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Abstract 

Purpose:   To investigate the use of newly designed machine learning based classifier in 

automatic identification of myelopathic levels in cervical spondylotic myelopathy (CSM). 

Methods:  Fifty-eight normal volunteers and sixteen subjects with CSM were recruited for 

diffusion tensor imaging (DTI) acquisition. The eigenvalues were extracted as the selected 

features from DTI images. Three classifiers, naive Bayesian, support vector machine, and 

support tensor machine, and fractional anisotropy (FA) were employed to identify 

myelopathic levels The results were compared with clinical level diagnosis result and 

accuracy, sensitivity and specificity were calculated to evaluate the performance of 

the developed classifiers. . 

Results: The accuracy by support tensor machine was the highest (93.62%) among the three 

classifiers. The support tensor machine also showed excellent capacity to identify true 

positives (sensitivity: 84.62%) and true negatives (specificity: 97.06%). The accuracy by FA 

value   was the lowest (76%) in all the methods. 

Conclusion: The classifiers based method using Eigenvalues had a better performance in 

identifying the levels with CSM than the diagnosis using FA values. The support tensor 

machine was the best among three classifiers. 

Keywords: Cervical spondylotic myelopathy, Spinal cord, Diffusion tensor imaging, 

Eigenvalue, Fractional anisotropy, Machine learning.  
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 INTRODUCTION 

Cervical spondylotic myelopathy (CSM) is the most common type of spinal cord 

dysfunction in patients older than 55 years of age, and the most common cause of acquired 

spastic paraparesis in the middle and later years of life ((1) . CSM is the result of narrowing of 

the cervical spinal canal by degenerative and congenital causes. Surgical treatment is 

recommended for patients with moderate to severe  function deficit and compatible imaging 

findings (2), and level diagnosis is pivotal for surgical planning (2). Neurologic level 

diagnosis in cervical myelopathy has been employed in performing surgery relatively early 

(within 1 year of symptom onset), but neurological level diagnosis is considered complicated 

and difficult in clinical practice (2). Magnetic resonance imaging (MRI) is now widely used 

for evaluating spinal cord parenchyma. However, conventional MRI, such as T1- and T2-

weighted imaging, is limited to providing macroscopic information, including gross deformity 

and hemorrhage (3). Recently, diffusion tensor imaging (DTI) has allowed detection of 

microarchitecture of tissue based on a rank-two diffusion tensor model (4).  

DTI and fiber tractography have advanced the scientific understanding of numerous 

neurological and psychiatric disorders (5). The most common parameters employed in 

delineating spinal cord tissue microarchitecture include fractional anisotropy (FA), mean 

diffusivity, and apparent diffusion coefficient. All of these parameters are derived from 

eigenvalues to evaluate the scalar properties of water molecule diffusion (6). Eigenvectors and 

eigenvalues derived from the diffusion tensor matrix reflect the direction and strength of the 

movement of water molecules (6). Routine T1/T2 MRI techniques only provide macroscopic 

level information, while DTI parameters are more sensitive in showing microstructural 

abnormalities in cervical myelopathy (7). There is a growing interest in the application of DTI 

to evaluate the spinal cord microarchitecture. For example, Cui et al. (8) employed entropy-

based principal eigenvector (8)for the evaluation of microstructural changes after cervical 
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myelopathy. Facon et al. (9) also reported that DTI can detect myelopathic cord with higher 

sensitivity and specificity compared with the conventional anatomical MR images. Moreover, 

Uda et al. (10) demonstrated a decrease in FA in most patients with cervical spondylosis.  

To date, machine learning techniques have been applied to a range of MRI modalities in 

an effort to automate the diagnosis of mild cognitive impairment and Alzheimer’s disease 

(11,12). However, few studies have examined the potential for DTI in conjunction with 

machine learning algorithms to automate the identification of a myelopathic spinal cord. 

Achieving the automatic classification of healthy levels and myelopathic levels should 

facilitate the level diagnosis of CSM and clinical determination of surgical strategy. 

