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Exponential Synchronization of Complex Delayed
Dynamical Networks With Switching Topology

Tao Liu, Jun Zhao, and David J. Hill, Fellow, IEEE

Abstract—This paper studies the local and global exponential
synchronization of a complex dynamical network with switching
topology and time-varying coupling delays. By using stability
theory of switched systems and the network topology, the synchro-
nization of such a network under some special switching signals
is investigated. Firstly, under the assumption that all subnetworks
are self-synchronizing, a delay-dependent sufficient condition is
given in terms of linear matrix inequalities, which guarantees the
solvability of the local synchronization problem under an average
dwell time scheme. Then this result is extended to the situation
that not all subnetworks are self-synchronizing. For the latter case,
in addition to average dwell time, an extra condition on the ratio
of the total activation time of self-synchronizing and nonsynchro-
nizing subnetworks is needed to achieve synchronization of the
entire switched network. The global synchronization of a network
whose isolate dynamics is of a particular form is also studied.
Three different examples of delayed dynamical networks with
switching topology are given, which demonstrate the effectiveness
of obtained results.

Index Terms—Average dwell time, complex dynamical net-
work, exponential synchronization, switched systems, switching
topology, time-varying delays.

I. INTRODUCTION

OTIVATED by many systems in science and human-
M ities, complex dynamical networks which consist of
interacting dynamical entities with an interplay between dy-
namical states and interaction patterns have been extensively
studied in past decades [1]-[3]. Many systems in nature can be
modeled by complex dynamical networks, for example, power
grids, communication networks, Internet, the World Wide Web,
metabolic systems, food webs, etc.

Synchronization, as an important collective behavior of
complex dynamical networks, has received much of the focus.
Early works on this issue concentrated on networks with reg-
ular topological structures to capture complexities caused by
the nonlinear dynamics of the nodes [4], [5]. Inspired by the
seminal work [6], attention has been moved to complexities
coming from network structures. Sufficient conditions on syn-
chronization of various kinds of networks with time-varying
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couplings [7]-[9], time delay couplings [10]-[14], directed and
weighted couplings [15]-[17], and the relationship between
the synchronizability and the properties of network structures
[18]-[20] have been investigated—to name just a few; and see
a recent survey and monograph [21], [22] for more details.

In the past decade, synchronization of networks with
switching topology has attracted researchers’ interest [24]—[37].
Switching topology often due to link failures or new creation
is general in real-world networks. Take a power grid as an
example. It is well known that a large power grid consisting of a
large number of local power generators can work properly only
if the generators are kept in synchronism, and needs to retain
its stability to provide normal power supplies to consumers.
However, loss of synchronization of some local power genera-
tors may result in instability of the power grid, or even cause
cascading outages or collapse and blackout [47], [48]. So, when
a local power system happens to have a severe fault, it will be
automatically cut off from the network by a relay protection
device to avoid further damage to the global power grid. This
makes the connection structure jump suddenly—switch from
one topology to another. On the other hand, new links between
a certain group of local power generators may be established
for certain purposes such as preventing cascading instability
[48]. Switching topology also happens in the communication
network between mobile agents (the nodes) which commu-
nicate with each other and need to perform synchronization.
Since the nodes of the network are moving, some existing links
can fail and new links between nearby agents are created [23].

Inherently, switching topology is discontinuously “fast-
varying” topology and in general cannot be handled as general
time-varying topology. Several methods have been proposed to
deal with switching topology in special network studies. In [24],
a blinking network in which the coupling is switched according
to certain probability was addressed. Such a network was shown
to synchronize for almost all instances of the fast switching
random process. It was shown in [25] that if the switching
is fast enough, then an average model can be applied with
certain properties of the original network preserved, and local
synchronization is achieved if the static time-average of the
network supports synchronization. This result was extended to
the stochastic network in [29] and [36]. In order to synchronize
anetwork, [35] also applied this idea to pinning control strategy
by switching a single pinning controller sufficient fast from one
node to another. The differences of synchronization properties
between the switched network and corresponding time-average
network were investigated in [31]. In [34], the sychronizability
of discrete-time networks was measured by Hajnal diameter
of infinite coupling matrices, and different network models
including random switching between the individual topologies
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were discussed in [33]. Numerical studies of a network whose
coupling strength switched on and off periodically were carried
out in [32]. A similar idea was used to synchronize the network
by periodically intermittent pinning control, and corresponding
synchronization criteria were obtained in [37]. An adaptive
controller was designed to synchronize a switched network
under arbitrary switching in [26]. The authors in [27] investi-
gated the synchronization of switched networks whose outer
coupling matrices are simultaneously triangularized under
arbitrary switching as well as via design of switching within
a pregiven collection of topologies in which synchronization
cannot be achieved by using any topology alone. Another class
of problems which deal with switched networks is in consensus
control [23], [44], [49]. All of these have advanced the un-
derstanding of the synchronization phenomenon in real-world
networks with switching topology.

From a control point of view, the fast switching property
may not always desirable because it will probably shorten
the working life of actuating mechanism, and sometimes fast
switching is not allowed in some real-world networks such as
power grid. Moreover, the switched system theory shows that
the stability of a switched system can not be guaranteed even
when switching happens between two exponentially stable
subsystems, and one way to preserve stability of the system is
to use the so-called slow switching law [38]. These stimulate
the studies on the synchronizability of switched networks
where the switching signal belongs to “slow” switching laws,
i.e., how to identify those switching signals which guarantee
the synchronization of switched network. Some recent progress
in this direction has been made in [28] and [30] by using the
averaged dwell time method [39]-[42]. In [28], local syn-
chronization of a network with unweighed switching coupling
matrices was investigated, and a criterion on how to deter-
mine its coupling strength to preserve synchronization under
a specified switching law was given. Synchronization criteria
of a switched network with time-invariant coupling delay were
given under an assumption that all outer coupling matrices are
simultaneously diagonalizable in [30].

In addition, another problem that deserves attention is the
synchronization of networks with time-varying coupling delays.
Time delay is a ubiquitous phenomenon in networks due to the
limited speed of signals traveling through links. Thus, there
often exist coupling delays in networks, and the existence of
time delay makes the dynamical behaviors of a network much
more complicated. So it is also meaningful to consider the effect
caused by time delay to networks. Although numerous studies
[10]-[13] have considered delayed networks, the case of time-
varying delay remains to be fully studied.

In this paper, we investigate the local and global exponen-
tial synchronization of a class of dynamical networks with
switching topology and time-varying delays whose inner and
outer coupling matrices take values in two finite sets of matrices
via a switching signal, and we do not require simultaneously
diagonalizable/triangularizable condition on the outer coupling
matrices, which is quite restrictive in practice. Firstly, by
using the average dwell time method, we discuss the problem
in two different cases: i) all subnetworks are self-synchro-
nizing and ii) not all subnetworks are self-synchronizing. For
both cases, we obtain corresponding linear matrix inequality
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(LMI)-based delay-dependent sufficient conditions and identify
the switching signals for local exponential synchronization of
the overall network. The conditions are completely decoupled
lower dimensional LMIs, which can be applied to large scale
networks directly. Then, we specify a network model which
has a particular isolated node dynamics and study the global
exponential synchronization of such a network.

