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Abstract

In this paper, we further extend the insurance risk model in Albrecher et al. (2011b), who proposed
to only intervene in the compound Poisson risk process at the discrete time points {Lk}

∞
k=0 where the

event of ruin is checked and dividend decisions are made. In practice, an insurance company typically
balances its books (and monitors its solvency) more frequently than deciding on dividend payments.
This motivates us to propose a generalization in which ruin is monitored at {Lk}

∞
k=0 whereas dividend

decisions are only made at {Ljk}
∞
k=0 for some positive integer j. Assuming that the intervals between

the time points {Lk}
∞
k=0 are Erlang(n) distributed, the Erlangization technique (e.g. Asmussen et

al. (2002)) allows us to model the more realistic situation with the books balanced e.g. monthly
and dividend decisions made e.g. quarterly or semi-annually. Under a dividend barrier strategy with
the above randomized interventions, we derive the expected discounted dividends paid until ruin.
Numerical examples about dividend maximization with respect to the barrier b and/or the value of j
are given.

Keywords: Compound Poisson risk model; Barrier strategy; Dividend decisions; Randomized observa-
tions; Erlangization.

1 Introduction and preliminaries

In this paper, we model the insurer’s surplus (in the absence of dividends) using the classical compound
Poisson (or Cramér-Lundberg) risk process {U(t)}t≥0, where

U(t) = x+ ct−

N(t)∑

i=1

Yi, t ≥ 0. (1.1)

Here x = U(0) ≥ 0 is the initial surplus level, c > 0 is the constant premium rate received by the
insurer, {N(t)}t≥0 is a Poisson process with rate λ > 0, and {Yi}

∞
i=1 are the claim severities which form

a sequence of independent and identically distributed (i.i.d.) positive random variables independent of
{N(t)}t≥0. It is assumed that each Yi has the same distribution as a generic continuous random variable

Y . For later use, we define fY (·) and f̃Y (·) respectively to be the density and the Laplace transform of
Y . Traditionally, ruin is said to occur when the process {U(t)}t≥0 drops below zero for the first time.
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It is well known (e.g. Asmussen and Albrecher (2010, Proposition 1.2)) that if the positive loading
condition c > λE[Y ] holds, then the insurer’s surplus will grow indefinitely in the long run. This led
de Finetti (1957) to propose that the insurance company should redistribute part of the surplus to its
shareholders as dividends. Comprehensive reviews of various dividend strategies and optimality results
can be found in Albrecher and Thonhauser (2009) and Avanzi (2009). In the literature, the dividend
strategy that is studied the most is the (horizontal) barrier strategy, which assumes that dividends are
paid to the shareholders at rate c immediately when the surplus reaches a fixed barrier b ≥ 0 until the
next claim occurs, and no further dividends are payable after the modified process is ruined. See e.g.
Gerber (1979), Gerber and Shiu (1998, Section 7), Lin et al. (2003), Dickson and Waters (2004) and
Gerber et al. (2006). The barrier strategy is known to be optimal in maximizing the expected discounted
dividends until ruin when fY (·) is completely monotone (e.g. Loeffen (2008, Theorem 3)).

Noting that the implementation of the traditional barrier strategy in the model (1.1) would result in
dividends that are payable in the form of continuous streams, Albrecher et al. (2011b, 2013) proposed
to only ‘look’ at the process at the observation times {Lk}

∞
k=0 with L0 = 0. At these time points, if the

surplus level is above the barrier b then the excess is paid out as dividend to the shareholders; but if the
surplus is observed to be below zero then ruin is declared (and dividend payments cease after ruin). In
this way, the more realistic situation where the insurer balances its books periodically and at the same
time the board of the company decides whether to pay (lump sum) dividends can be modelled. Defining
Tk = Lk − Lk−1 for k = 1, 2, . . ., Albrecher et al. (2011b, 2013) assumed that the inter-observation
times {Tk}

∞
k=1 form an i.i.d. sequence with the same distribution as T and is independent of {N(t)}t≥0

and {Yi}
∞
i=1. In particular, motivated by the Erlangization technique commonly used in finite-time ruin

problems (e.g. Asmussen et al. (2002), Stanford et al. (2005, 2011), and Ramaswami et al. (2008)), it is
assumed that T follows an Erlang(n) distribution with density

fT (t) =
γntn−1e−γt

(n− 1)!
, t > 0 (1.2)

and Laplace transform f̃T (s) =
∫∞
0 e−stfT (t) dt = [γ/(γ + s)]n, where γ > 0. In fact, if the mean

E[T ] = n/γ is fixed to be h and the value of n is increased (along with γ), then T converges in distribution
to a point mass at h, approximating the case of deterministic inter-observation times (e.g. monthly
balancing of books). Interested readers are also referred to e.g. Carr (1998) and Kyprianou and Pistorius
(2003) for the use of Erlangization in option pricing.

Since the idea of randomized observations was proposed, a number of related research problems
have been analyzed. Some optimality results concerning dividend maximization when {Lk}

∞
k=0 are more

generally the arrival epochs of a renewal process were derived by Albrecher et al. (2011a). Discussions
of exponential inter-observation times in relation to the (Gamma-)Omega risk model can also be found
in Albrecher et al. (2011c, Section 9), Gerber et al. (2012, Section 3), and Albrecher and Lautscham
(2013, Section 2.1.1). In addition, Albrecher and Ivanovs (2013) and Albrecher et al. (2014) studied the
cases of a Poissonian observer (i.e. the observation time points {Lk}

∞
k=0 are the arrival times of a Poisson

process that may be non-homogeneous) in a Markovian environment and a Lévy risk process respectively;
whereas Chen et al. (2014) considered a threshold dividend strategy under exponential inter-observation
times. Another development of randomized observations was suggested by Avanzi et al. (2013), who
argued that only dividend announcements are made periodically but the financial position of a company
should be monitored continuously. In other words, ruin is declared immediately once the company’s
surplus becomes negative in their modifications. Although the original work by Avanzi et al. (2013) is
concerned with the dual risk model (see also Avanzi et al. (2014) for optimality results), insurance risk
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processes with periodic dividend decisions and continuous monitoring of solvency have also been studied
by Zhang (2014) and Zhang and Cheung (2014a,b).

Inspired by Avanzi et al. (2014)’s comments, we aim at further refining Albrecher et al. (2011b)’s
model in this paper as follows. In practice, the solvency of the insurer is monitored more frequently
than dividend decisions are made such that an insurer balances its books (and monitors its solvency)
on e.g. a monthly basis while dividends are announced e.g. quarterly or semi-annually. Therefore,
we propose a generalized model in which ruin is monitored at the observation times {Lk}

∞
k=0 whereas

dividend decisions are only made at a subset of these times, namely {Ljk}
∞
k=0 for some positive integer

j. With Erlangization in mind, it is still assumed that each Tk = Lk −Lk−1 (for k = 1, 2, . . .) follows the
Erlang(n) density (1.2), and a barrier-type strategy is applied. To define the modified surplus process
{Ub(t)}t≥0 under the above descriptions, we first introduce the auxiliary process {Ub,k(t)}t≥0 which can
be described recursively via

Ub,k(t) =

{
U(t), k = 1; t ≥ 0.
min(Ub,k−1(Lj(k−1)), b) + U(t)− U(Lj(k−1)), k = 2, 3, . . . ; t ≥ Lj(k−1).

Then, for k = 1, 2, . . ., one has

Ub(t) = Ub,k(t), Lj(k−1) ≤ t < Ljk.

Without loss of generality, it is assumed that the initial surplus level Ub(0) = Ub,1(0) = U(0) = x is such
that 0 ≤ x ≤ b. Defining kb = inf{k ≥ 1 : Ub(Lk) < 0} to be the number of observation periods before
ruin, the time of ruin of the modified surplus process {Ub(t)}t≥0 is given by τb = Lkb . Clearly, when j = 1
our model reduces to the one by Albrecher et al. (2011b). In addition, the Erlangization technique allows
us to model the realistic situation of monthly balancing of books along with quarterly or semi-annual
dividend decisions by letting j = 3 or j = 6. Figure 1 depicts a sample path of {Ub(t)}t≥0 when j = 2.

