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Synchronization of Dynamical Networks With
Nonidentical Nodes: Criteria and Control

Jun Zhao, David J. Hill, Fellow, IEEE, and Tao Liu

Abstract—This paper presents a framework for global synchro-
nization of dynamical networks with nonidentical nodes. Several
criteria for synchronization are given using free matrices for both
cases of synchronizing to a common equilibrium solution of all
isolated nodes and synchronizing to the average state trajectory.
These criteria can be viewed as generalizations of the master sta-
bility function method for local synchronization of networks with
identical nodes to the case of nonidentical nodes. The controlled
synchronization problem is also studied. The control action, which
is subject to certain constraints, is viewed as reorganization of the
connection topology of the network. Synchronizability conditions
via control are put forward. The synchronizing controllers can be
obtained by solving an optimization problem.

Index Terms—Dynamical networks, master stability function,
nonidentical nodes, synchronization.

I. INTRODUCTION

D YNAMICAL networks have attracted extensive attention
recently (see[2] and the references therein). Synchroniza-

tion, as an emergent phenomenon of dynamical networks, is
one of the key issues that have been addressed. Some recent
overviews can be found in[21] and [33]. The main concerns of
the investigations are to try to understand the synchronization
phenomenon in many disciplines including physics, biology,
and social interactions, to study the underlyingmechanisms, and
to establish synchronization criteria mathematically.
A dynamical network can, of course, be regarded as a dynam-

ical system with a special structure. Likewise, synchronization
problems can be treated as some types of stability issues. How-
ever, applying standard stability analysis methods to a network
as a dynamical system usually produces full-dimensional con-
ditions that are often very hard to check or compute. This is
mainly because the number of nodes is often very large, and
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thus, the dimension is huge. Therefore, how to have checkable
and computable synchronization criteria, in particular, lower di-
mensional conditions, is one of the key points in the study of net-
work synchronization. Taking the isolated node dynamics and
the network topology into account is an effective way to estab-
lish such synchronization criteria.
In almost all the existing results, a common assumption is

that all nodes of a network are identical. Indeed, this assump-
tion makes it much easier to analyze the network, particularly
for the synchronizability problems. In particular, under this
assumption, a constant, symmetric, and irreducible coupling
configuration matrix can always give rise to local synchro-
nization criteria that only require the checking of simultaneous
stability of several lower dimensional dynamical systems [2],
[5], [17], [32]–[34]. Some relevant extensions and results using
other methods can be found, for example, in [4], [7], [11],
[20], [24], [28], and [38]. Controlled synchronization has been
addressed by several research works—see [14], [16], [17], [22],
[25], and [36] for results relevant here.
However, most dynamical networks in engineering have

different nodes. Taking a power system as an example [12],
the generators (power sources) and loads (power sinks) are
connected to buses which are interconnected by transmission
lines in a network structure. Therefore, the power system can
be viewed as a dynamical network where the nodes consist of
generators and (dynamical) loads. Due to different physical
parameters of individual generators, the generator models
have different dynamics, and the power system is obviously a
dynamical network with nonidentical nodes.
The behavior of dynamical networks with nonidentical nodes

is much more complicated than that of the identical-node case.
In terms of the synchronization issue, unlike the identical-node
case, decompositions into a number of lower dimensional sys-
tems are, in general, no longer possible, even for the local syn-
chronization problem. Thus, the study of synchronization of dy-
namical networks with nonidentical nodes is very hard, and very
few results have been reported by now. A simple case where
all nonidentical nodes have the same equilibrium was consid-
ered in [35], where a synchronization criterion using -stability
Lyapunov functions was given by constructing a common Lya-
punov function for all the nodes. Controlled synchronization
was considered for the case where each node has a normal form
with a linear main part [23], and distributed controllers were de-
signed to achieve synchronization. Several collective properties
for coupled nonidentical chaotic systems were respectively dis-
cussed in [8], [15], [9], [10], [30], and [31]. As asymptotic syn-
chronization of a network with nonidentical nodes is very hard
to achieve, most researchers focus on partial synchronization,
particularly for nonidentical Kuramoto oscillators [3], or output
synchronization [6]. Bounded synchronization is another type
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of weaker form of synchronization when asymptotic synchro-
nization is impossible [13], [27].
This paper addresses the issue of asymptotic synchroniza-

tion for complex dynamical networks with nonidentical nodes.
Free matrices are introduced in the analysis, and global synchro-
nization criteria are given based on solving a number of lower
dimensional matrix inequalities and scalar inequalities, which
generalize the criteria using the method of the master stability
function for networks with identical nodes. Controlled synchro-
nizability conditions are put forward. The synchronizing con-
trollers can be designed by solving an optimization problem.