The rest of this paper is organized as follows. We first intro-
duce a dynamical network model with switching topology and
time-varying coupling delays in Section II. This is followed by
our main results in Section IIT and Section IV where we give
the theoretical analysis of local and global exponential synchro-
nization for such a network in the cases of all and some subnet-
works being self-synchronizing. In Section V, examples with
different subnetworks are given to demonstrate the effectiveness
of the theoretical results. Finally, conclusions are presented in
Section VI.

II. MODEL DESCRIPTION AND PRELIMINARIES

To represent topology changes of some real-world networks,
we introduce a new model for a network with switching
topology and time-varying coupling delays. The network
consists of N linearly and diffusively coupled identical nodes
with each node being an n-dimensional dynamical system. The
interconnections between nodes are changed abruptly at some
time instant which is orchestrated by a switching signal. The
state equations of the switched network are given below

&i(t) = )+ Z e
Tity = %(9)» 0 E [_T'/ 0]7

where z; = (J,’Z‘l,:EiQ,..../:L’in)T e R", Vi ¢ N =
{1,2,..., N} are the state variables of node 4, and d(¢) > 0 is
time-varying delay; ¢, () are continuously differentiable initial
functions, 7 > 0 is a known constant and x;; = z;(t + 6),
6 € [-7,0]; f(-) : R® — R™ is continuously differentiable;
o(t) : [0,00) = M = {1,2,...,m} is the switching signal,
which is a piecewise constant function continuous from the
right, i.e., it is constant between two consecutive discontinu-
ities; for each fixed o(t) = k € M, 'y, € R™"*™ is the inner
coupling matrix which describes the way of linking the compo-
nents in each pair of connected two nodes; C;, € RV XY is the
outer coupling configuration matrix representing the coupling
strength and topology of the network; if there is a connection
between node ¢ and node j(i # j), then c = ck > 0

7
otherwise c¥; = 0, and the diagonal elements of matrix

Loy (t —d(t))

ieN 1)

—C

(¥} ]L
Cy, satisfy
N N
k _ k _ k .
Cii = — CL]—_ CJ” ZEN./ kEM (2)
j=1 j=1
Jj#i J#i

Actually, the delayed dynamical network (1) with switching
topology is generated by a switching signal o(¢) and a family
of subnetworks (3) which have the same isolate dynamics f(-),
but different inner and outer coupling matrices I'y, and Cf.

N
di(t) = f (2i(t)) + Y KTy (¢ —d(t)), ke M
7j=1
Tty :(qu(a), 0 e [—T, 0] 3)



LIU et al.: EXPONENTIAL SYNCHRONIZATION OF COMPLEX DELAYED DYNAMICAL NETWORKS

The switching signal o(t) specifies at every time the index of
the active subnetworks k¥ € M. We assume that the switching
signal o(t) has a finite number of discontinuities in any finite
time interval, and there are no jumps in the state at the switching
instants.

Corresponding to the switching signal o(t), we have the
switching sequence {z,;(ko,t0),-.., (krytr),-..,|kr €
M,r = 0,1,...}, which means that the k,.th subnetwork is
activated when ¢ € [t,t,41).

Remark 1: For a fixed o(¢), the network (1) without time de-
lays appears to be the form of the time-varying network pro-
posed in [7]. However, there are important differences: the time-
varying network admits a family of solutions that can be param-
eterized solely by the initial condition; however, the network
with switching topology admits a family of solutions that are
parameterized both by the initial condition and the switching
51gnal o(t). Also, in a time-varying network, the coupling ma-
trix is continuous and often differentiable with respect to time
t, where o(¢) is usually discontinuous but piecewise constant.
Therefore, typically theories and methods of time-varying net-
works can not be applied to networks with switching topology.

Our task in this paper is to find conditions which guarantee
the local and global exponential synchronization of the states of
the network (1) on the manifold defined below.

Definition 1 ([11]): Define synchronization manifold S =

{(z],23,...,a80) " €R™W ruy = a4, € N}
Let s(t) = (1/N) ZZ 1 Z(t), then the dynamical equation
of s(t) can be written as
1 1
=5 Y EW) =S fw). @
i=1 i=1

Obviously, the stability of the synchronous manifold of the
switched network (1) is determined by the dynamics of the iso-
late node f(-), the inner coupling matrices Ty, the outer cou-
pling matrices Cy, the time-varying delay d(t) and the switching
signal o (¢). It turns out that not all the switching signals exhibit
sufficient regularity for our purpose, so we specify the switching
signal with some “better-behaved” property in this paper, i.e.,
average dwell time, which is defined as below.

Definition 2 ([38], [39]): For any Tp > T; > 0, let
N, (T1,T>) denote the number of switching of &(t) over
(Tl,TQ). If Na(Tl,Tg) < N() + ( 2 — Tl)/T holds for
T, > 0, Ny > 0, then T}, is called average dwell time.

From Definition 2, we see that in any open interval, the
number of discontinuities of o(t) is bounded above by the
length of the interval normalized by T}, plus a “chatter bound”
Ny [42]. So arbitrarily fast switching is not allowed, which is
natural in practice.

In the following, we give two assumptions on time-varying
delay d(t) and a useful lemma.

Assumption 1 ([40]): d(t) is a differentiable function satis-
fying 0 < d(t) < 7 and d(t) < d < 1 for some known constant
d

Assumption 2 ([40]): d(t) is a continuous function satisfying
0<dt)<rT

Noting that Assumption 2 is a delay-derivative-free condi-
tion, it means that the derivative of d(¢) can be unknown or
arbitrary.

Lemma 1 ([43]): The linear matrix inequality

(‘f ;)>o
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with Q@ = QT, R = RT and * referring to the symmetric terms
in a symmetric matrix, is equivalent to

R>0, Q—-SR7'ST>o.

III. LOoCAL EXPONENTIAL SYNCHRONIZATION

In order to achieve the objective at the manifold S, we define
the error vector

ei(t) = mi(t) — s(t),

Subtracting (4) from (1) yields the error dynamical systems

éi(t) = f(ei(t) + s(t) — %Zf (ep(t) + (1))

N
+3 IO e (t—d(1), i€N. (6)

i=1

ieN. 4)

Then the exponential synchronization problem of the dynam-
ical network (1) is equivalent to the problem of exponential
stability of the error dynamical systems (6). Since f(+) is con-
tinuously differentiable, local exponential synchronization can
be assessed by examining exponential stability of the following
linear switched delay systemS'

éi(t) = +Zc” Toe (t—d(t), i€N ()
where A(t Df(r 1s the Jacobian of f(s(t)) on s(t).
Let e( ) = )seq (t),...,en ()T € R™™, we can

rewrite (7) as
é(t)=(In @ A(t)) e(t) +(Cor) ® Loqny) € (t =

RNXN

d(t)) (8

where Iy € is the identity matrix, and ® is the Kro-
necker product of matrices.
For each k € M, we have