Ub(t)

t

dividend dividend

0

x

b

L2 L3 L4 L5 L6 L7 L8

L9 = τb

L1

Figure 1: A sample path of {Ub(t)}t≥0 when j = 2

The key quantity of interest in this paper is the expected discounted dividends paid until ruin defined
by

V (x; b) = E

[ ∞∑

k=1

e−δLjk [Ub(L
−
jk)− b]+ 1{Ljk<τb}

∣∣∣Ub(0) = x

]
, 0 ≤ x ≤ b,
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where δ > 0 is the force of interest, a+ = max(a, 0), and 1A is the indicator function of the event A.
While the traditional dividend maximization under a barrier strategy is performed with respect to the
barrier level b (e.g. Gerber et al. (2006)), in the present context one can also optimize with respect
to j (see Section 4). This could address the following type of question: given that the insurer balances
its books monthly, is it better to pay dividend quarterly, semi-annually or annually? Our analysis of
the dividend function V (x; b) in the upcoming sections relies heavily on the so-called discounted density
of the increment of the barrier-free process {U(t)}t≥0 between successive observation time points (see

Albrecher et al. (2013, Section 3.2)). It is defined via the joint Laplace transform of (T,
∑N(T )

i=1 Yi − cT ),
namely

E

[
e
−δT−s

(

∑N(T )
i=1 Yi−cT

)]
=

(
γ

γ + δ − cs+ λ[1− f̃Y (s)]

)n

=

∫ ∞

−∞
e−sygδ(y) dy. (1.3)

The density gδ(·) can be further decomposed into

gδ(y) = gδ,−(−y)1{y<0} + gδ,+(y)1{y>0}, −∞ < y < ∞, (1.4)

where gδ,+(·) and gδ,−(·) represent the cases of net loss and net gain respectively between observations
(prior to any dividend payments). These densities are known to take on tractable form when the claim
severity Y has rational Laplace transform and the inter-observation time T follows Erlang(n) distribution
(see (3.2)).

This paper is organized as follows. In Section 2, the assumption that both the claim severity Y and
the inter-observation time T are exponentially distributed is made. We first start with the case j = 2
in Section 2.1 which will give some insights to the more general case of j ∈ N considered in Section 2.2.
The densities gδ,+(·) and gδ,−(·) will be used to derive integral equations satisfied by V (x; b), which can
be solved explicitly. Although most of the ideas can be found in Section 2.2, we further study the general
but tedious case where Y has rational Laplace transform, T is Erlang(n) and j ∈ N in Section 3 for the
sake of completeness. Finally, Section 4 is concerned with various numerical illustrations which involve
dividend maximization with respect to the barrier level b and/or the value of j.

2 Exponential claims and exponential inter-observation times

In this entire section, it is assumed that Y and T follow exponential distribution with mean 1/ν and 1/γ
respectively. We shall first investigate the case j = 2 and then turn to the more general case j ∈ N.

2.1 Model with j = 2

Under j = 2, solvency is monitored at the observation times {Lk}
∞
k=0 while dividend decisions are only

made at {L2k}
∞
k=0. With dividend decisions made at a subset of {Lk}

∞
k=0, one needs to keep track of the

number of inter-observation times remaining until the next dividend decision. To this end, for 0 ≤ x ≤ b
we denote V1(x; b) to be the expected discounted dividends until ruin when the time to the next dividend
decision has the same distribution as T1 + T2 (i.e. immediately after a dividend decision), where x is the
initial surplus and b is the barrier level. Clearly, one has V (x; b) = V1(x; b). Similarly, for x ≥ 0 we let
V2(x; b) be the dividend function when the time to the next dividend decision is instead distributed as
T1 (i.e. at an observation time that is not a dividend decision time). Because V2(x; b) behaves differently
on 0 ≤ x ≤ b and x > b, it will be useful define V2(x; b) as a piecewise function, namely

V2(x; b) =

{
V2,L(x; b), 0 ≤ x ≤ b,
V2,U (x; b), x > b,
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where the subscripts ‘L’ and ‘U ’ represent ‘lower’ and ‘upper’ layer respectively.

The discounted densities gδ,+(·) and gδ,−(·) defined via (1.3) and (1.4) can now be applied to derive

integral equations as follows. First, by conditioning on the pair (T1,
∑N(T1)

i=1 Yi − cT1) we arrive at

V1(x; b) =

∫ ∞

b−x

gδ,−(y)V2,U (x+ y; b) dy +

∫ b−x

0
gδ,−(y)V2,L(x+ y; b) dy

+

∫ x

0
gδ,+(y)V2,L(x− y; b) dy, 0 ≤ x ≤ b. (2.1)

Similarly, V2,L(x; b) and V2,U (x; b) can be respectively expressed as

V2,L(x; b) =

∫ ∞

b−x

gδ,−(y)[y − (b− x) + V1(b; b)] dy +

∫ b−x

0
gδ,−(y)V1(x+ y; b) dy

+

∫ x

0
gδ,+(y)V1(x− y; b) dy, 0 ≤ x ≤ b, (2.2)

V2,U (x; b) =

∫ ∞

0
gδ,−(y)[x+ y − b+ V1(b; b)] dy +

∫ x−b

0
gδ,+(y)[x− y − b+ V1(b; b)] dy

+

∫ x

x−b

gδ,+(y)V1(x− y; b) dy, x > b. (2.3)

Under the present distributional assumptions, it is known from Albrecher et al. (2011b, Section 3.1)
that

gδ,−(y) =
γ(ν + ργ)

cργ(ργ +Rγ)
ργe

−ργy and gδ,+(y) =
γ(ν −Rγ)

cRγ(ργ +Rγ)
Rγe

−Rγy, y > 0 (2.4)

are (defective) exponential densities, where ργ > 0 and −Rγ < 0 are the roots of the quadratic equation
(in ξ)

ξ2 +

(
ν −

λ+ γ + δ

c

)
ξ −

(γ + δ)ν

c
= 0.

By substituting (2.4) into (2.1)-(2.3) and then applying the operator (d/dx − ργ)(d/dx + Rγ) on both
sides of these equations, one can obtain a system of second-order differential equations in x with constant
coefficients, namely

V ′′
1 + (Rγ − ργ)V

′
1 − ργRγV1 = −

γ

c
V ′
2,L −

νγ

c
V2,L, 0 ≤ x ≤ b, (2.5)

V ′′
2,L + (Rγ − ργ)V

′
2,L − ργRγV2,L = −

γ

c
V ′
1 −

νγ

c
V1, 0 ≤ x ≤ b, (2.6)

V ′′
2,U + (Rγ − ργ)V

′
2,U − ργRγV2,U = −

γ

c
[1 + ν(x− b+ V1(b; b))], x > b. (2.7)

For convenience we have suppressed the dependence of V1, V2,L and V2,U on x and b, and it is understood
that any derivatives are taken with respect to x unless specified otherwise. To determine the solution,
we first rewrite (2.5) and (2.6) in the form of the first-order homogeneous matrix differential equation

~V′ = A~V, 0 ≤ x ≤ b, (2.8)

where ~V = (V1, V2,L, V
′
1 , V

′
2,L)

⊤ and

A =




0 0 1 0
0 0 0 1

ργRγ −νγ
c

ργ −Rγ −γ
c

−νγ
c

ργRγ −γ
c

ργ −Rγ


 .
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Because the solution of (2.8) can be expressed in terms of a matrix exponential, this immediately gives

V1(x; b) = C1e
α1x + C2e

α2x + C3e
α3x + C4e

α4x, 0 ≤ x ≤ b, (2.9)

V2,L(x; b) = D1e
α1x +D2e

α2x +D3e
α3x +D4e

α4x, 0 ≤ x ≤ b, (2.10)

where {Ci}
4
i=1 and {Di}

4
i=1 are constants to be determined, and {αi}

4
i=1 are the eigenvalues of A. For

(2.7), the only unknown function in x is V2,U (x; b). Clearly, ργ and −Rγ are roots of the characteristic
equation pertaining to the homogeneous version of (2.7). Due to the non-homogeneous term which is
linear in x, the general solution is therefore

V2,U(x; b) = E1x+ E2 + E3e
−Rγx + E4e

ργx, x > b, (2.11)

for some constants {Ei}
4
i=1. Noting that all the dividend functions under consideration cannot exceed

x+ c/δ (i.e. the present value of insurer’s payout cannot exceed the entire surplus plus the perpetuity of
premium income), the linear boundedness implies E4 = 0 by taking the limit x → ∞ in (2.11).

