V c
θ,δ(u) ∼ θ

(
1

φ(δ)
−

1

φ(γ + δ)

)
. (4.11)

It is instructive to note that Vθ,δ(u) and V c
θ,δ(u) possess the same asymptotic formula. This is not

surprising because ruin is unlikely to happen for sufficiently large initial surplus regardless of whether
ruin is monitored continuously or at Poissonian time points only.

Finally, we omit the case of delayed tax payments under continuous monitoring of solvency, as the
analysis is essentially identical to that in Section 3.4.
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5 Numerical illustrations

In this section, we present some numerical examples concerning the ruin probability under taxation and
the expected discounted tax payments until ruin. Two classes of Lévy insurance risk processes will be
considered, namely,

• a Brownian motion risk model with Laplace exponent ψ(s) = 0.5s + s2; and

• compound Poisson models with Laplace exponents (i) ψ(s) = 1.5s − 1 + 3
s+3

1.5
s+1.5 ; (ii) ψ(s) =

1.5s − 1 + 1
s+1 ; and (iii) ψ(s) = 1.5s − 1 + 1

3
0.5
s+0.5 +

2
3

2
s+2 .

In the above compound Poisson processes, the Poisson claim arrival intensity and the premium rate are
always λ = 1 and β = 1.5 respectively (see Example 2) whereas the generic claim random variable follows
(i) a sum of two independent exponentials; (ii) an exponential distribution; and (iii) a mixture of two
exponentials. These three claim distributions were also used in the numerical illustrations in Albrecher
et al. (2011b, 2013). They have the same mean of 1 but possess different variances of 0.56, 1 and 2
respectively. Moreover, it is easy to check that the above Brownian motion risk model is the diffusion
approximation of the compound Poisson model (ii), i.e. the first two moments E[Xt] and E[X2

t ] in both
models match for all t ≥ 0 (see e.g. Klugman et al. (2013, Chapter 11.6)).
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Figure 1: Ψθ(u) in Brownian motion model. (a) γ = 0.5 (b) θ = 0.6

In Figure 1, we plot the ruin probability Ψθ(u) against the initial surplus u in the Brownian motion
risk model with a Poissonian observer (for both ruin monitoring and taxation). Specifically, Figure 1(a)
plots Ψθ(u) for the tax rates θ = 0, 0.2, 0.4, 0.6, 0.8 when the Poissonian observation rate is fixed at
γ = 0.5; whereas Figure 1(b) shows the behaviour of Ψθ(u) for γ = 0.5, 1, 2, 3 and fixed θ = 0.6. As
expected, Ψθ(u) is decreasing in u. Furthermore, for each fixed u the ruin probability Ψθ(u) becomes
larger when θ or γ increases. These can be interpreted as follows. First, all other things being equal, for
two processes Xθ1 and Xθ2 with different tax rates such that 0 ≤ θ1 ≤ θ2 ≤ 1, it is clear that Xθ2

t ≤ Xθ1
t

for all t ≥ 0 and therefore Ψθ2(u) ≥ Ψθ1(u). (Note that Xθ1 and Xθ2 achieve observed maximum at the
same time points.) Second, a larger γ not only leads to more frequent checking of ruin but also more
frequent tax payments out of the surplus process, thereby increasing the ruin probability Ψθ(u). Figure
2 also depicts Ψθ(u) but for the compound Poisson model (ii) with exponential jumps, and the same
behaviour as in the Brownian motion model is observed. To compare the ruin probabilities Ψθ(u) and
Ψc
θ(u) under discrete and continuous monitoring of solvency, Figure 3 shows the plots for the Brownian
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Figure 2: Ψθ(u) in compound Poisson model with exponential jumps. (a) γ = 0.5 (b) θ = 0.6

motion model and the compound Poisson model with exponential claims when γ = 0.5 and θ = 0.6. Not
surprisingly, it is found that Ψc