é(t) = A(t)e(t) + Cre (t — d(t)) 9)

with A(t) =Iy® A(t) and C, = Cr. @ I'},.
. _ T . . . .
Since C} = C}, is a real symmetric matrix, there exists a
unitary matrix Uy, = (ukl? Uk2,y - - - 7ukN) € RVXN with Uk; =
4 k)T € RY such that

(ulfi>u2i7 s Uy
Ul CLU, = Ay (10)
where UJUk = 1IN, AL = diag{)\kl, )\kQ, ey )\kN}» ki, @ €
N are the eigenvalues of C},. The zero row sum condition (2)
ensures that: i) A\y; = 0 with associated eigenvector ug; =
1/VN(1,1,...,1)T andii) 0 = A\g1 > A2 > ... > An.
Using the unitary transform vy (t) = (U] ® IL,)e(t) =
(Yl (1), ypa(t), -,y (8)) T € R™Y, along with (9), gives

r(t) = A(t)ys(t) + Apyr (t — d(1)) (11)
with Ak = AL, @I, 1e.,
Uri(t) = A yri () + i Uryrs (8 = d(t)), P€N, ke(lf\/é)
where yi1 (1) = (uf} ® L)e(t) = (1/VN) X1, eilt) =0 €

R™.
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Next, we will find conditions on the dynamics of the isolate
node f(-), the inner coupling matrices Iy, the outer coupling
matrices CY, the time-varying delay d(t), and the switching
signal o(t) under which local exponential synchronization of
the network (1) is guaranteed for both cases of all and some
subnetworks in (3) being self-synchronizing.

A. All Subnetworks Are Self-Synchronizing

In this subsection, we assume that all subnetworks in (3) are
self-synchronizing. We analyze the exponential synchronization
of switched network (1) when the subnetworks are switched by
an average dwell time scheme.

Theorem 1: For a given constant o > 0, suppose Assumption
1 holds and there exist matrices Py; > 0, Qx; > 0, Zi; > 0,

Y4i, Ty; and
() 20
B >

X, = 4
k1 X%‘%
with appropriate dimensions such that

oo TAT(H)Zk
Py = * Sé T/\kiF;eri <0,
* * —T L
1€N, keM, (13)
Xy X Yii
Op; = . ¢ T >0,
* *x e Y L
ieNi, keM. (14)

Then the synchronous manifold S of the delayed network (1)
is locally exponentially stable for any switching signal with av-
erage dwell time satisfying

In

=

T, >TF = (15)

d

where

b PLA(t) + AT () Pai + Yyl + Yii + Qui + 7X Y
+ OéPki?
945 = Mi Pl — Yis + T3 + X5,
§ = — T = 1% — (1 = d)e™7 Qu + X4

and p > 1 satisfies

Py <upb, Qr < pQi, Zy < pli,
with P, = (Uy ® L)RU] © L), Q =
l?k = diag{Pk17Pk27...,PkN} € RN xnN
Qr =  diag{Qk1,Qr2;..., QN €
Ty = diag{Zkthg,...,ZkN} € R xnN Py € Rm™*n,
Qr1 € R™™ Zpy € R™*™ are arbitrary positive definite
matrices, and Py; € R™*", Qn; € R™™", Zy; € R,
i € N1 = {2,3,..., N} are the solutions of inequality (13)
and (14).

Proof: Select the following piecewise Lyapunov functional
candidate

VkleM (16)

b
NXnN
RV xn ,

V(t) = Vo) (t) = Vigr) + Vao(r) + Vaorr) (17)
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where

Vlg(t) —e! (t)ﬁ’g(t) e(t),

0 t
V2O’(t): / / ea(g_t)e—r([J’)Zg(t)e(ﬁ)dﬂda,

—Tt46
t

Vi) = /éWﬂmemﬂmw.

t—d(t)

(18)

On each interval [, t,11), the switching signal is constant, and
for simplicity, let o(t) = k for t € [t,.,t4+1). Obviously, V¢ €
[ty,trt1) We have
Vie = &7 (1) Pre(t) + ¢ (1) Pré(t)
=9 () Peyi(t) + i () P (t)

- Z [yrs(t) (AT () Pri + PriA(t)) yri(t)
/ + Zy,;ri(t)Pki/\kiFkyki (t - d(t))]
< — aVay + Y5 (t) Zrgi(t)
_ / el (8) Ziin(8)dB
t—d(t)

— Oéng
N

+2P@m%ww

i=1

(19)

s.
>
AN

t
_ / e i1 (8) Zusina(H)AB|, (20)
t—d(t)
< —aVar +y (OQryr(t) — (1 — d)e™ "
X yp (t—d(t)) Qrys (t — d(t))
— Oéng

+ Z [yl—rl,—i(t)Qkiyki(t) —(1=d)eT

) X yu; (t = d(t)) Qriyri (t — d(1))] -

By the Leibniz—Newton formula, we have
t

/ Uki(B)dB = yri(t) — yri (t — d(2)) -

t—d(t)

CS.
ES
AN

1)

Then for any matrices Y}; and T}; with appropriate dimensions,
we get

2 [yl (1) Yii + yp; (£ = d(t)) Tha] %

Yri(t) — Uri(B)dB — yri (t — d(t))| =0. (22)
t—d(t)
Obviously, for any matrix Xy; > 0, it holds that
t
T (1) Xniwni(t) > @ () Xeiwri (1)dB,  (23)

t—d(t)



LIU et al.: EXPONENTIAL SYNCHRONIZATION OF COMPLEX DELAYED DYNAMICAL NETWORKS

where @ (t) = (y;(t), yi;(t — d(1))) 7.
Combining (17)—(23) and with yx; = 0 € R"™ lead to

V(t) + aV(t )i wki(t)

ka

SMZ

t
- / wa(t,ﬂ)@m@m(t,ﬂ)dﬂ} (24)
t—d(t)
where wy; (£, 8) = (y; (1), y; (t —
by = ( i+ AT () 2k A(t)
*

d(t)),9,;(8)) ", and
Ifé + T)\kLAT(f)ZkLFk

b+ AL ZkiTe )
By using Lemma 1 and (13) we get @ki < 0. Thus, it follows
from (14) and (24) that

V(t)+aV(t) <0
Integrating the above inequality on the interval [t,.,t], V& €
[tr, trt1) gives
V(t) = Vo () <e IV (k).

When at the switching instant, i.e., t = ¢,., from (16), (17) and
(18), we have

Voury (65) S Vo) (7))

(25)

r=1,2,... (26)

it follows from (25), (26) and the relation
,t) < Ny + (t — to)/Ta that

V(t) Sefo‘(tftq)/ﬂ/ ( 7) (t;)

<. e—a(t to) qv o (to )(t())

Therefore,
q = NU (tO

< pMNoem (= F) =)y (1) 27)

According to (17) and (18), we have
V() 2 alle®l”,  V(to) < blle(to)l (28)
where || - || is the Euclidean norm, |le(t)]|la =
sup_,<p<oflle(t + Ol llett + Ot o =
minvie m Amin(Pr), b = maxXvie M Amax(Pr)  +

T MaXyke M )\max(Qk):l—(Tz/Z) maxvke M )\max(Zk),
Amin(Pr) and Apax(Pr) are the minimum and maximum
eigenvalue of Py, respectively.