With the solution forms (2.9)-(2.11) identified, it remains to determine the unknown constants. We
proceed by plugging (2.9)-(2.11) as well as the discounted density (2.4) into the integral equations (2.1)-
(2.3). Omitting the straightforward details, equating the coefficients of eαix in the substituted equation
(2.1) yields

Ci = DiZ(αi), i = 1, 2, 3, 4, (2.12)

where

Z(s) =
γ(ν + ργ)

c(ργ +Rγ)

1

ργ − s
+

γ(ν −Rγ)

c(ργ +Rγ)

1

Rγ + s
. (2.13)

Similarly, equating the coefficients of eαix in the substituted equation (2.2) gives

Di = CiZ(αi), i = 1, 2, 3, 4. (2.14)

Combining (2.12) and (2.14), we arrive at

Z(αi) = ±1, i = 1, 2, 3, 4. (2.15)

According to the discussion following equation (30) in Albrecher et al. (2011b), the roots of the equation
(in ξ) Z(ξ) = 1 are ρ0 and −R0. On the other hand, by application of the Vieta’s rule concerning the
roots ργ and −Rγ , it can be shown that Z(ξ) = −1 is equivalent to the quadratic equation (in ξ)

ξ2 +

(
ν −

λ+ 2γ + δ

c

)
ξ −

(2γ + δ)ν

c
= 0,

for which the roots are ρ2γ and −R2γ . Hence, we set

α1 = ρ0, α2 = −R0, α3 = ρ2γ , α4 = −R2γ . (2.16)

Incorporating (2.15) and (2.16) into (2.12) (or (2.14)) gives

C1 = D1, C2 = D2, C3 = −D3, C4 = −D4. (2.17)

We now return to the task of equating the coefficients of various exponential terms. For the substituted
equation (2.1), matching the coefficients of e−Rγx and eργx respectively leads to

4∑

i=1

Di

Rγ + αi
= 0, (2.18)

4∑

i=1

Diργe
αib

ργ − αi
= E2 + E1

(
b+

1

ργ

)
+ E3

(
ργe

−Rγb

ργ +Rγ

)
. (2.19)
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For the substituted equation (2.2), equating the coefficients of e−Rγx and eργx respectively results in

4∑

i=1

Ci

Rγ + αi
= 0, (2.20)

4∑

i=1

Ciαie
αib

ργ − αi
=

1

ργ
. (2.21)

Finally, for the substituted equation (2.3), equating the coefficients of x, the constant term and the
coefficients of e−Rγx produces respectively

E1 =
γ

γ + δ
, (2.22)

E2 =
γ

γ + δ
(V1(b; b) − b) +

γ(ν + ργ)

cρ2γ(ργ +Rγ)
−

γ(ν −Rγ)

cR2
γ(ργ +Rγ)

, (2.23)

E3 =
γ(ν −Rγ)

cRγ(ργ +Rγ)

(
eRγb

Rγ
−

4∑

i=1

Ciαie
αib+Rγb

Rγ + αi

)
. (2.24)

Utilizing (2.9) at x = b, (2.17) as well as (2.22)-(2.24), one can rewrite (2.18) and (2.19) as formulas
involving only {Ci}

4
i=1 as unknown constants. These together with (2.20) and (2.21) form a system of

four linear equations that can be used to calculate {Ci}
4
i=1 (and hence {Di}

4
i=1, E2 and E3). Therefore,

the values of V1 and V2 can be computed using (2.9)-(2.11), where {αi}
4
i=1 are given by (2.16).

2.2 Model with j ∈ N

Now we aim at extending the results in the previous subsection to the case of integer j ∈ N. With x
being the initial surplus and b the barrier level, for i = 1, 2, . . . , j, we define Vi(x; b) to be the expected
discounted dividends until ruin when the time to the next dividend decision is distributed as

∑j−i+1
k=1 Tk.

While V (x; b) = V1(x; b) is only defined when 0 ≤ x ≤ b, the function Vi(x; b) is defined in a piecewise
manner for i = 2, 3, . . . , j, namely

Vi(x; b) =

{
Vi,L(x; b), 0 ≤ x ≤ b.
Vi,U(x; b), x > b.

Concerning V1(x; b), it is easy to see that the integral equation (2.1) still holds true. For i = 2, 3 . . . , j−
1, the dividend functions Vi,L(x; b) and Vi,U (x; b) respectively satisfy

Vi,L(x; b) =

∫ ∞

b−x

gδ,−(y)Vi+1,U (x+ y; b) dy +

∫ b−x

0
gδ,−(y)Vi+1,L(x+ y; b) dy

+

∫ x

0
gδ,+(y)Vi+1,L(x− y; b) dy, 0 ≤ x ≤ b, (2.25)

Vi,U(x; b) =

∫ x

x−b

gδ,+(y)Vi+1,L(x− y; b) dy +

∫ x−b

0
gδ,+(y)Vi+1,U (x− y; b) dy

+

∫ ∞

0
gδ,−(y)Vi+1,U (x+ y; b) dy, x > b. (2.26)

Then, for Vj(x; b), the same technique gives rise to

Vj,L(x; b) =

∫ ∞

b−x

gδ,−(y)[y − (b− x) + V1(b; b)] dy +

∫ b−x

0
gδ,−(y)V1(x+ y; b) dy

7



+

∫ x

0
gδ,+(y)V1(x− y; b) dy, 0 ≤ x ≤ b, (2.27)

Vj,U(x; b) =

∫ ∞

0
gδ,−(y)[x+ y − b+ V1(b; b)] dy +

∫ x−b

0
gδ,+(y)[x− y − b+ V1(b; b)] dy

+

∫ x

x−b

gδ,+(y)V1(x− y; b) dy, x > b. (2.28)

Remark 2.1 By putting x = b− into (2.25) and (2.27) as well as x = b+ into (2.26) and (2.28), it is
clear that for i = 2, 3, . . . , j one has Vi,L(b

−; b) = Vi,U(b
+; b), i.e. Vi(x; b) is continuous at x = b. �

Next, with (2.4) in mind, application of the operator (d/dx−ργ )(d/dx+Rγ) to (2.1) and (2.25)-(2.28)
leads to a system of second-order differential equations in x with constant coefficients given by

V ′′
1 + (Rγ − ργ)V

′
1 − ργRγV1 = −

γ

c
V ′
2,L −

νγ

c
V2,L, 0 ≤ x ≤ b, (2.29)

V ′′
i,L + (Rγ − ργ)V

′
i,L − ργRγVi,L = −

γ

c
V ′
i+1,L −

νγ

c
Vi+1,L, i = 2, 3, . . . , j − 1; 0 ≤ x ≤ b, (2.30)

V ′′
i,U + (Rγ − ργ)V

′
i,U − ργRγVi,U = −

γ

c
V ′
i+1,U −

νγ

c
Vi+1,U , i = 2, 3, . . . , j − 1; x > b, (2.31)

V ′′
j,L + (Rγ − ργ)V

′
j,L − ργRγVj,L = −

γ

c
V ′
1 −

νγ

c
V1, 0 ≤ x ≤ b, (2.32)

V ′′
j,U + (Rγ − ργ)V

′
j,U − ργRγVj,U = −

γ

c
[1 + ν(x− b+ V1(b; b))], x > b. (2.33)

The equations (2.29), (2.30) and (2.32) can be collectively rewritten as the first-order homogeneous matrix
differential equation (2.8) with the extended definitions ~V = (V1, V2,L, . . . , Vj,L, V

′
1 , V

′
2,L, . . . , V

′
j,L)

⊤ and

A =

[
0 I

M1 M2

]
,

where 0 and I are the j×j zero and identity matrices respectively, and M1 and M2 are the j-dimensional
square matrices

M1 =




ργRγ −νγ
c

0 · · ·
0 ργRγ −νγ

c
0

...
. . .

. . .
. . .

−νγ
c

0 0 ργRγ


 and M2 =




ργ −Rγ −γ
c

0 · · ·
0 ργ −Rγ −γ

c
0

...
. . .

. . .
. . .

−γ
c

0 0 ργ −Rγ


 .

Using the same arguments leading to (2.9) and (2.10), one has that

V1(x; b) =

2j∑

k=1

Ck,1e
αkx, 0 ≤ x ≤ b, (2.34)

Vi,L(x; b) =

2j∑

k=1

Ck,ie
αkx, i = 2, 3, . . . , j; 0 ≤ x ≤ b, (2.35)

where {Ck,i}
2j
k=1 for i = 1, 2 . . . , j are some constants to be determined and {αk}

2j
k=1 are the eigenvalues

of A. As for (2.33), similar to (2.11) along with linear boundedness, the general solution is

Vj,U(x; b) = E1,jx+ E2,j + E3,je
−Rγx, x > b, (2.36)
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for some constants {Ek,j}
3
k=1. Concerning Vi,U (x; b) for i = 2, 3, . . . , j − 1, inductively it can be deduced

from (2.31) that the non-homogeneous terms involve x, e−Rγx, xe−Rγx, . . . , xj−i−1e−Rγx where these terms
come from Vi+1,U and V ′

i+1,U (note also that ργ and −Rγ are the roots of the characteristic equation of
the homogeneous version of (2.31)). Along with the linear boundedness of Vi,U , the general solution is
thus

Vi,U (x; b) = E1,ix+ E2,i +

j−i∑

l=0

El+3,ix
le−Rγx, i = 2, 3, . . . , j − 1; x > b, (2.37)

for some constants {Ek,i}
j−i+3
k=1 .