 

MATERIALS & METHODS 

Subjects 

This study was approved by institutional ethics committee. Written informed consent forms 

were signed by all subjects prior to participat this study. A total of 74 volunteers, including 58 

healthy people and 16 CSM patients aged from 21 to 84 years, were recruited in this study 

with informed consent. The mean age of the healthy group is 40.1 with 31 males and 27 

females, and the mean age of the CSM group is 67.7 with 9 males and 7 females. All 

volunteers were screened to confirm their eligibility. The inclusion criteria of healthy subjects 

were intact sensory and motor function evaluated by the Japanese Orthopaedic Association 

score system (13), and negative Hoffman's sign under physical examination. Exclusion 

criteria included the presence of neurological signs and symptoms, or a past history of 

neurological injury, diseases, and operations. All the recruited patients were confirmed with 

the diagnosis of CSM by senior spine surgeons (two surgeons with thirty years of experience 

and ten years of experience respectively). The clinical diagnosis of CSM in this study are 

based on the neurological examination (two experienced surgeons with thirty years of 
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experience and ten years of experience respectively) and imaging findings (image analysis by 

XL with three years of experience in DTI image analysis and YH with ten years of experience 

in DTI image analysis). The inclusion criteria included 1)numbness or paresthesias in the 

upper extremities; 2）sensory changes in the lower extremities; 3）motor weakness in the 

upper or lower extremities; 4）gait difficulties; 5）myelopathic or “upper motor neuron” 

findings (ie, spasticity, hyperreflexia, clonus, Babinski and Hoffman signs, and bowel and 

bladder dysfunction); 6）cervical spondylosis and cord compression on conventional MRI. 

The exclusion criteria are patients with ossification of posterior longitudinal ligament, 

ossification of ligamentum flavum, congenital stenosis and other acquired compressive 

pathology (e.g., tumor and calcification) as well as other neurological disorders (e.g., multiple 

sclerosis, amyotrophic lateral sclerosis and peripheral neuropathy)(14). 

 

Clinical level diagnosis 

We employed the index developed by Seichi et al.(2) to define the topography of sensory 

disturbance, levels of segmental motor innervations and localization of the reflex center, and 

made level diagnosis from sensory disturbance, tendon reflexes and MMT respectively. 

Sensory disturbance was defined as at least one of the following three: patient-perceived 

numbness or sensory disturbance detected by light touch or by pinprick. Due to the possible 

symptom overlap of higher affected level with the lower ones, the neurological signs may be 

only able to detect the highest impaired level, and sometimes one or two severely impaired 

levels underneath. So we combined the result from sensory, motor and reflex and made the 

clinical level diagnosis. 

Imaging Methods 

Imaging was conducted with a Philips Achieva 3.0 Tesla MR system (Best, The 
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Netherlands). During the acquisition process, the subject was placed supine with the SNV 

head and neck coil enclosing the cervical region, and was instructed not to swallow to 

minimize motion artifacts. The subject was then scanned with anatomical T1-weighted 

(T1W), T2-weighted (T2W) imaging, DTI.  

  Sagittal and axial T1W and T2W images were acquired for each subject using a fast 

spin-echo sequence. The parameters employed in sagittal imaging include: field of view 

(FOV) = 250×250 mm, slice gap = 0.3 mm, slice thickness = 3 mm, fold-over direction = 

feet/head, number of excitation (NEX) = 2, resolution =0.92×1.16×3.0 mm
3
 (T1W) and 

0.78×1.01×3.0 mm
3
 (T2W), recon resolution = 0 .49×0. 49×3.0 mm3, and echo time 

/repetition time = 7.2/530 ms (T1W) and 120/3314 ms (T2W). A total of 11 sagittal images 

covering the whole cervical spinal cord were acquired. The parameters used in axial imaging 

include as follows: FOV = 80×80 mm, slice thickness = 7 mm, slice gap = 2.2 mm, fold-over 

direction = anterior/posterior (AP), NEX = 3, resolution =0.63×0.68×7.0 mm
3 

(T1W) and 

0.63×0.67×7.0 mm
3
 (T2W), recon resolution = 0.56×0.56×7.0 mm

3 
(T1W) and 0.63×0.63×7.0 

mm
3 

(T2W) and TE/TR = 8/1000 ms (T1W) and 120/4000 ms (T2W). Cardiac vector 

cardiogram (VCG) triggering was used to minimize the impact of the pulsation artifact from 

cerebrospinal fluid. Image acquisition began as soon as the rise of the wave of QRS complex. 