Combining (27) and (28), leads to

1 b S ONES LT v
le(t)I* < V() < === et )1

Therefore, we get that the synchronization manifold S of de-
layed dynamical network (1) with switching topology is locally
exponentially stable. The proof is thus completed. ]

When Q; = 0 in (13), the constraint on the derivative of
d(t) is removed, and the conditions obtained in Theorem 1 de-
generate into delay-derivative-free ones. In this case, the deriva-
tive of d(t) can be unknown or arbitrary. This is addressed in
Corollary 1.

Corollary 1: Suppose Assumption 2 holds, and if (13) with
Qr; = 0 and (14) hold, then the synchronous manifold S of
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the delayed network (1) is locally exponentially stable for any
switching signal with average dwell time satisfying (15).
Proof: Choose the Lyapunov functional candidate
V(t) = Vowm(t) = View) + Vag(r) as described in (17)
and (18). The proof procedure is similar to that of Theorem 1,
and it is omitted. [ |

Remark 2: It is worth mentioning that even though synchro-
nization is reached for each individual topology, synchroniza-
tion may fail for switching topology (see Example 1 for an
instance that the relatively fast switching between two expo-
nentially synchronized subnetwork will destroy the synchro-
nizability of the overall switched network). One way to have
synchronization with the switching topology is to constrain the
switching signal o (t) by the average dwell time (15). As a spe-
cial case, if 4 = 1in Theorem 1, (16) implies that V' = V},,Vk €
M, is a common Lyapunov functional for the switched system
(8). Therefore, the switched system is exponentially stable for
arbitrary switching which means that the synchronization man-
ifold of the network (1) is locally exponentially stable for arbi-
trary switching.

Remark 3: In this paper, we do not require a common trans-
form matrix U for all the different outer coupling matrices C},
which is needed in [30]. Obviously, this requirement is far too
strong and unrealistic. We also do not require common matrices
Py, Q and Zj, for the index ¢ in inequality (13) and (14), this
reduces the conservativeness of obtained results and meanwhile
also makes the average dwell time proposed in Theorem 1 de-
pend on the transform matrices Uy. Furthermore, if there exit
common matrices P, € R"*", @} € R"*" and Z;, € R"*" in
(13) and (14) for the index ¢, then we can select the Lyapunov
functional as

Vf’(t) (t) = eT(t) (IN & Pg(t)) e(t)

t

b [ @O (@) (1 e Qo) 8

. .d(t)

/ / A=0:T(B) (Iy ® Zo(wy) ¢(8)dBdH.

—T t+6

In this case, the differences of the values of Lyapunov func-
tional V(4 at the switching instants are independent of the dif-
ferent transformation matrices Uy, which finally lead the av-
erage dwell time to be independent of Uy.

Remark 4: In the literature, many papers assumed that
the investigated network has the symmetric and positively
weighted outer coupling matrix (¢;; = ¢;; > 0) as we did in
Section II—see, for example, [10], [13], [20], and [35]. How-
ever, the positively weighted condition on the network topology
can be removed here. We can only require symmetry of the
outer coupling matrix, i.e., if there is a connection between two
nodes ¢ and j, then ¢;; = cj; # 0, otherwise ¢;; = ¢;; = 0.
This means that positive and negative connections can coexist
in a network. The existence of the negative connections may
lead to some positive eigenvalues of the outer coupling ma-
trix. But, the zero row sum condition (2) guarantees that C},
has at least one zero eigenvalue with associated eigenvector
ugr = 1/v/N(1,1,...,1)". Rearranging the remaining eigen-
values and the corresponding eigenvectors will still make (10),
(11), and (12) hold. So if all conditions proposed in Theorem
1 are satisfied, then synchronization of the switched network
under the average dwell time switching law is guaranteed. On
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the other hand, our results can also apply to some special kind
of nonsymmetric networks. If all candidate outer coupling
matrices Cy, Yk € M are similar to diagonal matrices having
real eigenvalues and real eigenvectors, then by replacing the
unitary matrix Uy by a nonsingular matrix @y, a similar re-
sult as Theorem 1 can be obtained for this kind of networks.
However, how to extend the result to the general nonsymmetric
network deserves more attention in future work.

Remark 5: Conditions (13) and (14) guarantee that all the
subnetworks in (3) are exponentially synchronized at least with
a given exponential rate v, i.e., [|e(t)]|> < age™*=10)]|e(t0)]|?,
where ag is a constant associated with Py, Qr, Z; and 7. But this
estimation is not the best one. For each error dynamical system
(9), we can solve LMIs (13) and (14) repeatedly with giving dif-
ferent values of « to get a better estimation of the convergence
rate a,. The conservativeness of this estimation mainly comes
from the inequalities scaling in the proof procedure of Theorem
1. For example, we use e~*7 to replace ea(ﬁ_t), (t—-7 <
f < t) in inequality (20), and use (1 — d)e™°" to replace
(1 — d(t))e=>® in (21). So when 7 and d are small enough,
oy, 1s close to its truth value aj; otherwise, the difference be-
tween oy, and o, will increase as 7 and d becoming large. For
the switched network, this conservativeness will be enlarged,
because we can not sufficiently use the convergence rate «y, of
each subnetwork that we can get, but use & = mingeam{as}
instead to get the positive definite matrices Py;, Qk;, Zk; by
solving LMIs (13) and (14), which are used to compute p and
finally lead to the bound of the average dwell time T ,".

Remark 6: For the bound of the average dwell time 777, from
the formula (15), we see that the larger «, the smaller 7). Since
T depends on o, the conservativeness for estimating o will
transmit to the estimation of 7). As we mentioned in Remark
5, we can not sufficiently use each subnetwork’s own decay rate
o, this will definitely introduce some conservativeness into the
bound estimating for the average dwell time 7). However, what
we are trying to do is to give a safety bound of 7}, which can
give a theoretical guide to the practice.

B. Some Subnetworks Are Self-Synchronizing

In the previous subsection, we assumed that all subnetworks
are self-synchronizing. In this subsection, we consider a more
general case, that is, the switched network (1) consists of both
self-synchronizing and nonsynchronizing subnetworks. We in-
vestigate how to tolerate the existence of nonsynchronizing sub-
networks without destroying synchronizability of the overall
network. Without loss of generality, we suppose that & € M~
denote the index of the self-synchronizing subnetworks, while
k € M™ denote the index of the nonsynchronizing subnet-
works. Thus, M~ [JMT = M.