The remaining task is to determine the unknown constants involved in (2.34)-(2.37). This is done by
back substituting these solutions and (2.4) into (2.1) and (2.25)-(2.28) and then performing straightfor-
ward but tedious integrations. Equating the coefficients of eαkx in the substituted equations (2.1) and
(2.25) yields

Ck,i = Ck,i+1Z(αk), i = 1, 2, . . . , j − 1; k = 1, 2 . . . , 2j, (2.38)

where Z(·) is defined in (2.13). Next, equating the coefficients of eαkx in the substituted equation (2.27)
leads to

Ck,j = Ck,1Z(αk), k = 1, 2, . . . , 2j. (2.39)

Using (2.38), (2.39) and de Moivre’s formula, it can be observed that

Z(αk) = e
i 2lπ

j , l = 0, 1, . . . , j − 1; k = 1, 2, . . . , 2j, (2.40)

where i is the unit imaginary number. For each l = 0, 1, . . . , j − 1, (2.40) is a quadratic equation (in αk),
and hence one concludes that {αk}

2j
k=1 are the 2j roots of (2.40). For the substituted equations (2.1),

(2.25) and (2.27), by equating the coefficients of e−Rγx and eργx we arrive at

2j∑

k=1

Ck,i

Rγ + αk
= 0, i = 1, 2, . . . , j, (2.41)

2j∑

k=1

Ck,1αke
αkb

ργ − αk
=

1

ργ
, (2.42)

2j∑

k=1

Ck,iργe
αkb

ργ − αk
= E2,i +

(
b+

1

ργ

)
E1,i + ργe

−Rγb

j−i∑

l=0

l∑

m=0

El+3,il!b
m

m!(ργ +Rγ)l+1−m
, i = 2, 3, . . . , j. (2.43)

For the substituted equation (2.28), the terms involving x, the constants and the coefficients of e−Rγx

respectively imply

E1,j =
γ

γ + δ
, (2.44)

E2,j =
γ

γ + δ
(V1(b; b) − b) +

γ(ν + ργ)

cρ2γ(ργ +Rγ)
−

γ(ν −Rγ)

cR2
γ(ργ +Rγ)

, (2.45)

E3,j =
γ(ν −Rγ)

cRγ(ργ +Rγ)

(
eRγb

Rγ
−

2j∑

k=1

Ck,1αke
αkb+Rγb

Rγ + αk

)
. (2.46)

For the substituted equation (2.26), equating the coefficients of x, the constant term and the coefficients
of xle−Rγx (with l = 0, 1 . . . , j − i) gives rise to, for i = 2, 3, . . . , j − 1,
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E1,i =

(
γ

γ + δ

)
E1,i+1, (2.47)

E2,i =

(
γ

γ + δ

)
E2,i+1 +

(
γ(ν + ργ)

cρ2γ(ργ +Rγ)
−

γ(ν −Rγ)

cR2
γ(ργ +Rγ)

)
E1,i+1, (2.48)

E3,i =
γ(ν −Rγ)

cRγ(ργ +Rγ)

( 2j∑

k=1

Ck,i+1Rγe
αkb+Rγb

Rγ + αk
− E1,i+1e

Rγb

(
b−

1

Rγ

)

− E2,i+1e
Rγb −Rγ

j−i−1∑

l=0

El+3,i+1b
l+1

l + 1

)
+

γ(ν + ργ)

c(ργ +Rγ)

j−i−1∑

l=0

El+3,i+1l!

(ργ +Rγ)l+1
, (2.49)

El+3,i =

(
γ(ν −Rγ)

cl(ργ +Rγ)

)
El+2,i+1 +

γ(ν + ργ)

c(ργ +Rγ)

j−i−1∑

m=l

Em+3,i+1m!

l!(ργ +Rγ)m−l+1
, l = 1, 2, . . . , j − i. (2.50)

Note that the recursive relationships (2.47) and (2.48) for E1,i and E2,i with starting points (2.44)
and (2.45) can be solved as, for i = 2, 3, . . . , j,

E1,i =

(
γ

γ + δ

)j−i+1

, (2.51)

E2,i =

(
γ

γ + δ

)j−i+1

(V1(b; b) − b) + (j − i+ 1)

(
γ

γ + δ

)j−i( γ(ν + ργ)

cρ2γ(ργ +Rγ)
−

γ(ν −Rγ)

cR2
γ(ργ +Rγ)

)
. (2.52)

Moreover, using (2.38) and (2.39), one can express Ck,i in terms of Ck,1 as

Ck,i = Z(αk)
1−iCk,1, i = 1, 2, . . . , j; k = 1, 2 . . . , 2j. (2.53)

To summarize, plugging (2.53) into (2.41) results in j equations in terms of the unknowns {Ck,1}
2j
k=1.

In addition, for each i = 2, 3, . . . , j, with E1,i explicitly known in (2.51), it can be seen from (2.46), (2.49),

(2.50) and (2.52) along with (2.34) at x = b that the constants {Ek,i}
j−i+3
k=2 depend on {Ck,1}

2j
k=1 in a

linear manner. Thus, we have another set of j equations from (2.42) and (2.43), leading to a total of 2j
equations in the 2j unknowns {Ck,1}

2j
k=1. With {Ck,1}

2j
k=1 solved and {αk}

2j
k=1 obtained as the 2j roots

of (2.40), for i = 2, 3, . . . , j the values of {Ck,i}
2j
k=1 and {Ek,i}

j−i+3
k=1 can be calculated accordingly. Then

the dividend functions (2.34)-(2.37) are fully characterized.

3 Claims with rational Laplace transform and Erlang inter-observation

times

In this section, we shall generalize the results in Section 2.2 concerning j ∈ N under fairly general
distributional assumptions. Although the resulting formulas are very lengthy, with the Erlangization
technique in mind they are included for the sake of completeness. In what follows, the inter-observation
times are assumed to follow Erlang(n) distribution with density (1.2) while the claims have rational
Laplace transform, i.e.

f̃Y (s) =
Q2,r−1(s)

Q1,r(s)
. (3.1)

Here Q1,r(·) is a polynomial of degree r with leading coefficient 1, and Q2,r−1(·) is a polynomial of degree
at most r− 1 having no common zeros with Q1,r(·). It is known from Albrecher et al. (2013, Section 4.1)
that the discounted densities gδ,+(·) and gδ,−(·) in (1.4) are given by
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gδ,−(y) =
n∑

j=1

B∗
j

yj−1e−ργy

(j − 1)!
and gδ,+(y) =

r∑

i=1

n∑

j=1

Bij
yj−1e−Rγ,iy

(j − 1)!
, y > 0. (3.2)

In the above expressions, ργ > 0 is the unique positive root of the equation (in ξ)

cξ − (λ+ γ + δ) + λf̃Y (ξ) = 0, (3.3)

and {−Rγ,i}
r
i=1 are the remaining r roots which have negative real parts. The constants B∗

j ’s and Bij’s
are given by

B∗
j = (−1)n−j

(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n

∏r
l=1(s +Rγ,l)n

∣∣∣∣
s=ργ

, j = 1, 2, . . . , n, (3.4)

and

Bij =
(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n

(ργ − s)n
∏r

l=1,l 6=i(s+Rγ,l)n

∣∣∣∣
s=−Rγ,i

, i = 1, 2, . . . , r; j = 1, 2, . . . , n.