A total of 12 transverse images covering the cervical spinal cord from C1 to C7 were 

acquired, each of which was placed at the center of either a vertebra or an intervertebral disk. 

Diffusion encoding was performed in 15 non-collinear and non-coplanar diffusion directions 

with b-value = 600 s/mm
2
. The parameters employed in imagine acquisition were as follows: 

FOV = 80×80 mm, image matrix, 128×128, slice thickness = 7 mm, slice gap = 2.2 mm, fold-

over direction = AP, NEX = 3, resolution =1×1.26×7.0 mm
3
, recon resolution = 

0.63×0.63×7.0 mm
3
 and TE/TR = 60 ms/5 heartbeats. The image slice planning was the same 

as in the anatomical axial T1W and T2W images, with 12 slices covering the cervical spinal 
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cord from C1 to C7. Due to the nature curvature of the cervical spine, it is not possible to set 

one stack of DTI scan with every scan slice in vertical with the course of the cord. In this 

study, we used three stacks to fit the curvature of cervical spinal cord while DTI scan in each 

stack lasted about 8 min. The average duration of the whole DTI scan was 24 min per subject, 

with an average heart rate of 60 beats per minute. To reduce the impact of the fold-over, 

spatial saturation with spectral presaturation with inversion recovery was employed. The 

distortion correction method based on reversed gradient polarity and parallel imaging was 

used to reduce the EPI distortion impact caused by increased magnetic susceptibility at 3.0-T 

(15,16). 

DTI Processing 

In raw DTI images, diffusion-weighting gradients can lead to eddy currents, which 

results in artifacts. Such artifacts may include shear, false fiber tracking, enhanced 

background, image intensity loss, and image blurring. These distortions are different for 

different gradient directions. The goal of DTI processing is to correct the gradient table for 

slice prescription and correct images for any residual eddy current distortions and motion 

artifacts using a nonlinear two-dimensional registration and a three-dimensional rigid body 

registration. In this study, the Automated Image Registration (AIR) program (a source code 

embedded in DTI Studio software, Version 2.4.01 2003; Johns Hopkins Medical Institute, 

Johns Hopkins University, Baltimore, MD, USA) was employed to reduce the effect of 

artifact. The realigned and co-registered diffusion-weighted data sets were double checked for 

image quality, and then used for estimation of diffusion tensors, including three eigenvalues 

and the corresponding eigenvectors (for further information about DTI processing see Soares 

et al. (17)). The region of interest (ROI) was defined by B0 images to cover the spinal cord 

(Fig. 1). The FA values were calculated and averaged over all selected voxels in the cord for 

all subjects using Image J (National Institute of Health, Bethesda, MD, USA). 
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Machine Learning Methods 

Given the DTI data, the identification of myelopathic levels can be defined as a bi-

classification problem. This problem can be solved by introducing some machine learning 

based classifiers. The logic behind the method of identifying myelopathic levels is illustrated 

in Figure 2. The following classification methods are considered in this task: Naive Bayesian 

(18), SVM (19,20), and STM (21). Considering that both Naive Bayesian and SVM are 

relatively mature methods, we focused on the STM, as follows. 

In STM, the discriminant function can be given by (21): 

                                           1

M

k

k

y sign X w b
=

 
= + 

 
∏ ,                                                                   [1] 

where wk indicates the weight tensor and b the offset. 

In this study, X is defined as a second-order tensor with the mode-1 fiber indicating the 

eigenvalues of the diffusion tensor and mode-2 fiber as the region of interest (the dorsal, 

lateral, and ventral region of both left and right sides). The discriminant function can be 

described by: 

1 2

Ty sign w Xw b = +  ,                                                                   [2] 

where w and b can be calculated by solving the following constrained optimization problem: 

                               
2
k=1

2
2

2

k=1
1  1

1
min  J(   )=

2k

N

k k i
kw b iFro

w b w c
ξ

ξ ξ
=

=

⊗ + ∑
                                              [3]

 

( )1 2. .     1     0,  1T

i i is t y w Xw b i Nξ ξ+ ≥ − ≥ ≤ ≤ ,                  

where ξ  is introduced as the slack variable to deal with noise in DTI data. 