II. PRELIMINARIES

We study a dynamical network modeled as

(1)

where is the state of the th node.
Assume that the matrix , which represents the
outer coupling configuration of the network, is symmetric and
that , where , and are contin-
uously differentiable with Jacobian . The dynamics of the
isolated nodes are , where .
The network (1) is said to synchronize if

, where and . An equivalent defini-
tion of synchronization is that there exists a function such
that , where . Obvi-
ously, is not unique. In fact, any function satisfying

serves the same purpose.
Let be a function to which all ’s are expected to

synchronize. Then, the deviations satisfy

(2)

Let . Then, (2) becomes

(3)

The linearized error dynamics of the network (1) are given by

(4)

which is the basis to study local synchronization.

Since is symmetric and irreducible, there exists a unitary
matrix such that

(5)

where is the th column of with
and are

the eigenvalues of satisfying .
Let be the linear space of the uniformly

bounded continuous (continuously differentiable) real matrix-
valued functions defined on . For any , the
norm of is defined by .
A time-varying matrix is said to be uniformly positive

definite, denoted by , if holds for all
, , and some . is uniformly negative

definite, denoted by , if is uniformly positive
definite.

III. SYNCHRONIZATION CRITERIA

In this section, we will present the criteria for synchronizing
to an equilibrium solution and to the average of all node states,
respectively.

A. Synchronization to an Equilibrium Solution

Suppose that is a known equilibrium solution to all iso-
lated nodes, i.e., satisfies

(6)

Substituting (6) into (3) gives

(7)

Note that is an equilibrium point of (7), so the asymptotic
stability of (7) implies the synchronization.
Theorem 3.1: Suppose that there exist matrix , which

may be time varying, and uniformly positive definite matrices
with and constant , such that

(8)

(9)

Then, the network (1) globally synchronizes.
Proof: Let . Then, it follows from (7) that
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(10)

Equation (8) implies that there exists a sufficiently small con-
stant such that

(11)

Choose with . Differ-
entiating along the trajectory of (10) and in view of (9),
we have

(12)

This completes the proof.
It is crucial to find a matrix to satisfy the conditions of

Theorem 3.1. This can be done by solving the following opti-
mization problem.
Corollary 3.2: If the optimization problem

(13)

has a positive maximum, then the network (1) globally synchro-
nizes.
When such a matrix does not exist or is hard to find, we

may apply the following criterion to test the synchronizability.
Theorem 3.3: Suppose that there exist matrices

with , which may be time varying and depend on
the variable , constants with , where ,

, and , constants , where
, uniformly positive definite matrices with

, and constants such that

(14)

(15)

(16)

Then, the network (1) globally synchronizes.
Proof: Choose the new variables . Then,

it follows from (7) that

(17)

Equivalently, we have
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(18)

Since is a unitary matrix, we have

Thus, (18) is equivalent to

(19)

Choose and . Dif-
ferentiating along the trajectory of (18), we have

(20)

Applying (14) and (15) gives

(21)

with a sufficiently small constant .

Therefore

(22)

Applying Young’s inequality results in

(23)

Combining (16), (22), and (23) yields

(24)

which completes the proof.
Remark 3.4: In Theorem 3.1, Corollary 3.2, and Theorem

3.3, the condition is only for simplicity since any
nonzero matrix can be normalized by being divided by its norm.
Remark 3.5: If we replace with in

(9) and (13)–(15), we will have local synchronization criteria.
In this case, more particularly, if all nodes are identical, then
(9), (15), and (16) are automatically satisfied with

and . In this case, both Theorems 3.1 and
3.3 degenerate into the well-known master Lyapunov function
condition [2].
Remark 3.6: It is worth mentioning that the inequalities (14)

are not pure linear matrix inequalities due to the presence of the
matrices , so we have no general methods to
solve these inequalities. Fortunately, in some special cases, it is
still possible to find solutions. We only mention the following
two cases.
1) are bounded in the sense of
the following decompositions:

where and , , and
are time-varying matrices, or each has
the decomposition

In this case, a linear matrix inequality-type condition can
be easily established to make (14) hold.
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2) Let denote the largest eigenvalue of the matrix

If for some constants , then (14)
automatically holds with and .