(3.5)
We begin our analysis by noting that the integral equations (2.1) and (2.25)-(2.28) remain valid in this

general case with (3.2) in place. By applying the operator (d/dx−ργ)
n
∏r

l=1(d/dx+Rγ,l)
n to (2.1), (2.25)

and (2.27), we obtain a system of j homogeneous differential equations satisfied by (V1, V2,L, . . . , Vj,L),
each of which is of order n(r + 1) and has constant coefficients. Therefore, the solution forms of V1 and
{Vi,L}

j
i=2 are given by

V1(x; b) =

jn(r+1)∑

k=1

Ck,1e
αkx, 0 ≤ x ≤ b, (3.6)

Vi,L(x; b) =

jn(r+1)∑

k=1

Ck,ie
αkx, i = 2, 3, . . . , j; 0 ≤ x ≤ b, (3.7)

for some constants {Ck,i}
jn(r+1)
k=1 (i = 1, 2, . . . , j) and {αk}

jn(r+1)
k=1 . Application of the same operator

(d/dx − ργ)
n
∏r

l=1(d/dx+Rγ,l)
n to (2.28) gives rise to an n(r + 1)-th order differential equation in Vj,U

with constant coefficients, where the non-homogeneous term is linear in x. The associated characteristic
equation has roots ργ and {−Rγ,l}

r
l=1, each with multiplicity n. Thus, Vj,U can be expressed as

Vj,U(x; b) = E1,jx+ E2,j +

r∑

l=1

n−1∑

k=0

Ek+3,j,lx
ke−Rγ,lx, x > b, (3.8)

for some constants E1,j , E2,j and {Ek+3,j,l}
n−1
k=0 (l = 1, 2, . . . , r), where the terms in relation to eργx

vanish by linear boundedness. Similarly, we again apply (d/dx − ργ)
n
∏r

l=1(d/dx + Rγ,l)
n to (2.26) for

each fixed i = 2, 3, . . . , j − 1 and observe that Vi,U satisfies the same differential equation as Vj,U except
that the non-homogeneous part now involves terms in x and xke−Rγ,lx for k = 0, 1, . . . , (j − i)n − 1 and
l = 1, 2, . . . , r. Therefore, we arrive at

Vi,U (x; b) = E1,ix+ E2,i +

r∑

l=1

(j−i+1)n−1∑

k=0

Ek+3,i,lx
ke−Rγ,lx, i = 2, 3, . . . , j − 1; x > b, (3.9)

for some constants E1,i, E2,i and {Ek+3,i,l}
(j−i+1)n−1
k=0 (l = 1, 2 . . . , r).
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To determine the above unknown constants, we first substitute (3.2) and (3.6)-(3.9) into (2.1), (2.25)
and (2.27). Skipping the tedious details, by equating the coefficients of eαkx in these substituted equations,
we arrive at the same equations as (2.38) and (2.39) with the domain of k extended to k = 1, 2, . . . , jn(r+
1) and the definition of Z(·) generalized to

Z(s) =
n∑

m=1

B∗
m

(ργ − s)m
+

r∑

z=1

n∑

m=1

Bzm

(Rγ,z + s)m
. (3.10)

Hence, one asserts that (2.40) holds true with k = 1, 2, . . . , jn(r+1). Because for each l = 0, 1, . . . , j− 1,

(2.40) is now a polynomial (in αk) of degree n(r + 1), a total of jn(r + 1) roots, namely {αk}
jn(r+1)
k=1 ,

arise. In addition, each Ck,i can be expressed in terms of Ck,1 as in (2.53), also with extended domain
k = 1, 2, . . . , jn(r+1). Next, equating the coefficients of xp−1e−Rγ,zx in the substituted (2.1), (2.25) and
(2.27) leads to

jn(r+1)∑

k=1

n∑

m=p

Ck,iBzm

(Rγ,z + αk)m−p+1
= 0, i = 1, 2, . . . , j; z = 1, 2, . . . , r; p = 1, 2, . . . , n. (3.11)

We also equate the coefficients of xpeργx in (2.1) and (2.25) to yield

n−1∑

l=p

n∑

m=l+1

jn(r+1)∑

k=1

B∗
mCk,i+1b

l−peαkb

(l − p)!(ργ − αk)m−l
=

n∑

m=p+1

m−p∑

s=0

B∗
mE1,i+1(m− p)bs

s!ρm−p−s+1
γ

+
n∑

m=p+1

m−p−1∑

s=0

B∗
mE2,i+1b

s

s!ρm−p−s
γ

+

n∑

m=p+1

(j−i)n−1∑

k=0

r∑

l=1

m−p+k−1∑

s=0

B∗
mEk+3,i+1,lb

se−Rγ,lb(m− p− 1 + k)!

s!(m− p− 1)!(ργ +Rγ,l)m−p+k−s
,

i = 1, 2, . . . , j − 1; p = 0, 1, . . . , n− 1. (3.12)

For (2.27), matching the coefficients of xpeργx produces

n−1∑

l=p

n∑

m=l+1

jn(r+1)∑

k=1

B∗
mCk,1b

leαkb

(l − p)!(ργ − αk)m−l
+

n−1∑

s=p−1

ρsγb
s+1

(s− (p− 1))!

n∑

m=s+1

B∗
mp

ρmγ

=

n−1∑

s=p

ρsγb
s

(s− p)!

n∑

m=s+1

B∗
m

ρmγ

(
V1(b; b)− b+

m

ργ

)
+

n∑

m=p

B∗
mmbm

(m− p)!ργ
, p = 0, 1, . . . , n− 1.

(3.13)

Now, we plug (3.2), (3.6) and (3.8) into (2.28). Equating the terms involving x, constants, e−Rγ,zx

and xpe−Rγ,zx gives

E1,j =

(
γ

γ + δ

)n

, (3.14)

E2,j =

(
γ

γ + δ

)n

(V1(b; b)− b) +
n∑

m=1

B∗
mm

ρm+1
γ

−
r∑

z=1

n∑

m=1

Bzmm

Rm+1
γ,z

, (3.15)

E3,j,z =

n∑

s=0

Rs
γ,z(−b)s

s!

n∑

m=s

Bzmm

Rm+1
γ,z

eRγ,zb +

n−1∑

s=0

(−b)s

s!

n∑

m=s+1

Bzm

jn(r+1)∑

k=1

Ck,1e
αkb

(Rγ,z + αk)m−s
eRγ,zb

−
n−1∑

s=0

Rs
γ,z(−b)s

s!

n∑

m=s+1

Bzm

Rm
γ,z

(V1(b; b) − b) eRγ,zb, z = 1, 2, . . . , r, (3.16)
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Ep+3,j,z =

n∑

s=p

Rs
γ,z(−b)s−p

(s− p)!

n∑

m=s

Bzmm

Rm+1
γ,z

eRγ,zb

p!
+

n−1∑

s=p

(−b)s−p

(s− p)!

n∑

m=s+1

Bzm

jn(r+1)∑

k=1

Ck,1e
αkb

(Rγ,z + αk)m−s

eRγ,zb

p!

−

n−1∑

s=p

Rs
γ,z(−b)s−p

(s − p)!

n∑

m=s+1

Bzm

Rm
γ,z

(V1(b; b)− b)
eRγ,zb

p!

−
n−1∑

s=p−1

Rs
γ,z(−b)s−p+1

(s− (p− 1))!

n∑

m=s+1

Bzmp

Rm
γ,z

eRγ,zb

p!
, z = 1, 2, . . . , r; p = 1, 2, . . . , n− 1. (3.17)

The next step is to substitute (3.2), (3.7) and (3.9) into (2.26). The terms involving x, constants, e−Rγ,zx

and xwe−Rγ,zx imply, for i = 2, 3, . . . , j − 1,

E1,i =

(
γ

γ + δ

)n

E1,i+1, (3.18)

E2,i =

(
γ

γ + δ

)n

E2,i+1 +

(
n∑

m=1

B∗
mm

ρm+1
γ

−
r∑

z=1

n∑

m=1

Bzmm

Rm+1
γ,z

)
E1,i+1, (3.19)

E3,i,z =
n
∑

m=1

B∗
m

(m − 1)!

(j−i)n−1
∑

k=0

Ek+3,i+1,z(m + k − 1)!

(ργ + Rγ,z)m+k
+

n
∑

s=0

Rs
γ,z(−b)s

s!

n
∑

m=s

Bzmm

Rm+1
γ,z

E1,i+1e
Rγ,zb

−

n−1
∑

s=0

Rs
γ,z(−b)s

s!

n
∑

m=s+1

Bzm

Rm
γ,z

E2,i+1e
Rγ,zb +

n
∑

m=1

Bzm

(m− 1)!

(j−i)n−1
∑

k=0

Ek+3,i+1,z(−1)k(−b)m+k

m+ k

+
n
∑

m=1

r
∑

l=1,l 6=z

Blm

(m − 1)!

(j−i)n−1
∑

k=0

Ek+3,i+1,z(−1)k(m+ k − 1)!

(Rγ,l − Rγ,z)m+k

+
r

∑

l=1,l 6=z

e−Rγ,lb
n
∑

m=1

Bzm

(m− 1)!

(j−i)n−1
∑

k=0

Ek+3,i+1,l(−1)k+1(m + k − 1)!

m+k−1
∑

s=0

(−b)s

s!(Rγ,z − Rγ,l)m+k−s
eRγ,zb

+

n−1
∑

s=0

(−b)s

s!

n
∑

m=s+1

Bzm

jn(r+1)
∑

k=1

Ck,i+1e
αkb

(Rγ,z + αk)m−s
eRγ,zb, z = 1, 2, . . . , r, (3.20)

Ew+3,i,z =
n
∑

m=1

B∗
m

(m − 1)!