In order to eliminate the impact on the overall network caused
by the nonsynchronizing subnetworks, the average dwell time
as a constraint on the switching signal is not sufficient. We have
to find further condition on the switching signal to guarantee
the synchronizability of the overall network. Let T (¢) (resp.,
T (t)) denote the total activation time of the self-synchronizing
subnetworks (resp. the nonsynchronizing subnetworks). Let o™
and o™ be positive numbers to be selected later. For any given
a € (0, ™), we choose an arbitrary a* € («, @™ ) and propose
the switching law satisfying the following condition [41]:

T (t) _at+a*
inf .
t>to TT(t) = a= — a*

(29)
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Theorem 2: For given constants o~ > 0 and o™ > 0, sup-
pose Assumption 1 holds and there exist matrices Py; > 0,
Qri > 0, Zi; > 0, Yy, Tj; and

_(XfXD

with appropriate dimensions such that

0oty TAT()Zy
= x P5y TAGD Zii | <0,
* * —TZki
i€N, keM™, (30)
nr ]fé TAT(8) Zk;
o= bt T Zii | <O,
* * —TZki
i€N, keMt, (31)
Xt Xts Y
Ori=| * X T >0,
* * e 7y
i€N, keM (32)

where

1= PriA(t) + AT () Pri + Yi§ + Yai + Qri + 7X{

+a” Py,

M= = T — Ty — (1 —d)e™® "Qpi + 7X5,

i+ = PuA(r) + AT () Pai + Vil + i+ Qui + X8
—at Py,

b = T — T — (1 - d)Qus + 7XE

and & = o~ for k € M™, otherwise & = 0. Then the syn-
chronous manifold S of the delayed network (1) is locally expo-
nentially stable for any switching signal satisfying the condition
(29) and the average dwell time

T, > 17 = LN

(33)

a* —«

where 11 and ¢k are defined the same as in Theorem 1.

Proof: For k € M, select the piecewise Lyapunov func-
tional candidate (17) and (18) by replacing o by o~ . While for
k € M™, select the following piecewise Lyapunov functional
candidate:

V(t) = Va(t)(t) =e! (t)Pf,(t)e(t)

t

n ‘/‘gﬁ+@_5%T(ﬂﬂ?ﬂweU%dﬂ

t—d(t)

0 t
d [ [T @) i)apas. G
Zr t+6
Let o(t) = k fort € [t,,tr41). Similar to (19)—(25), when
t € [ty,try1), we have

e_"_(t_”)Vk (tr)
e (=Vi(t,)

ke M™,

V() = Vao() = Vilt) < { peat’
(35)
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With the same procedure as in Theorem 1, we have the in-
equality (26) when ¢ = t¢,.. Using (26), (35) and N, (to,t) <
No + (t — t0)/T, lead to

V(t) <MNC,(t0,t) a+T+(t)—a_T_(t)V (to)(fO)
O{+ + @ =0 n
<ILA0 TH(t)—a T~ ()+72 1 my ot 0)(t0). (36)
Combining (29), (33) and (36), we get
V(t) < MNOe_(,,*(T+(t)+T_ (t)>+t;;0 In NVa(to)(tO)
]\Toe—((y*_%)(t—to)va(to)(to)

_a(t_tO)Vo'(to)(tO)'

=u
< plNoe (37
Therefore, we have

le()l* <

where a, b and ||e(t)||cl are defined the same as in Theorem 1.
This implies that the switched system (8) is exponentially stable
for any switching signal satisfying (29) and average dwell time
(33). Thus, we get that the synchronous solution of dynamical
network (1) with switching topology is locally exponentially
stable. This completes the proof. [ |

Similar to Corollary 1, we have the following criterion for the
delay-derivative-free conditions.

Corollary 2: Suppose Assumption 2 holds, and if (30) and
(31) both with Qx; = 0 and (32) hold, then the synchronous
manifold S of the delayed network (1) is locally exponentially
stable for any switching signal satisfying the condition (29) and
the average dwell time (33).

Proof: The proof is similar to that of Theorem 2. [ |

Remark 7: It is well known that a suitable average dwell
time can overcome the influence on the switched system caused
by switching between different stable subsystems [38]. So the
average dwell time is sufficient to guarantee the stability of
the synchronous states of the overall network when all subnet-
works in (3) are self-synchronizing. However, this is not the
case when there are some nonsynchronizing subnetworks in
(3). The existence of nonsynchronizing subnetworks may de-
stroy the synchronizability of the overall network. To overcome
it, we have to further specify the switching signal in addition
to average dwell time, i.e., constrain the ratio of the total ac-
tivation time of self-synchronizing and nonsynchronizing sub-
networks by inequality (29). The essence of this method is to
activate the self-synchronizing subnetworks a relatively long pe-
riod to counteract the increment of the value of Lyapunov func-
tional along the overall network caused by nonsynchronizing
subnetworks.

Remark 8: To reduce the conservativeness and get a better es-
timation of o™, we select different Lyapunov functionals for the
nonsynchronizing subnetworks from the ones for the self-syn-
chronizing subnetworks by using ¢® " (*=#) instead of ¢®~ (#—*)
in (18). The main conservativeness of the ratio bound (29) is
also from the inequalities scaling when deducing the LMIs (30),
(31) and (32). Here, we should note that o* € (a, o) is a des-
ignable parameter, so we can adjust the ratio (29) to a desirable
one to some extent by choosing distinct values of «*. But on
the other hand, this parameter is also associated with the com-
putation of 77, which is to say that one has to balance the ratio
bound (29) and the average dwell time bound 77 by tuning o*
in its admissible set.

Remark 9: As we mentioned in the introduction, fast
switching is not allowed in some real-world networks, and may

N0t et 2.
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shorten the actuator’s working period. In this case, the average
dwell time switching algorithm is preferable. But on the other
hand, average dwell time method can only apply to the case
where there is at least one self-synchronizing subnetwork. This
will prevent its application to the case where all subnetworks
are nonsynchronizing. When this situation happens, the av-
erage dwell time method will lose its power without auxiliary
equipment such as adding controllers to synchronize one of the
subnetworks. For the latter case, if fast switching is allowable,
then the synchronization of switched network may still be
achieved by sufficient fast switching between the candidate
subnetworks [25].

IV. GLOBAL EXPONENTIAL SYNCHRONIZATION

We consider the global synchronization problem in this sec-
tion. We only focus on a particular form of the delayed network
model

ii(t) = Azi(t) + f (z:(t))

N
+ 3O e (- d(t)

J=1

ieN. (38)

Obviously, the switched network (38) is composed by a
switching signal o (¢) and the following family of subnetworks:

N
+ kT (t—d(t),
j=1
ieN,

ii(t) = Azi(t) + f (2:(t))
keM (39)

where A is a constant matrix, Cy, 'y, and d(¢) are defined the
same as in Section IT; f(-) : R™ — R™ is a continuous nonlinear
function satisfying

1 (@) = f (s < v llwi(t) —

where v > 0 is a positive constant, s(t) =
Then the error systems are

€it) = Aei(t) + f (zi(t)) = f (s(1))

+Zc"(t>r we; (t—dt)+J, ieN @)

s, ieN
(1/N) S, @i(t).

(40)

where J = f(s(1))
Rewrite (41) as

é(t) = Ae(t) + Cope (t —d(t)) + F+J

whereA_IN®A Oat)—Cat ®Fa(t)F F(e7s7):
((f(z1) gf 22)=f(s) L, (f(aw) = fs)T)T e
R™ and ..... I e RN,

In the followmg, as in Sectlon II1, we also discuss the problem
in two cases, and give two global exponential synchronization
criteria for the switched network (38).