Remark 3.7: Similar to Corollary 3.2, the constants satis-
fying (15) can be obtained by solving the following optimization
problems:

(25)

B. Synchronization to the Average Trajectory
If not all the nodes share a common equilibrium solution, the

synchronization analysis becomes more complicated. First of
all, we have to choose a proper to which all the nodes are
expected to synchronize so that the analysis can be carried out.
Here, we choose the average of all node states, i.e.,

The average dynamics of all node dynamics are defined by
the vector field

Again, let . Obviously, .
A straightforward calculation gives

(26)

Substituting (26) into (2), we have

(27)

Thus

...
. . .

...

... (28)

It is worth pointing out that is no longer an equilibrium
point of (28). Therefore, the synchronization problem cannot be
solved as the asymptotic stability problem of (28). Instead, the
synchronizability can be checked by the attractiveness of (28)
to the manifold defined by .
Proposition 3.8: Suppose that ’s are uniformly contin-

uous with respect to and ’s are uniformly continuous with
respect to . If the network (1) synchronizes, then it holds that

(29)

Proof: From (27), we have

(30)

The uniform continuity of implies

Integrating both sides of (30) from 0 to and using the uniform
continuity of immediately give

which is equivalent to
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Obviously, (29) is far from being sufficient. This can be easily
seen from the fact that even many networks with identical nodes
still do not synchronize.
In order to develop sufficient conditions, we need to rewrite

(28) in the new coordinates

...
. . .

...

... (31)

Note that

...
. . .

...

(32)

and is a unitary matrix; it turns out that

...
. . .

...

...
...
. . .

...

...
...
. . .

...

...
...
. . .

...

(33)

Thus, a simple calculation gives

...
. . .

...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

(34)

Therefore, combining (31) and (34) yields
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...
...
. . .

...

... (35)

Since , we only need to consider . Let
. Then, (35) becomes

...

...
... (36)

Theorem 3.9: Suppose the following.
1)

2) There exist matrix , which may be time varying,
uniformly positive definite matrices with

, and constant such that

(37)

3)

(38)

Then, the network (1) globally synchronizes.
Proof: From (36), we know

...

...
... (39)

Choosing with and
in view of , where ,
similar to the proof of Theorem 3.1, we can complete the proof.
Theorem 3.10: Suppose that there exist matrices

with , which may be time varying and even depend
on variable , constants with , where ,

, and , constants , where
, uniformly positive definite matrices with

, and constants , where , such that

(40)

(41)

and if

(42)

If in addition

then the network (1) globally synchronizes.
Proof: Using a similar method as in the proof of Theorem

3.3 completes the proof.

IV. SYNCHRONIZATION VIA CONTROL

In this section, we study how to achieve synchronization via
design of controllers.
Consider the controlled network

(43)

where is the control for the th node.
Unlike general nonlinear control systems for which nonlinear

controllers of any form can be designed, network control must
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take network features into account. The form of feedback infor-
mation gathered from individual nodes is assumed to be con-
sistent with the interconnection among nodes which are charac-
terized by the outer coupling configuration matrix. Thus, feed-
back control for networks differs from the control for general
control systems and also increases the difficulty of control de-
sign for networks. On the other hand, if general nonlinear con-
trollers were allowed for networks, the nonlinear isolated dy-
namics could be completely canceled, and the synchronization
problem would be trivial.
Now, taking signal transmission in a network into account, we

consider the control action as a reset of the outer coupling con-
figuration according to certain constraints. Thus, the controllers
take the form

(44)

where and is a given control
constraint set. Again, the set has the property that the matrix

for any matrix is again symmetric and has zero
row-sum property.
Some typical forms of are listed as follows.
1) Any is formed by adding or removing a certain
number of links based on the existing links. The number
can be pregiven.

2) ’s are obtained by adjusting the values of the corre-
sponding ’s.

3) Some boundedness on the entries of , for example,
for some pregiven constants .