(j−i)n−1
∑

k=w

Ek+3,i+1,z(m + k − w − 1)!

(ργ +Rγ,z)m+k−w
+

n
∑

s=w

Rs
γ,z(−b)s−w

(s−w)!

n
∑

m=s

Bzmm

Rm+1
γ,z

E1,i+1e
Rγ,zb

w!

−

n−1
∑

s=w

Rs
γ,z(−b)s−w

(s− w)!

n
∑

m=s+1

Bzm

Rm
γ,z

E2,i+1e
Rγ,zb

w!
−

n−1
∑

s=w−1

Rs
γ,z(−b)s−w+1

(s− w + 1)!

n
∑

m=s+1

Bzm

Rm
γ,z

E1,i+1e
Rγ,zb

(w − 1)!

+
n
∑

m=1∨(w−((j−i)n−1))

Bzm

(m− 1)!

(j−i)n−1
∑

k=0∨(w−m)

k∧w
∑

p=0

Ek+3,i+1,z

(

k
p

)

(−1)k−p
(

m+k−p
w−p

)

(−b)m+k−w

m+ k − p

+
n
∑

m=1

r
∑

l=1,l 6=z

Blm

(m − 1)!

(j−i)n−1
∑

k=w

Ek+3,i+1,z

(

k
w

)

(−1)k−w(m + k −w − 1)!

(Rγ,l − Rγ,z)m+k−w

+
r

∑

l=1,l 6=z

e−Rγ,lb
n
∑

m=1∨(w−((j−i)n−2))

Bzm

(m − 1)!

(j−i)n−1
∑

k=0∨(w−m+1)

Ek+3,i+1,l

k∧w
∑

p=0

(k

p

)

(−1)k−p+1(m+ k − p− 1)!

×

m+k−p−1
∑

s=0∨(w−p)

(

s

w−p

)

(−b)s−w+p

s!(Rγ,z − Rγ,l)m+k−p−s
eRγ,zb

+

n−1
∑

s=w

(−b)s

(s−w)!

n
∑

m=s+1

Bzm

jn(r+1)
∑

k=1

Ck,i+1e
αkb

(Rγ,z + αk)m−s

(−b)−weRγ,zb

w!
, z = 1, 2, . . . , r; w = 1, 2, . . . , n− 1,

(3.21)
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Ew+3,i,z =
n
∑

m=1

B∗
m

(m − 1)!

(j−i)n−1
∑

k=w

Ek+3,i+1,z(m + k − w − 1)!

(ργ +Rγ,z)m+k−w

+
n
∑

m=1∨(w−((j−i)n−1))

Bzm

(m− 1)!

(j−i)n−1
∑

k=0∨(w−m)

k∧w
∑

p=0

Ek+3,i+1,z

(

k
p

)

(−1)k−p
(

m+k−p
w−p

)

(−b)m+k−w

m+ k − p

+
n
∑

m=1

r
∑

l=1,l 6=z

Blm

(m − 1)!

(j−i)n−1
∑

k=w

Ek+3,i+1,z

(

k

w

)

(−1)k−w(m + k −w − 1)!

(Rγ,l − Rγ,z)m+k−w

+

r
∑

l=1,l 6=z

e−Rγ,lb
n
∑

m=1∨(w−((j−i)n−2))

Bzm

(m − 1)!

(j−i)n−1
∑

k=0∨(w−m+1)

Ek+3,i+1,l

k∧w
∑

p=0

(k

p

)

(−1)k−p+1(m+ k − p− 1)!

×

m+k−p−1
∑

s=0∨(w−p)

(

s
w−p

)

(−b)s−w+p

s!(Rγ,z − Rγ,l)m+k−p−s
eRγ,zb, z = 1, 2, . . . , r; w = n, n+ 1, . . . , (j − i)n− 1, (3.22)

Ew+3,i,z =
n
∑

m=1∨(w−((j−i)n−1))

Bzm

(m− 1)!

(j−i)n−1
∑

k=0∨(w−m)

k∧w
∑

p=0

Ek+3,i+1,z

(

k

p

)

(−1)k−p
(

m+k−p

w−p

)

(−b)m+k−w

m+ k − p

+
r

∑

l=1,l 6=z

e−Rγ,lb
n
∑

m=1∨(w−((j−i)n−2))

Bzm

(m − 1)!

(j−i)n−1
∑

k=0∨(w−m+1)

Ek+3,i+1,l

k∧w
∑

p=0

(k

p

)

(−1)k−p+1(m+ k − p− 1)!

×

m+k−p−1
∑

s=0∨(w−p)

(

s
w−p

)

(−b)s−w+p

s!(Rγ,z − Rγ,l)m+k−p−s
eRγ,zb, z = 1, 2, . . . , r; w = (j − i)n, (j − i)n+ 1, . . . , (j − i+ 1)n − 2,

(3.23)

E(j−i+1)n+2,i,z =
Bzn

(n− 1)!

(j−i)n−1
∑

p=0

E(j−i)n+2,i+1,z

((j−i)n−1
p

)

(−1)(j−i)n−1−p

(j − i+ 1)n− 1− p
, z = 1, 2, . . . , r. (3.24)

Using (3.14), (3.15), (3.18) and (3.19), the general expressions of E1,i and E2,i are given by, for i =
2, 3, . . . , j,

E1,i =

(
γ

γ + δ

)n(j−i+1)

, (3.25)

E2,i =

(
γ

γ + δ

)n(j−i+1)

(V1(b; b)− b)

+ (j − i+ 1)

(
n∑

m=1

B∗
m

ρmγ
+

r∑

z=1

n∑

m=1

Bzm

Rm
γ,z

)j−i( n∑

m=1

B∗
mm

ρm+1
γ

−
r∑

z=1

n∑

m=1

Bzmm

Rm+1
γ,z

)
. (3.26)

Similar to Section 2.2, the expected discounted dividends paid until ruin can be fully characterized
by the above equations. For easy reference, the entire computational procedure is highlighted as follows.

1. Under the distributional assumption (3.1) on the claims, solve (3.3) to obtain ργ > 0 and {−Rγ,i}
r
i=1

which have negative real parts.

2. Determine (as in Albrecher et al. (2011b)) B∗
j ’s and Bij ’s using (3.4) and (3.5), or equivalently, via

the partial fractions expansion

(γ
c

)n [Q1,r(s)]
n

(ργ − s)n
∏r

i=1(s+Rγ,i)n
=

n∑

j=1

B∗
j

(ργ − s)j
+

r∑

i=1

n∑

j=1

Bij

(s+Rγ,i)j
.

3. For each fixed l = 0, 1, . . . , j − 1, solve the n(r + 1) roots of (2.40) for αk, where Z(·) is defined in

(3.10). This results in a total of jn(r + 1) values denoted by {αk}
jn(r+1)
k=1 .
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4. With E1,i explicitly given in (3.25), use (3.6) at x = b along with (2.53), (3.16), (3.17), (3.20)-

(3.24) and (3.26) to express {Ck,i}
jn(r+1)
k=1 , E2,i and {Ek+3,i,l}

(j−i+1)n−1
k=0 (for l = 1, 2, . . . , r and

i = 2, 3, . . . , j) in terms of {Ck,1}
jn(r+1)
k=1 .

5. Solve the system of jn(r + 1) linear equations which comprise jnr equations from (3.11), (j − 1)n

from (3.12) and n from (3.13) to obtain {Ck,1}
jn(r+1)
k=1 .

6. Use the resulting values of {Ck,1}
jn(r+1)
k=1 to compute the coefficients in Step 4 above.

7. The expected discounted dividends before ruin can finally be computed by means of (3.6)-(3.9).

Remark 3.1 From (3.8), (3.9) and (3.25), one can easily see that, for i = 2, 3, . . . , j,

Vi,U (x; b) ∼

(
γ

γ + δ

)n(j−i+1)

x, x → ∞.

The above asymptotic formula has an intuitive explanation. By recalling that the subscript i means
that there are j − i + 1 observation periods (each of which is Erlang(n) distributed) before the next
dividend-decision time, we note that [γ/(γ+ δ)]n(j−i+1) is precisely the expected discounted value (under
force of interest δ) of one dollar paid at the next dividend-decision time. When the initial surplus x is
very large, it is highly likely that the first dividend payment will be paid at the next dividend-decision
time and the size of the payment is essentially x dollars. See also Avanzi et al. (2013, Remark 3.2) for a
similar probabilistic interpretation. �

Remark 3.2 When reconciling our results with Albrecher et al. (2011b) who considered the dividend
moments under the case j = 1, a typo is found in the denominator of their equation (48). In their
notations, the correct expression is given by

n(r+1)∑

p=1

Ap,m

n∑

j=i

Bkj,m

(Rγ,k,m + αp,m)j−i+1
= 0, k = 1, 2, . . . , r; i = 1, 2, . . . , n.