 

By introducing the positive Lagrange multipliers α and λ, the above optimization 

problem can be rewritten as follows: 

                                              
M
k=1

M

k=1
,   

max min  ( , ,  ,  ,  )
k

k
w b

L w b
λ α ξ

ξ λ α
                                             [4]
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with 

( )
2

2
M

k=1 1 2
1

1 1 1

1
( , ,  ,  ,  ) ( 1  )

2

N N N
T

k k i i i i i i
k

i i iFro

L w b w c y w Xw bξ λ α ξ λ ξ α ξ
=

= = =

= ⊗ + − + − + −∑ ∑ ∑  

where i0,  0 (1 )i i Nα λ≥ ≥ ≤ ≤
. 

We compared the result of machine learning methods to clinical level diagnosis and 

calculated accuracy, sensitivity and specificity to evaluate the performance of the employed 

classifiers. Accuracy is calculated by (TP+TN)/(TP+TN+FN+FP), where TP = True Positive, 

TN =True Negative, FP = False Positive and FN = False Negative. Sensitivity is defined as 

TP/(TP+FN) and Specificity is defined as TN/(FP+TN). 

Model Evaluation: Cross-Validation 

The problem with evaluating a proposed model is that it may demonstrate adequate 

prediction capability on the training data, but might fail to predict future unseen data. Cross-

validation is a procedure for estimating the generalization performance in this context (22). In 

this study, there were two goals for cross-validation: 

(i) To estimate performance of the learned model from available data using one algorithm; 

i.e., to gauge the generalizability of an algorithm. 

(ii) To compare the performance of naive Bayesian, SVM, and STM, and determine the best 

algorithm for the available data. 

In typical cross-validation, the training and validation sets must crossover in successive 

rounds such that each data point has a chance of being validated. The basic form of cross-

validation is k-fold cross-validation. Other forms of cross-validation are special cases of k-

fold cross-validation or involve repeated rounds of k-fold cross-validation (23). In this study, 

we employed two methods for evaluating the classifiers: 10-fold cross-validation and holdout 

validation (the traditional validation method). In K-fold cross-validation, the subset size, n, 

can be optimized by the following steps: 
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i. Divide the data into K roughly equal parts 

ii. For each k = 1, 2, …. K, fit the model with parameter n to the other K-1 parts, and 

calculate its error in predicting the kth part. This gives the cross-validation error:  

                                      1

1
s( )= e ( )

K

K

k

k

n n
=
∑

                                                                      [5]

 

iii. Do this for many values of n and choose the value of n that makes s(n) smallest. 

 

RESULTS  

Identification of Myelopathic Level Using Naive Bayesian, SVM, and STM 

To perform holdout validation, the DTI dataset from 20 normal people and 16 CSM 

patients was divided into two parts. The data from 12 normal people and 8 CSM patients were 

used for training classifiers, while the data from 8 normal subjects and 8 CSM patients were 

used for validation (Table 1).  The class labels were from neurological diagnosis by senior 

spine surgeons. In this study, the level with CSM was defined as positive and the healthy level 

as negative. The neurology result in table 1 indicates the confirmed diagnosis by senior spine 

surgeons, which was the benchmark in our study. The subjects from case 1 to case 8 are with 

cervical spinal stenosis and the subjects from case 9 to case 16 are normal people. The 

underline in the table 1 indicates that there is no any level with CSM. The subject of case 13 

has no any CSM level in the view of senior spine surgeons. But the classifier based method 

identified C3-4 as a CSM level. This was a false positive given by the classifier. 

The statistical results of identification of myelopathic level from the three classifiers are 

shown in Table 2. The accuracy by STM was the highest (93.62%) of the three classifiers. 