θ(u) ≥ Ψθ(u) in both models, which is due to the fact that the first passage
time of Xθ below zero may not be observed under discrete checking of ruin. Next, for both discrete and
continuous monitoring of ruin, the Cramér-Lundberg approximations (3.38) and (4.10) are compared to
the exact ruin probabilities Ψθ(u) and Ψc

θ(u) respectively in Figure 4 under the compound Poisson model
with exponential jumps. Note that the approximations perform well for u ≥ 5 when the ruin probabilities
are still significantly above zero (under the setting γ = 0.5 and θ = 0.6).
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Figure 3: Comparison of Ψc
θ(u) and Ψθ(u) when γ = 0.5 and θ = 0.6. (a) Brownian motion model (b)

Compound Poisson model with exponential jumps

For Brownian motion model and the compound Poisson model under three different claim distri-
butions, some exact values of the ruin probability Ψθ(u) are given in Tables 1-4. Comparison of the
values across Tables 2-4 reveals that Ψθ(u) is higher when the variance of the claim distribution in the
compound Poisson model becomes larger. This intuitively makes sense because a claim distribution with
a larger variance represents higher risk for the insurer (with the mean being fixed). In addition, by
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Figure 4: Comparison of the exact ruin probability (red curve) and the Cramér-Lundberg approximation
(blue curve) when γ = 0.5 and θ = 0.6. (a) Discrete monitoring of ruin (b) Continuous monitoring of
ruin

examining Tables 1 and 3, it can be seen that the Brownian motion model does not appear to be a very
good diffusion approximation of the compound Poisson model with exponential claims as far as the ruin
probability Ψθ(u) is concerned.

Table 1: Exact ruin probabilities when ψ(s) = 0.5s + s2 and γ = 0.5.
θ u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
0.2 0.6934763 0.4283647 0.2477129 0.1422615 0.0826375 0.0486397 0.0289278 0.0173289 0.0104295
0.4 0.7396074 0.4757191 0.2823157 0.1646833 0.0965598 0.0571542 0.0341071 0.0204735 0.0123373
0.6 0.8120865 0.5589842 0.3468196 0.2077839 0.1237736 0.0739553 0.0443828 0.0267324 0.0161419
0.8 0.9293771 0.7375029 0.5075839 0.3241953 0.2005945 0.1225835 0.0745589 0.0452701 0.0274682

Table 2: Exact ruin probabilities when ψ(s) = 1.5s − 1 + 3
s+3

1.5
s+1.5 and γ = 0.5.

θ u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
0.2 0.4337051 0.2855819 0.1854250 0.1198858 0.0773307 0.0498097 0.0320543 0.0206164 0.0132550
0.4 0.4921251 0.3317359 0.2186703 0.1427232 0.0926121 0.0598788 0.0386273 0.0248823 0.0160136
0.6 0.5915068 0.4152914 0.2811458 0.1866355 0.1224198 0.0796982 0.0516396 0.0333584 0.0215075
0.8 0.7874459 0.6083361 0.4401645 0.3053315 0.2060954 0.1366844 0.0896295 0.0583474 0.0378061

Table 3: Exact ruin probabilities when ψ(s) = 1.5s − 1 + 1
s+1 and γ = 0.5.

θ u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
0.2 0.4659592 0.3390253 0.2454378 0.1771128 0.1275335 0.0916983 0.0658655 0.0472766 0.0339169
0.4 0.5310428 0.3952059 0.2905639 0.2119363 0.1537594 0.1111424 0.0801321 0.0576705 0.0414525
0.6 0.6383815 0.4936476 0.3728812 0.2772246 0.2038698 0.1487907 0.1080151 0.0781194 0.0563476
0.8 0.8341929 0.7028409 0.5668289 0.4423913 0.3370897 0.2524350 0.1866945 0.1368421 0.0996588

Next, we take a look at the expected discounted tax payments before ruin. For simplicity, only the
results in the Brownian motion risk model with ψ(s) = 0.5s + s2 will be illustrated, and we set δ = 0.1
throughout. In Figure 5, we observe that Vθ,δ(u) is an increasing function of u for each fixed pair of γ
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Table 4: Exact ruin probabilities when ψ(s) = 1.5s − 1 + 1
3

0.5
s+0.5 +

2
3

2
s+2 and γ = 0.5.