Then, our (3.13), (2.40) (with extended domain k = 1, 2, . . . , jn(r+1)) and (3.11) respectively correspond
to equations (46)-(48) in Albrecher et al. (2011b). There is also a similar typo in their equation (57), in
which the exponent in the denominator should be j − i+ 1 instead of j. �

4 Numerical illustrations

In this section, the theoretical results in Section 3 are applied to generate numerical examples. In
particular, given that solvency is checked at the epochs {Lk}

∞
k=0, we are interested in choosing the value

of j for the dividend-decision times {Ljk}
∞
k=0 to maximize the expected discounted dividends paid until

ruin. The (joint) optimality of b and j will be studied. As discussed in Section 1, optimization with
respect to j helps answer the following question: if the insurer balances its books monthly and a barrier
strategy is implemented, then is it more optimal to make dividend decisions quarterly, semi-annually or
annually? Like the usual optimal barrier that maximizes dividends, deciding on the optimal j is not a
trivial problem. Two opposite effects are in place when one increases or decreases j for a fixed barrier
level b. A small (large) j is expected to result in more (less) frequent dividend decisions and hence earlier
(later) dividend payments, which is favourable (unfavourable) in the presence of discounting. However,
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such a higher (lower) dividend payout at an early time will lead to earlier (later) ruin time and hence
less (more) future dividends.

In calculating all the dividend values, the steps outlined near the end of Section 3 are adopted.
First, we follow closely the parameters and claim distributions as in Albrecher et al. (2011b, Table 1-3).
Specifically, it is always assumed that the premium rate is c = 1.5, the Poisson claim arrival rate is λ = 1,
and the force of interest is δ = 0.005. In addition, to illustrate the Erlangization technique, we consider
Erlang(n) inter-observation time T up to n = 6 while the mean is fixed to be E[T ] = 2.5. The three
claim distributions used include (i) a sum of two exponentials; (ii) exponential; and (iii) a mixture of two
exponentials. Their respective densities are given at the bottom of Tables 1-3. While they all have the
same mean E[Y ] = 1, their variances are respectively 0.56, 1 and 2. In producing Tables 1-3, for each
fixed n, j, i (where i = 1, 2, . . . , j) and initial surplus x, we start by computing numerically the optimal
barrier level b∗ which maximizes the dividend function Vi(x; b) with respect to b. It is found that the value
of b∗ is independent of x and i for each fixed pair of n and j. The independence of b∗ on x is well known
in the classical model under the traditional barrier strategy (e.g. Gerber et al. (2006)). In addition,
the index i (which indicates that the time until the first dividend decision is distributed as

∑j−i+1
k=1 Tk)

resembles the initial environmental state in Markov-modulated models, and the independence of b∗ on
the initial environmental state in Markovian models can be found in e.g. Zhang and Cheung (2014a,
Section 5.2). The resulting optimal dividend values Vi(x; b

∗) are summarized in Tables 1-3 for j = 1, 2, 3
and various values of initial surplus x. Although Tables 1-3 only show the dividend values in the lower
layer 0 ≤ x ≤ b∗, we have indeed verified numerically that for each fixed pair of n and j it is the same b∗

that maximizes Vi,U (x; b) for all i = 2, 3, . . . , j and x > b∗. For the sake of brevity these results are not
presented here.

From each of Tables 1-3, for fixed n it can be observed that b∗ decreases as j increases. Intuitively, a
higher j means longer intervals between dividend-decisions, and hence a lower b∗ is required to maximize
dividends (otherwise dividends will hardly be paid). Note that our values for the case j = 1 in each
table are consistent with those in Albrecher et al. (2011b). For fixed pair of n and j, the dividend
value Vi(x; b

∗) is always increasing in x for 0 ≤ x ≤ b∗ as usual. Moreover, Vi(x; b
∗) appears to be quite

insensitive to the value of i. Within each table, it can be observed that the dividend values do not change
much as n increases further from moderate values of n (say n = 4 or n = 5), illustrating the effect of
Erlangization. Similar to Albrecher et al. (2011b), when one compares the values across Tables 1-3, as
the variance of the claim severity increases (i.e. the surplus process gets riskier), the optimal barrier
b∗ appears to increase (so that the insurer can retain more surplus to avoid early ruin and more future
dividends can be paid) while Vi(x; b

∗) (for x = 0, 5, 10) decreases.

In addition, the behaviour of V ′
i (x; b) against x for i = 1, 2, 3 and b = 5, b∗, 20 is depicted graphically

in Figure 2 using the parameters as in Table 1 with n = 1 and j = 3. In this case, one has b∗ = 12.09.
In Figure 2, for i = 2, 3, as x increases one observes that V ′

i (x; b) converges to a value slightly less than
1. This can be attributed to Remark 3.1 so that limx→∞ V ′

i (x; b) = [γ/(γ + δ)]n(j−i+1) which equals
0.975 when i = 2 and 0.988 when i = 3. Moreover, it can be seen from Figure 2 that V ′

i (x; b
∗) = 1 at

x = b∗ = 12.09 for i = 1, 2, 3. Indeed, for the parameter set and claims distributions that are used in
Tables 1-3, we have numerically verified that

V ′
i (b

∗; b∗) = 1, i = 1, 2, 3. (4.1)

As a result, b∗ can be interpreted as the optimal financial capital (see Albrecher et al. (2011c, Section 8,
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Remark (ii))). Another consequence of (4.1) is

d

db
Vi(b; b)

∣∣∣
b=b∗

= 1, , i = 1, 2, 3. (4.2)

See e.g. Avanzi et al. (2007, Section 5 and 2013, Section 4.3). Although so far we have only considered
V (x; b) = V1(x; b) for 0 ≤ x ≤ b, with L0 being a dividend decision time one can readily extend the
domain such that V (x; b) = x− b+ V (b; b) for x > b. Therefore, (4.2) at i = 1 implies

∂

∂b
V (x; b)

∣∣∣
b=b∗

= −1 +
d

db
V (b; b)

∣∣∣
b=b∗

= 0, x > b∗,

i.e. the same b∗ maximizes V (x; b) for all x ≥ 0.

Sum Exp n = 1 n = 2 n = 3

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 12.98 12.49 12.49 12.09 12.09 12.09 13.27 12.73 12.73 12.31 12.31 12.31 13.37 12.81 12.81 12.38 12.38 12.38

Vi(0; b
∗) 55.47 55.28 55.28 55.08 55.08 55.08 55.27 55.10 55.10 54.91 54.91 54.91 55.34 55.17 55.17 54.98 54.98 54.98

Vi(5; b
∗) 86.83 86.54 86.54 86.23 86.23 86.23 86.67 86.40 86.40 86.11 86.11 86.11 86.61 86.34 86.34 86.05 86.05 86.05

Vi(10; b
∗) 94.27 93.96 93.96 93.62 93.62 93.62 94.30 94.00 94.00 93.68 93.68 93.68 94.30 94.01 94.01 93.70 93.70 93.69

Vi(b
∗; b∗) 97.34 96.53 96.53 95.78 95.79 95.79 97.68 96.83 96.84 96.07 96.08 96.08 97.79 96.93 96.94 96.17 96.18 96.17

n = 4 n = 5 n = 6

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 13.42 12.86 12.86 12.42 12.42 12.42 13.45 12.88 12.88 12.44 12.44 12.44 13.47 12.90 12.90 12.46 12.46 12.46

Vi(0; b
∗) 55.42 55.25 55.25 55.06 55.06 55.06 55.48 55.31 55.31 55.13 55.13 55.13 55.52 55.36 55.36 55.17 55.17 55.17

Vi(5; b
∗) 86.57 86.31 86.31 86.02 86.02 86.02 86.55 86.29 86.29 86.00 86.00 86.00 86.53 86.28 86.28 85.99 85.99 85.99

Vi(10; b
∗) 94.30 94.02 94.02 93.70 93.70 93.70 94.30 94.02 94.02 93.71 93.71 93.70 94.30 94.02 94.02 93.71 93.71 93.71

Vi(b
∗; b∗) 97.84 96.98 96.99 96.21 96.22 96.22 97.88 97.01 97.02 96.24 96.25 96.25 97.90 97.03 97.04 96.26 96.27 96.27

Table 1: c = 1.5, λ = 1, δ = 0.005, fY (y) = 3e−1.5y − 3e−3y, T ∼ Erlang(n) with E[T ] = 2.5