STM also showed excellent capacity to identify true positives (sensitivity: 84.62%) and true 

negatives (specificity: 97.06%). Next, to compare the performance of naive Bayesian, SVM, 

and STM, we used the 10-fold cross-validation method. The advantage of this method over 

repeated random sub-sampling is that all observations are used for both training and 
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validation, and each observation is used for validation exactly once. The statistical results of 

identifying myelopathic level with 10-fold cross-validation are shown in Table 3, where STM 

performed the best among the three classifiers (accuracy: 94.54%; sensitivity: 89.75%; 

specificity: 98.85%). 

Comparison with Fractional Anisotropy (FA) Identification of Myelopathic Level  

Fractional anisotropy (FA) is one of the most common parameters in DTI. FA is 

calculated from the eigenvalues of the diffusion tensor, with values between 0 (perfectly 

isotropic diffusion) and 1 (the hypothetical case of an infinite cylinder). We used FA values 

from 50 healthy subjects to create a threshold to detect the level with CSM. The means and 

standard variations of the FA for each level were: C23: 0.7286±0.0602, C34: 0.6754±0.0657, 

C45: 0.6877±0.0716, C56: 0.6420±0.0755, C67: 0.6518±0.0525 and C78: 0.6471±0.0767. We 

defined threshold of low FA value (LFV) as LFV = (Mean	FA	value − 2.5 ∗ SD). The level 

with FA value below the threshold was defined as a myelopthatic level. 

The FA values from the first eight cases in Table 1 were used for myelopathic level 

diagnosis. The identified levels with CSM are listed in column 8 in Table 1, with the statistical 

results shown in row 5 (accuracy: 76.0%; sensitivity: 30.77%; specificity: 91.89%). The 

experimental results demonstrate that the classifiers using eigenvalues had a better ability to 

identify the levels with CSM than the level diagnosis by FA values.  

 

DISCUSSION  

In this study, we proposed a data driven-based method to identify the spinal cord levels 

with CSM.. The eigenvalues of the DTI data were used to train the proposed classifiers, and 

we compared the eigenvalue-based machine learning method with the FA values. We found 

that the machine learning-based classifiers were excellent for identifying the levels with CSM 
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in spinal cord. FA is one of the most commonly used indices in DTI analysis (6,24). However, 

although Uda et al. (10) demonstrated a decrease in FA in most patients with CSM, the use of 

FA only is insufficient to detect the levels with CSM. The current data suggest that the 

eigenvalues from DTI data can provide more useful information in identifying the levels with 

CSM in spinal cord than for FA. 

CSM is a degenerative disease of cervical spine, which is usually of extensive range of 

lesion involving multiple segments. Multilevel affected CSM is complex with clinical 

manifestation and difficult to precisely localize all the involved levels by neurological 

examination. However, not all the myelopathic levels appear with the high signal intensity on 

MRI (25). The myelopathic levels identified by MRI findings are usually mismatching with 

those from neurological examination (2,25). The surgical outcome of CSM still varies a lot 

and can’t be predicted precisely by either neurologic deficit or any existing imaging method. 

Therefore, from spinal cord compression to functional deficit, there is a gap in between and 

that is the pathological change of spinal cord tissue, which is undetectable by conventional 

methods but DTI images. 

 In clinical practice, level diagnosis is critical in determining decompression levels and 

surgical approach (anterior or posterior). In case of multilevel CSM, conventional MRI may 

detect some mild compression levels beside a severest compressed level. If the neurological 

deficit does not clearly point to the mildly compressed levels, it will be controversial for the 

surgical planning. Surgical decision made purely on conventional MRI will put the patients at 

the risk of ‘over-killing’ or inadequate decompression. DTI could disclose the micro-structure 

impairment and reflect the pathological changes of spinal cord based on its unique principle.  