= (1/N) 3, (1)),

(42)

A. All Subnetworks Are Self-Synchronizing

When all subnetworks in (39) are exponentially synchro-
nized, we have the following theorem.

Theorem 3: Consider the switched network (38). For a given
constant o > 0, suppose Assumption 1 holds, and if there exist
a constant € > 0 and matrices Py; > 0, Qg; > 0, Zg; > 0, Yiq,

T}, and
X¥ X1
i = ) >
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with appropriate dimensions such that

4 ’gé Py TATTZM
o * 59 0 TARiL'g Zii
Qri = * *  —el, T ki <0,
* * * —T ki
1 €N, keM, (43)
X Xis Vi
O = . ¢ Thi >0,
* * e Y Lu;
ieN, keM. (44)
where
11_PkLA—|—A PkL+YkL+YkL+ka+TX11+E’yI
+ OlPki7
¢’f§ =i Pril'y — Yii + T + 7X 55,
M= — Ty — Ty — (1 —d)e " Qpi + 7 X053

then the synchronization manifold S is globally exponen-
tially stable for any switching signal with average dwell time
satisfying

1
T, >Tr=2F (45)
@
where p > 1 satisfies
pk < /Uﬁh Qk < NQH Zk < MZZ, Vk1leM (46)

and Py, Q, Z;. are defined the same as in Theorem 1, but with
Zp = 0 € R*xm,

Proof: Select the piecewise Lyapunov functional candidate
(17), and on each interval [t,,t,41), let o(t) = k. Obviously,
Vt € [ty, tr41) We have

Vik(t) = yi (O[AT Py + P Alyi(t)
1247 () Py [Akyk (t —d(t)) + Gy + j} @7)

where G), = Gile,s,t) = (Ul ® L,)F(e,s,t)=
(GL, G, ,GL)T with Gy = (u, ® L)F, J =
U, ®I,)J

Let W = y,;r(t)ij Due to the fact that U, is a

unitary matrix with wug = (ufy,ub, ek )T =
(1/V/N)(1,1,...,1)T forall k € M, we have
N
S uk=vN, i=1LkeM
o (48)
Zui:() 1€ N1, ke M.
=1
With y,; = 0 € R", then one gets
= (0T7yl:|:—27 s 7yl—crN) Pk
-
N N N
DT upnd Ty iy T
j=1 j=1 j=1
=0. (49)
So we have
Vir(t) =yi ([AT Py + P Alyi(t)
+ QyZ(t)Pk [Akyk (t — d(t)) + Gk] . (50)
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Vi < — aVar + 195 () Z1 7k (t)
t

- / 5T (8) Zuin(B)dP

t—d(t)

= — aVar + 7 [Aye(t) + Apyi (E — d(t)) + Gk]T
x Zi, [Ayr(t) + Ay (1 — d(t)) + Gy
t
- / i (8) Zain(9)A0, (5D
t—d(t)
where we use the properties that yk( )ATij =y (t -

d(t ))ATZkJ = G} ZyJ =J" ZyJ = 0, which are followed
by yx1 = 0 and Zx; = 0 directly. Moreover, we have

Var, < —aVay, + yf (6)Qryx(t) — (1 — d)e™"

Xy (t—d(t)) Qryx (t = d(t)) . (52)

From (40), we have G| Gy = F'F < ~%e'(t)e(t) =
72y, (t)yk(t). By S-Procedure [43], we get

Vi < Vg + Vo + Var — € [GL G — ¥yl Dye()] . (53)

With the same procedure as in Theorem 1 and y;; = 0, Zx; =
0, we have

V) +aV(t) <) [w;(t)ti)kiwki (t)

_ / Wl (t, B)Oriwki(t, B)dB

t—d(t)

(54)

whete () = (yT(0) yT(t = (1)), GT)T, wni(t,) =
(Yni(8), yps (t — d(t)),93;(B)) ", and
R IH‘FTATZ[”A ¢If%+T/\kiATZkiFk P-I-’T'ATZ]”‘
b= * A5 +T AT ZkiTk TARL] Zk

* * Tk —el,

By Lemma 1 and (43), we have @ki < 0 and
V({t)+aV(t) <0

Thus, we have

éuNOe_(

7)) [le(t0)|12

lle(D)I” <

where a, b, and ||e(¢)||.; are defined as in Theorem 1. There-
fore, we get that the synchronization manifold S of dynamical
network (38) with switching topology is globally exponentially
stable. The proof is completed. |

Remark 10: Generally, even though there does exita i > 1
satisfying Z; < [iZ; for positive semidefinite matrices Zj, and
7, defined as in Theorem 3, it is hard to say whether there exists
a u > 1 such that Z;, < pZ; for arbitrary different unitary
matrices Uy and U;, because the unitary transformations Uy ® I,
and U; ® I,, may change the zero eigenvalues of Zj, and Z; into
different positions. However, in our cases, we do not have such
a problem. Due to the special property (2) of the outer coupling
matrix Cf, we have u; = ux1 = (1/VN)(1,1,...,1)T. By
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simple calculation, we can get that there exists a unitary matrix
U = (1, %2,...,%x) € RV*N with ¢p; = u; such that

7 On n On —1n
(‘1/T®In)Zk(\1/®In):( x x(N~1) )

with Zk > 0, Vk € M. Then there exists a 1 > 1 such that
Z < uZ; which is equivalent to 7y, < pZ;.

B. Some Subnetworks Are Self-Synchronizing

Here, we consider global exponential synchronization of the
network (38) which is composed of both self-synchronizing and
nonsynchronizing subnetworks in (39). The criterion is stated as
follows.

Theorem 4: Consider the switched network (38). For given
constants = > 0 and at > 0, suppose Assumption 1 holds,
and if there exist a constant e > 0 and matrices Py; > 0, Qx; >
0, Zx; > 0, Yi;, Tk; and

X XY
xu= (N )20
with appropriate dimensions such that
ek A ATz
_ * 23_ 0 T)\kirk A%
P = % % —el, T ki <0
% % * —T ki
i€N, keMT, (55)
kit k’f§+ Py TAT Zi
N % 2; 0 T)\kv‘,rk Zi
Py = % % —el, T ki <0
% * * —T ki
ieN, keMT (56)
XHoXM O Y
Ori=| * XE T 20,
* x e Y I
where
K= = P+ AT Py + Yy + Yii + Qua + TXH + 69?1,
+ Ol_Pkiv
5™ = = T = T = (1= d)e™ " Qua + TXB,
Kt = PiA+ AT Po + Y + Yai + Qui + 71X + 9?1,
- a+Pki7
5 = — T = T, — (1 = d)Qui + X5

and @ = a~ for k € M™, otherwise & = 0. Then the syn-
chronization manifold S is globally exponentially stable for any
switching signal satisfying the condition (29) and the average
dwell time

1
T, >T = 1

— a

" . (58)
a* —«
where o, «, p and gb’fZ are defined as in Theorem 2, but with
Zr1 = 0 € R*™,

Proof: Select the piecewise Lyapunov functional (17) and
(18) when o(t) = k € M™, and (34) for o(t) = k € M™.
Combining the proof of Theorem 2 and Theorem 3, gives the
proof of Theorem 4 directly. Thus, it is omitted here. ]
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Remark 11: In Theorem 1 and Theorem 2, the obtained LMIs
(13) and (14) and (30), (31), and (32) are completely decoupled
from each other for the index « = 2,..., N. This is to say that
we can solve 2m (N — 1) and 3m(N — 1) independently rela-
tively lower dimensional LMISs to analyze the synchronizability
of the entire switched network, no matter how many nodes the
network has. So there is no obstacle to apply these results to a
large scale network. On the other hand, for the global synchro-
nization counter part, due to the existence of the nonlinear term
f(-) in the node dynamics (38), the LMIs obtained in Theorem 3
and Theorem 4 are related by a positive scaler ¢ for the index 3.
This will influence the application of those results to large scale
networks somehow.