4) A combination of all the above.
For simplicity, we only consider the case where all the iso-

lated nodes have the same equilibrium solution , i.e., (6)
holds. Similar discussions can be given for the case of the av-
erage trajectory.
The constants are called the eigenvalues of a

matrix pair if they are the eigenvalues of the
matrix for some matrix .
We introduce the notion of constrained eigenvalue assign-

ment.
Definition 4.1: Let be a matrix pair and
and be the given sets. We say that the eigen-

values of the pair can be assigned to the set under the
constraint set if there exists such that the vector of
the eigenvalues of belongs to .
This notion is a generalization of pole assignment for linear

systems when feedback is limited to an admissible set. A similar
concept using a special form of was adopted in the study of
large-scale systems [29].
Let be the set of all the vectors with

and the following property.
Property 4.2: There exist matrix , which may be time

varying, uniformly positive definite matrices
with , and constant ; all , , and may be
depending on such that

(45)

(46)

Theorem 4.3: Suppose that . If the eigenvalues of the
matrix pair can be assigned to the set
under the constraint set , then there exists such that

the controllers globally synchronize the
network (1).

Proof: Applying Theorem 3.1 to the feedback network im-
mediately completes the proof.
The matrix can be obtained by solving the following opti-

mization problem:

(47)
Any optimal solution to (47) with minimum zero provides a
choice of synchronizing controllers.
Remark 4.4: In order to apply Theorem 4.3 and to solve

the optimization problem (47), it is crucial to know the struc-
ture of the set , which is, in general, very hard. Therefore, it
is realistic to replace with some proper subset of , which
makes all results still valid. For the case of identical nodes and
local synchronization problems, such a subset is comparatively
easier to obtain. In fact, we can choose and

, which makes (46) automatically satisfied, while satis-
fying (47) can be characterized by the master stability function.
Once such a subset is fixed, whether Theorem 4.3 is appli-

cable or the optimization problem (45) has the minimum zero
largely depends on “how far” the eigenvalues of the matrix pair

can be assigned under the constraint set . If the assign-
able eigenvalues can reach the subset of , synchronization is
reached, and the feedback can be found. According to the linear
control theory, is completely controllable, and thus, the
eigenvalues can be assigned anywhere. However, here, we have
to stick to the constraint set . For a concrete set , specific
methods may be applicable to check the conditions of Theorem
4.3 and to solve the optimization problem (47). For example,
when the set is characterized by adding a certain number of
links, the method in [1] and [26] may be applied.
Next, we study how to apply Theorem 3.3 to design con-

trollers. For convenience, denote .
Theorem 4.5: Suppose that there exist a vector

with , a matrix ,
matrices with , which may be time varying
and depend on variable , constants with ,
where , , and , constants with

, uniformly positive definite matrices
with , and constants such that

(48)
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(49)

(50)

If , then the global
synchronization is achieved by the controller (44) with

.
Proof: Applying Theorem 3.3 to the feedback network

completes the proof.
The discussion similar to Remark 4.4 can be made for The-

orem 4.5.

V. EXAMPLE

Consider the following dynamical network with five noniden-
tical nodes:

(51)
where

Solving (8) and (9) gives and

Fig. 1. Synchronization errors of .

Fig. 2. Synchronization errors of .

Applying Theorem 3.1, we know that the network synchro-
nizes. The simulation results are shown in Figs. 1–3.
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Fig. 3. Synchronization errors of .

VI. CONCLUSION

We have established a framework for the synchronization of
a dynamical network with nonidentical nodes. Several synchro-
nization criteria have been given in terms of matrix inequalities
and constraints on a matrix norm. Free matrices and are
introduced respectively to establish the criteria, which provide
more freedom to check synchronizability. For controlled syn-
chronization, we take the control action as reorganization of the
outer coupling topology under admissible structures. This point
of view is distinct from the existing results on controlled syn-
chronization where either a general nonlinear controller or error
feedback is exploited.
The proposed methods are applicable to practical dynamical

networks with nonidentical nodes. For example, the proposed
design strategy provides a useful tool to maintain angle and
voltage stability of power systems.
For networks with nonidentical nodes, we have little knowl-

edge. In particular, efficient techniques need to be developed to
improve the checkability of the conditions of the proposed the-
orems and to solve the optimization problems.
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