With the method introduced in present study, the myelopathic levels could be identified in 

CSM patients based on the detection of demyelination of white matter. It could provide the 

pathological condition of impaired cervical spinal cord in an efficient way. 
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In the present study, STM was especially suitable for identification of spinal cord levels 

with CSM. As a relatively new learning approach, STM has some potential advantages in 

dealing with DTI data. While traditional linear classification algorithms like SVM find a 

classifier in R
m

, STM finds a classifier in tensor space 1 2m mR R⊗ , which provides a structured 

classification. Therefore, STM can use the DTI data structure, while SVM often results in data 

structure loss when translating a tensor into a vector. The number of independent unknown 

parameters in STM is also less than that of SVM. For example, a vector X ∈∈∈∈R
n
 can be 

transformed to a second order tensor X ∈∈∈∈ 1 2n n
R R⊗ , where n ≈ n1×n2. In SVM, a linear 

classifier can be represented as k
T
x+b in which there are n+1 (≈ n1×n2+1) independent 

parameters (b, ki, i=1, 2…n). In STM, a linear classifier can be represented as ω1
T
Xω2+b 

where ω1∈R
n1

 and ω1∈R
n2

. Thus, there are only n1+n2+1 parameters. This property makes 

STM especially suitable for small sample cases and robust against over-fitting.  

 

Prior to the use of advanced imaging techniques, neurological examination was the main 

approach to estimate the level of myelopathy, and remains an essential method for evaluating 

the severity and location of the lesion. The cervical cord segments approximately correspond 

to one or two higher intervertebral levels in CSM (2), owing to the different anatomical 

relationship between cord segments and spinal roots with regard to intervertebral levels. 

Although it is difficult to distinguish all the myelopathic versus normal levels in cases of 

multilevel involvement, neurologic examination can provide the most direct evidence that 

certain levels of the cervical spinal cord exhibit myelopathy. Thus, neurological examination 

remains a benchmark for identifying cervical spinal cord myelopathy for comparisons to DTI 

methods. 

In this study, we demonstrated that the machine learning-based classifiers using 

eigenvalues of DTI can provide a direct measure of the level of myelopathy, with the STM-
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based classifier providing the optimal detection method. There are several advantages of the 

STM-based classifier in identifying the levels with CSM in the spinal cord. First, compared 

with the vector space model, STM can exploit the DTI data structure, as well as correlations 

in the original data. Thus, the STM-based classifier allows the detection of CSM levels with 

higher accuracy and sensitivity. Second, the number of independent parameters in STM is less 

than that of the vector-based classifier, which makes the STM-based classifier more robust 

against over-fitting compared with the vector space model, such as the SVM-based classifier. 

This also allows the STM-based classifier to deal with small sizes, which are very common in 

medical science. Finally, the STM-based classifier is more cost effective than neurological 

examination by senior spine surgeons, and this classifier can work efficiently as long as it is 

well trained. Therefore, the proposed STM-based classifier would provide additional 

diagnosis of myelopathic levels for surgeons to make the most appropriate surgical plan. 

 

Several issues in the STM-based classifier should be considered. The first is how to sort 

the features in the tensor. In SVM, we implicitly assume that the features are independent 

(19). A classifier in vector space can be written as k
T
X+b. Obviously, the change of the order 

of the features has no impact on training the classifier. In the tensor space model, a linear 

classifier is represented as V
T
XU+b. Therefore, the independence assumption for features no 

longer holds in training the tensor-based classifier, and different feature sorting will lead to 

different training results in the tensor space model. In this study, we sorted the features into 

descending order of eigenvalues. The second issue is the loss of features caused by the ROI. 

Note that the eigenvalue employed in this study is the average of those from the voxels drawn 

within the ROI. Thus, the definition of the ROI is important. Unsuitable drawing of the ROI 

may lead to feature loss in training the classifier. In future studies, we will consider training 

the classifier using DTI data from all voxels of the whole spinal cord. Finally, identifying the 
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levels with CSM is only the first step. Estimating the pathological severity at each level is 

necessary in clinical practice.  

There are some limitations in the present study. Since CSM has a vast array of signs and 

symptoms and there are no pathognomonic findings, selection bias may happen in the 

inclusion of patients by experienced surgeons. Besides, different disease severity and 

compression pattern in multilevel cases may also bias the result.  Another limitation of the 

present study is the lack of neurological examination results from CSM patients after 

treatment, which may provide sufficient information of justifying the classifiers. Although 

neurology could not reveal the precise information of myelopathy along cervical cord 

segments, it is the only available and acceptable benchmark after a careful clinical diagnosis 

by experienced spine surgeons. A more appropriate reference standard should be based on the 

surgical outcome following level diagnosis, which need a large scale clinical trial in the future 

study.  