V. SIMULATIONS

In this section, we will give three different examples to illus-
trate the main results obtained above, including a network using
the Lyapunov stable linear system as its nodes, a communica-
tion network with mobile agents, and a network consisting of
coupled chaotic systems. For simplicity, we assume that there
are only two subnetworks in all examples, i.e., M = {1,2},
and each subnetwork has 10 identical nodes, ie., N = 10. We
also assume that d(¢) = 0.005(1 — sin(¢)). So 7 = 0.01 and
d = 0.005 make the Assumption 1 hold.

Example 1: Consider a network (1) with each node being
a two-dimensional linear system. The isolate dynamics is de-

scribed by
_ 4
j::A:E:(OOS 8o>$

The system (59) is stable, but not asymptotically stable with
both eigenvalues +0.5¢ of A on the imaginary axis. Suppose
the outer coupling matrices C1, Cs are given below

(59)

-4 1 1 0 0 0 0 0 1 1
1 =41 1 0 0 0 0 0 1
1 1 =41 1 0 0 0 0 0
01 1 -4 1 1 0 0 0 0
| 00 1 1 -4 1 1 0 0 0
0 0 0 1 1 =41 1 0 0
00 0 0 1 1 -4 1 1 0
00 0 0 0 1 1 —4 1 1
1 0 0 0 0 0 1 1 —4 1
1 1.0 0 0 0 0 1 —4
-4 1 0 0 1 0 0 1 0 1
1 =21 0 0 0 0 0 0 0
01 -31 0 0 0 1 0 0
0O 0 1 -3 1 0 1 0 0 0
o= 1 00 1 =310 0 0 0
0O 0 0 0 1 =31 0 0 1
0 0 01 0 1 =31 0 0
1 0 1 0 0 0 1 —4 1 0
O 0 0 0 0 0 0 1 -2 1
1 0 0 00 1 0 0 1 -3

Since C and C5 are symmetric matrices, then there exist
two unitary matrices U; and U, such that UlT cCiUp = A =
diag{0, —1.76, —1.76, —4,—5, -5, —5, —5, —6.23, —6.23}
and Uy CoUy = Ay = diag{0,—-1.19,-1.38, -2,
—2.8,-3.38,-3.62,—3.86, —5.62, —6.15}. It is easy to
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Fig. 1. The synchronization error ||e||? and the decay rate bound of the sub-
network with {Cy,T'1}.

verify that U; # Us,. Assume that the inner coupling matrices

are
025 0 05 2
= < -1 0.25) » T2= <—0.1 0.5)'

By solving LMIs (13) and (14) repeatedly with different
values of o, we see that the two subnetworks with cou-
pling matrices {C7,T";1} and {C5,T'3} are both exponentially
self-synchronizing, and the best decay rate bounds we can
get are a1 = 0.867 and ay = 1.162, respectively. Choosing
a = min{ay,as} = 0.867, and solving the LMIs (13) and
(14), gives the corresponding matrices Py;, Qk; and Zy; with
k=1,2andi = 2,3,...,10. Thus, we can get = 4.072
and T = Inp/a = 1.6195. According to Theorem 1, the
synchronization manifold of the switched network is exponen-
tially stable under the average dwell time switching law with
T, > Ty.

Figs. 1-3 show the time evolution of the synchronization er-
rors ||e||? and the decay rate estimations of the two subnetworks
and the switched network with 7,, = 1.8195, respectively. From
Figs. 1 and 2, we see that the convergence rate estimations of
the two subnetworks are quite good. Moreover, the estimated
decay rate of the switched network is a — In pu/T;, = 0.1. How-
ever, Fig. 3 shows that the decay rate of the overall network is
at least 0.6. It is to say that this estimation is not as good as
the ones of the subnetworks, and the conservativeness for the
switched network’s decay rate is relatively large as we discussed
in Remark 5.

Compared to our estimation 7 = 1.6195 obtained from
Theorem 1, simulation shows that the switched network with
node (59) can still achieve synchronization under the average
dwell time switching signal with 7% ~ 1.275. So the theoretical
bound proposed in the paper has some conservativeness. How-
ever, as we discussed in Remark 6, those theoretical estimations
give an safety guide in practice.

Figs. 4 and 6 are the state responses of the switched network
under different switching signals o(t) with T, = 1.8195
and 7, = 1, which demonstrate that the average dwell time
switching scheme can guarantee synchronizability of the
overall switched networks, and meanwhile the relatively fast
switching will destroy the synchronizability, even when the
switching happens between two exponential synchronizable
subnetworks. The corresponding switching signals are drawn
in Fig. 5 and Fig. 7.
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Fig. 2. The synchronization error ||e||? and the decay rate bound of the sub-
network with {C>,T>}.
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Fig. 3. The synchronization error ||e||? and the decay rate bound of the
switched network with 7, = 1.8195.
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Fig. 4. The state responses ; of the switched network with T, = 1.8195.

Example 2: The consensus problems of a multiagent system
have important practical applications including cooperative
control of unmanned air vehicles, formation control of mobile
robots, control of communication networks, and flocking of
social insects [23]. Now we will try to use our results to analyze
consensus problems.

Consider a second order multiagent system, its ¢+th agent has
the dynamics as follows [44]:
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o (t)

1_

0 5 10 15 20 25 30 35 40
t
Fig. 5. The switching signal o(t) with T, = 1.8195.

50
401
30

0 5 10 15 20 25 30 35 40
t

Fig. 6. The state responses ; of the switched network with T,, = 1.

o (1)

1_

0 5 10 15 20 25 30 35 40
t
Fig. 7. The switching signal o(¢) with T, = 1.

(60)

where p;(t) € R is the position state, v;(t) € R is the velocity
state, and u;(¢) € R is the protocol. In [44], the linear consensus
protocol with constant time delay is used. Here we consider the
protocol with time-varying communication delay, which is de-
scribed as

ui(t) = —avi(t) + > 7 (pj (¢ — d(t)) — pi (t — d(1))) .

=1
' (61)
The topology switching is due to link failure or creation when
agents are moving [23].
It says that the consensus problem of multiagent system (60)
is solved if the states of the agents satisfy lim;_ . (p;(t) —
p;(t)) =0, and lim,; oo v;(t) = 0, Vi, j € N [44].
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Fig. 8. The synchronization errors e; of the self-synchronizing subnetwork.