θ u = 0 u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8
0.2 0.5065377 0.4086923 0.3342859 0.2739977 0.2244695 0.1837271 0.1502537 0.1227941 0.1002973
0.4 0.5808308 0.4789195 0.3974625 0.3293595 0.2721456 0.2242745 0.1844197 0.1513809 0.1240868
0.6 0.6975455 0.5953427 0.5063980 0.4277401 0.3588853 0.2994269 0.2486856 0.2057902 0.1697953
0.8 0.8863755 0.8104888 0.7286341 0.6444473 0.5618635 0.4839525 0.4126641 0.3489676 0.2931008
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Figure 5: Vθ,δ(u) in the Brownian motion model. (a) γ = 0.5 (b) θ = 0.6

and θ, which is expected. In particular, Figure 5(a) demonstrates that Vθ,δ(u) appears to increase with
θ. Indeed, when θ increases (all else being equal), there are two opposing effects on Vθ,δ(u). A larger θ
means that a larger fraction of an observed overshoot is paid as tax (if ruin has not been observed in
the interim). On the other hand, it also implies that the process Xθ is likely to ruin earlier, resulting in
potential loss of future tax payments (see also comments in relation to Figure 1(a) concerning the ruin
probability Ψθ(u)). Figure 5(a) suggests that the former effect dominates in our example. Concerning
Figure 5(b), we notice the interesting phenomenon that Vθ,δ(u) is decreasing in γ for small values of u
(around 0 ≤ u ≤ 1) and increasing in γ for larger u. Recall that both checking of ruin and payment of
tax occur more frequently when γ is larger. When the initial surplus u is close to zero, a larger γ is likely
to result in early observation of ruin. As tax payments cease after ruin is observed, this explains why
Vθ,δ(u) decreases in γ for small u. In contrast, when u gets larger, the process Xθ stays further away from
ruin and hence Vθ,δ(u) moves in the same direction as the frequency of tax payments. Figure 6 compares
Vθ,δ(u) and V c

θ,δ(u) under discrete and continuous checking of ruin when γ = 0.5 and θ = 0.6. Clearly,
one has that V c

θ,δ(u) ≤ Vθ,δ(u) because the tax payments under continuous monitoring of ruin cannot last
longer than those in the discrete case. Moreover, as u gets larger, V c

θ,δ(u) and Vθ,δ(u) converge to the
same constant, which is in agreement with the asymptotic formulas (3.47) and (4.11) that are identical.
Finally, we look at the case of delayed start of taxation as in Section 3.4 when solvency is discretely
monitored, and we set γ = 2 and θ = 0.8. Figure 7(a) depicts Vθ,δ(u, b) as a function of u for 0 ≤ u ≤ b
when b = 1, 3, 5, 7. Of course, Vθ,δ(u, b) is increasing in u. In Figure 7(b), we plot Vθ,δ(u, b) against b for
b ≥ u when u = 0, 0.5, 1, 1.5, 2. It is observed that Vθ,δ(u, b) is first increasing and then decreasing in b
for u = 0, 0.5, 1, 1.5, and it is a decreasing function of b for u = 2. Further numerical investigation reveals
that it is the same optimal tax threshold of approximately 1.6 which maximizes Vθ,δ(u, b) with respect
to b for u = 0, 0.5, 1, 1.5. When u = 2, the optimal threshold level is simply the initial surplus level.
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Figure 7: Vθ,δ(u, b) in the Brownian motion model when γ = 2 and θ = 0.8. (a) as a function of u (b) as
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capital injections. Stochastic Systems 4(1): 157-172.

[11] Albrecher, H., Ivanovs, J. and Zhou, X. 2015. Exit identities for Lévy processes observed at
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