Exp n = 1 n = 2 n = 3

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 15.93 15.37 15.37 14.90 14.90 14.90 16.28 15.66 15.66 15.16 15.16 15.16 16.40 15.76 15.76 15.25 15.25 15.25

Vi(0; b
∗) 51.66 51.50 51.50 51.33 51.33 51.33 51.18 51.04 51.04 50.88 50.88 50.88 51.10 50.97 50.97 50.81 50.81 50.81

Vi(5; b
∗) 81.48 81.24 81.24 80.97 80.97 80.97 81.17 80.94 80.94 80.69 80.69 80.69 81.05 80.83 80.83 80.58 80.58 80.58

Vi(10; b
∗) 90.56 90.29 90.29 89.99 89.99 89.99 90.50 90.25 90.25 89.97 89.97 89.97 90.48 90.23 90.23 89.95 89.95 89.95

Vi(b
∗; b∗) 96.95 96.10 96.10 95.31 95.32 95.32 97.30 96.41 96.41 95.61 95.61 95.61 97.42 96.51 96.52 95.70 95.71 95.71

n = 4 n = 5 n = 6

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 16.46 15.81 15.81 15.30 15.30 15.30 16.50 15.84 15.84 15.33 15.33 15.33 16.53 15.86 15.86 15.35 15.35 15.35

Vi(0; b
∗) 51.09 50.96 50.96 50.80 50.80 50.80 51.10 50.96 50.96 50.81 50.81 50.81 51.11 50.97 50.97 50.82 50.82 50.82

Vi(5; b
∗) 80.98 80.77 80.77 80.52 80.52 80.52 80.94 80.73 80.73 80.48 80.48 80.48 80.91 80.70 80.70 80.46 80.46 80.46

Vi(10; b
∗) 90.46 90.22 90.22 89.94 89.94 89.94 90.45 90.21 90.21 89.94 89.94 89.94 90.45 90.21 90.21 89.94 89.93 89.94

Vi(b
∗; b∗) 97.48 96.56 96.57 95.75 95.76 95.76 97.52 96.60 96.60 95.78 95.79 95.79 97.54 96.62 96.62 95.80 95.81 95.81

Table 2: c = 1.5, λ = 1, δ = 0.005, fY (y) = e−y, T ∼ Erlang(n) with E[T ] = 2.5
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Mixed Exp n = 1 n = 2 n = 3

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 21.87 21.18 21.18 20.58 20.58 20.58 22.35 21.58 21.58 20.95 20.95 20.95 22.51 21.72 21.72 21.08 21.08 21.08

Vi(0; b
∗) 46.22 46.11 46.11 45.99 45.99 45.99 45.58 45.48 45.48 45.36 45.36 45.36 45.40 45.30 45.30 45.19 45.19 45.19

Vi(5; b
∗) 71.03 70.86 70.86 70.67 70.67 70.67 70.48 70.32 70.32 70.14 70.14 70.14 70.26 70.12 70.12 69.94 69.94 69.94

Vi(10; b
∗) 82.03 81.83 81.83 81.61 81.61 81.61 81.78 81.60 81.60 81.39 81.39 81.39 81.68 81.51 81.51 81.30 81.30 81.30

Vi(b
∗; b∗) 95.94 95.01 95.01 94.16 94.16 94.16 96.32 95.34 95.35 94.46 94.47 94.47 96.45 95.45 95.46 94.57 94.57 94.57

n = 4 n = 5 n = 6

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i 1 1 2 1 2 3 1 1 2 1 2 3 1 1 2 1 2 3
b∗ 22.60 21.79 21.79 21.14 21.14 21.14 22.65 21.84 21.84 21.18 21.18 21.18 22.69 21.87 21.87 21.21 21.21 21.21

Vi(0; b
∗) 45.31 45.22 45.22 45.11 45.11 45.11 45.27 45.18 45.18 45.07 45.07 45.07 45.24 45.15 45.15 45.04 45.04 45.04

Vi(5; b
∗) 70.15 70.01 70.01 69.84 69.84 69.84 70.09 69.95 69.95 69.78 69.78 69.78 70.04 69.90 69.90 69.73 69.73 69.73

Vi(10; b
∗) 81.62 81.46 81.46 81.26 81.26 81.26 81.59 81.43 81.43 81.23 81.23 81.23 81.57 81.41 81.41 81.21 81.21 81.21

Vi(b
∗; b∗) 96.52 95.51 95.51 94.62 94.63 94.62 96.56 95.54 95.55 94.65 94.66 94.65 96.58 95.57 95.57 94.67 94.68 94.67

Table 3: c = 1.5, λ = 1, δ = 0.005, fY (y) = (1/6) e−0.5y + (4/3)e−2y, T ∼ Erlang(n) with E[T ] = 2.5
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Figure 2: V ′
1(x; b), V

′
2(x; b) and V ′

3(x; b) for b = 5 (dot-dashed line), b = b∗ = 12.09 (solid line) and b = 20 (dotted
line) with parameters c = 1.5, λ = 1, δ = 0.005, fY (y) = 3e−1.5y−3e−3y, T ∼ Erlang(1) with E[T ] = 2.5 and j = 3
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Concerning dividend maximization, suppose that the pair (b, j) can be freely selected in order to
maximize V (x; b) at time 0. This can be regarded as a two-step procedure. First, an appropriate value of
n is chosen, and for each fixed j one determines b∗ = b∗(j) (here we emphasize the dependence on j) that
maximizes V (x; b) with respect to b. The second step is to select j∗ to maximize V (x; b∗(j)) with respect
to j, and therefore the optimal pair of (b, j) is given by (b∗(j∗), j∗). By examining the columns for the
case i = 1 in Tables 1-3, it is easy to see that (b∗(j∗), j∗) = (b∗(1), 1) for all n = 1, 2, . . . , 6. In other
words, under our parameter set and claim distributions, it is optimal to make dividend decisions at all of
the observation time points if the barrier is chosen to be b∗(1). Intuitively, the result j∗ = 1 should not
be surprising at least for (mixed) exponential claim distributions where fY (·) is completely monotone. In
this case, it is known from Loeffen (2008, Theorem 3) that the classical (continuous) barrier strategy is
the dividend strategy (among all admissible strategies) that maximizes the expected discounted dividends
(until the time of ruin in the traditional sense). Hence, when the insurer can choose how often to pay
dividends in the present model to maximize dividends, it is natural to expect dividend decisions to be
made as frequent as possible (i.e. j∗ = 1) and then the barrier level b∗(1) will be adjusted accordingly.

However, it is possible that the insurer or the shareholders may not want to alter the dividend barrier
that is already in place even it is not optimal. In such a case, the only free parameter for dividend
maximization is the value of j. This leads to a different optimization problem of determining the optimal
value of j, say j∗(b), for a fixed barrier level b. This can be treated as the reverse case of first fixing j
and then finding the optimal value of b as in Tables 1-3. In what follows, we consider a different set of
parameters with premium rate c = 6, Poisson rate λ = 15 and force of interest δ = 0.05. For simplicity,
it is assumed that the claims are exponential with mean 1/ν = 1/3 and inter-observation times are also
exponential but with mean 1/γ = 1. Figures 3 and 4 plot the dividend function V1(x; b) for various values
of j when the barrier levels are b = 1 and b = 5 respectively. In Figure 3, it is clear that j = 9 gives the
highest value of V1(x; 1) compared to j = 1, 3, 5, 7, 9, 10 for all 0 ≤ x ≤ 1. We have verified that j∗(1) = 9
but the cases j = 2, 4, 6, 8 are omitted from the figure for clarity of presentation. Intuitively, the barrier
level b = 1 is relatively small. This means that after each dividend decision time, the surplus process is
fairly close to ruin as the surplus level cannot exceed 1. If a small value of j is applied, the surplus process
is very likely to ruin early. Therefore, to maximize dividends when b is low, it may be more advantageous
to delay dividend decisions so that more dividends can be accumulated in the future, resulting in an
optimal value j∗(b) that is not necessarily 1. (Recall that when we optimize with respect to both j and b,
the optimal value of j is found to be 1 according to the discussion in the previous paragraph.) When we
turn to Figure 4 where b = 5, the optimal value of j is given by j∗(5) = 1 for all 0 ≤ x ≤ 5. In this case,
a higher barrier level means that the surplus process is not close to ruin even after a dividend decision,
and hence distributing dividends at earlier times may give higher value of dividends.
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Figure 3: V1(x; 1) for j = 1, 3, 5, 7, 9, 10 with parameters c =
6, ν = 3, λ = 15, δ = 0.05, γ = 1, n = 1
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6, ν = 3, λ = 15, δ = 0.05, γ = 1, n = 1
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