0 5 10 15 20 25 30
t

Fig. 9. The synchronization errors e; of the nonsynchronizing subnetwork.

Similarly as in [44], let ;1 = 21}#(1 + pi, Tip = v, T =
(wi1,750)" andx = (2] , 29 ,...,7) ", one can get

i=(Iy® Az + (Cowy@T) x(t —d(t))

A:(]ﬁ 2),am F:<20>.
7 —3 a0

It is obvious that System (62) can be seen as a special case
of our model (1) with linear node dynamics, and consensus
problem of (62) can also be seen as a synchronization problem.
Here, for simplicity, only two subnetworks are considered, the
situation with more subnetworks can be analyzed similarly.
Suppose @ = 2. (1 and C are given as

(62)

where

-4 1 1 0 O O O 0 1 1
1 -4 1 1 0 O 0 O 0 1
11 -4 1 1 0 0 O O O
0o 11 -2 0 0 0O 0 0 O
Oy = o 0 1 0 -2 1 0 0 0 O
o 0 o0 0 1 -2 1 0 0 O
o 0 o O O 1 -3 1 1 O
o 0 0 0 O O 1 =3 1 1
1 0o 0o 0 0 0 1 1 -4 1
11 0 0 0O o0 0 1 1 -4
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10 15
t

Fig. 10. The synchronization errors e; of the switched network.

-4 1 1 0 0 0 0 0 1 1
1 -2-11 0 0 O O O0 1
1 -1-21 1 0 0 0 0 O
o 11 -3 0 1 0 O O O
Oy — o 0 1 0 -21 0 O 0 O
o o o 1 1 -2 1 -1 0 0
o 0o o o o 1 -3 1 1 0
o o o0 O o0 -1 1 -2 1 1
1 0 0 0 0O 0 1 1 -4 1
11 0 0 0O O 0 1 1 -4

Apparently, for the given subnetworks, the one with {Cq,T'}
is self-synchronizing, and the one with {C5, '} is nonsynchro-
nizing. See Figs. 8 and 9 for the synchronization errors of each
subnetwork. It is worth to mention that C5 has four negative
off-diagonal entries ¢3; = 3, = —1 and ¢33 = 3 = —1.
These negative connections may be caused by the disturbance,
environment noise or sensor failure of the corresponding agents.
And these negative entries make Cs have a positive eigenvalue
A = 0.0971. As we discussed in Remark 4, our analysis method
is still applicable to this kind of network. Solving LMIs (30),
(31), and (32) in Theorem 2 gives the associated positive ma-
trices Ppyi, Qi and Zy; with o~ = 0.85, at = 0.1. Then one
obtains p = 1.2. Let a* = 0.4. Theorem 2 shows that the net-
work (62) is exponentially synchronized if the switching signal
o(t) satisfy

T=(t) _ at +a*
inf =1.1111 63
t1§t0 T+(t) = a= —a* (63)
and the average dwell time
1
T, > TF = —2 = 0.4558, (64)
a

Fig. 10 gives the synchronization errors of the switched
network with a switching signal satisfying (63) and (64) which
is shown in Fig. 11 with T, = 0.456 and the activation time
of the self-synchronizing and nonsynchronizing subnetwork
being 7, and 1.1117,, respectively. Obviously, all the syn-
chronization errors do exponentially converge to zero, i.e., the
consensus problem of the multiagent system (60) is achieved
exponentially.

Example 3: In the above two examples, only linear systems
are considered as the node dynamics. Now let’s consider a more
complicated network which consists of interconnected modified
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The switching signal o(¢) with T, = 0.456.
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Fig. 12. Chaotic three-scroll attractors on the 1 — 2 plane.

Chua’s circuit. The single modified Chua’s circuit is described
by [45] and [46]

0 p 0 —pfi(z1)
t=Az+ f(x)=1 -1 1]|z+ 0
0 -4 0 0
where
g—g(xl — 2acy), 1 > 2acy,
filzy) =4 —bsin (Z= 4+ ), |z1] < 2ac,

g—g(xl + 2acy),

in which p > 0,8 > 0,a > 0, b > 0. In this example, we set
the parameters p = 9.5, 0 = 11, a = 1.6, b = 0.1, ¢ = 2, and
dy = m.From [46], it is directly to have that the modified Chua’s
circuit with the given parameters is a chaotic system which has
a 3-scroll attractor depicted in Fig. 12.

Suppose the inner coupling matrices I'y = I'y, = T' =
diag{1.5,1,1}, and the outer coupling C; is the same as in
Example 1, and C, is given as follows:

1 < —2acy

-10 1 0 0 O O O 0 O
o -1 60 1.0 O O O O O
1 0o -21 0 0 0 0 0 O
0o 11 -3 0 1 0O 0O 0 O
Oy = o o0 0 0 -1 1 0 0O 0 O
o o 0 1 1 -4 1 1 0 O
o 60 0 0 O 1 -3 1 1 O
o o o0 0 0 1 1 -4 1 1
o o o 0o 0 o0 1 1 =3 1
o o o0 0 0 O O 1 1 =2

It is easy to get that condition (40) is satisfied, and the sub-
network {C4,T'} is self-synchronizing, but the one {C5,T'} is
nonsynchronizing. Figs. 13 and 14 show the synchronization
errors of the subnetworks. Selecting o~ = 1.44, ot = 3.4
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Fig. 14. The synchronization errors ¢; of the nonsynchronizing subnetwork.
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Fig. 15. The synchronization errors ¢; of the switched network.
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Fig. 16. The switching signal o(¢) with T, = 0.11.

and solving LMIs (55), (56) and (57) in Theorem 4, we can get
the associated positive matrices Py;, Qk; and Z; to compute
1= 1.001.Let a* = 0.1. According to Theorem 4, the network
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(38) with modified Chua’s circuit as its nodes is exponentially
synchronized under the switching signal o (t) satisfying

T (t) _at+a*
f = 2.4476 65
gm T+(t) = a= —a* (65)
and the average dwell time
1
T,>T: =L =01 (66)

Fig. 15 gives the synchronization errors of the switched net-
work with a specified switching signal satisfying (65) and (66).
The switching signal is shown in Fig. 16, where T}, = 0.11 and
the activation time of the self-synchronizing and nonsynchro-
nizing subnetwork are T, and 2.44767T,,. Thus, we have that all
the synchronization errors exponentially converge to zero.

VI. CONCLUSION

In this paper, we presented a new model of a complex delayed
dynamical network with switching topology where the coupling
delays are time-varying. The problem of local and global expo-
nential synchronization of a class of such switched networks has
been investigated. By using the average dwell time method in
switched systems theory, for both cases: i) all subnetworks are
self-synchronizing and ii) not all subnetworks are self-synchro-
nizing, we have obtained delay-dependent sufficient conditions
in terms of LMIs and identified switching signals under which
the network is locally exponentially synchronized. We also dis-
cussed the global synchronization of the network which has a
special isolate dynamics. Similar to the local results, global con-
ditions were obtained for both of the cases. Finally, we gave sim-
ulation examples of delayed networks with each example having
two couple of different coupling matrices to demonstrate the ef-
fective of the proposed results.
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