In conclusion, the proposed machine learning-based method might provide a valuable 

method for predicting the changes of clinical symptoms and the estimated pathological 

severity at each level over time. With the proposed classifiers, we could detect the 

myelopathic levels in CSM and give useful reference to spine surgeons in decision making of 

surgical plan in some complicated cases. 
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Table 1. Results of identification of myelopathic level from neurology, SVM, Bayesian and STM and FA 

value.  

 

Case no. Gender Age 

Identification of Myelopathic Level  

Neurology Bayesian SVM STM FA 

1 F 79 C34, C45 C45, C56 C34, 

C56 

C34, C45, 

C56 

- 

2 M 83 C34, C56 C34, C45, 

C56 

C45, 

C56 

C34, C56 - 

3 F 62 C34, C45 C34, C56 C45, 

C67 

C34, C45, 

C56 

C45,C78 

4 M 65 C34 C34, C56 C34,C45 C34, C56 C34,C45, C67 

5 F 43 C34 C45, C56 C56 C34, C45, 

C67 

C34,C45 

6 M 80 C34, C45 C45, C56 C34, 

C56 

C34, C45, 

C56, 

C23, 

C45,C56,C67 

7 F 63 C34, C45 C45 C45,C56 C56, C67 C67 

8 M 60 C56 C34, C56 C45,C56 C56, C67 - 

9 M 29 - - - - - 

10 M 30 - - - - - 

11 F 49 - - - - - 

12 M 26 - - - - - 

13 F 59 - C34,C45 C34 C34 - 

14 F 52 - - - - - 

15 M 50 - C56 - - C34, C56 

16 M 54 - - - - - 

"-" indicates there is no level with CSM for the subject. 
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Table 2 Statistical results of identification of myelopathic level 

Method Accuracy Sensitivity Specificity 

Bayesian 80.85 % 61.54% 88.24% 

SVM 82.48% 53.85% 94.12% 

STM 93.62% 84.62% 97.06% 

FA 76.0% 30.77% 91.89% 
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Table 3 Statistical results of identification of myelopathic level with 10-fold cross-validation 

Method Accuracy Sensitivity Specificity 

Bayesian 83.51 % 66.47% 90.31% 

SVM 83.27% 59.39% 96.48% 

STM 94.54% 89.75% 98.85% 
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Figure legends  

 

Figure 1. The representative images showing sagittal T2W, B0, three principal eigenvector 

images (e0, e1, e2) and FA in the healthy cord (A, A0, Ae0, Ae1, Ae2, AFA) and myelopathic 

cord (B, B0, Be0, Be1, Be2, BFA). The ROI was de fined by B0 image to cover the spinal cord. 

 

Figure 2. The framework of identifying myelopathic levels using machine learning based 

classifier model. In training step, the labeled DTI data is employed to classifiers. The machine 

learning algorithms employed in this work are naive Bayesian, support vector machine and 

support tensor machine. 

 

 

 

Page 22 of 46

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FO
R PEER REVIEW

 O
NLY

  

 

 

The representative images showing sagittal T2W, B0, three principal eigenvector images (e0, e1, e2) and FA 
in the healthy cord (A, A0, Ae0, Ae1, Ae2, AFA) and myelopathic cord (B, B0, Be0, Be1, Be2, BFA). The ROI 

was de fined by B0 image to cover the spinal cord.  
327x144mm (96 x 96 DPI)  

 

 

Page 23 of 46

Journal of Magnetic Resonance Imaging

Journal of Magnetic Resonance Imaging

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



FO
R PEER REVIEW

 O
NLY

  

 

 

The framework of identifying myelopathic levels using machine learning based classifier model. In training 
step, the labeled DTI data is employed to classifiers. The machine learning algorithms employed in this work 

are naive Bayesian, support vector machine and support tensor machine.  
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