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Abstract

This paper addresses the problem of minimizing the minimum eigen-
value of a trigonometric matrix polynomial. The contribution is to
show that, by exploiting Putinar’s Positivstellensatz and introducing
suitable transformations, it is possible to derive a nonconservative ap-
proach based on semidefinite programming (SDP) whose computa-
tional burden can be significantly smaller than that of an existing
method recently published. Other advantages of the proposed ap-
proach include the possibility of taking into account the presence of
constraints in the form of semi-algebraic sets and establishing tight-
ness of a found lower bound.

1 Introduction

Frequency-domain methods are playing a key role in studying control sys-
tems since many years. These methods exploit the frequency response of the
system, which is the evaluation of the transfer function onto the imaginary
axis (continuous-time systems) or onto the complex unit circle (discrete-time
systems), see for instance [1, 2].

A problem arising in frequency-domain methods consists of minimizing
the minimum eigenvalue of a trigonometric matrix polynomial. Indeed, this
problem can be met in system modeling, for instance when looking for an
approximation of a given systems, and in system design, for instance when
imposing bounds of the frequency response of the system.

A possible way of addressing this problem in the case of a scalar variable
is through the Kalman-Yakubovich-Popov lemma, see for instance [3]. For
the case of multiple variable and scalar trigonometric polynomials, a method
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based on sums of squares (SOS) of trigonometric polynomials has been pro-
posed in [4]. This method has been extended to the case of trigonometric
matrix polynomials in [5] where its application to strong stability analysis is
described. See also [6] which proposes a simplified method for trigonomet-
ric polynomials in two variables and describes its application to FIR filter
design.

This paper addresses the problem of minimizing the minimum eigenvalue
of a trigonometric matrix polynomial. The contribution is to show that, by
exploiting Putinar’s Positivstellensatz and introducing suitable transforma-
tions, it is possible to derive a nonconservative approach based on semidefi-
nite programming (SDP) whose computational burden can be significantly
smaller than that of an existing method recently published. Other advan-
tages of the proposed approach include the possibility of taking into account
the presence of constraints in the form of semi-algebraic sets and establish-
ing tightness of a found lower bound. The proposed approach is illustrated
by numerical examples which also include an application in the estimation
of reduced order models.

The paper is organized as follows. Section 2 introduces the problem for-
mulation and some preliminaries. Section 3 describes the proposed results.
Section 4 presents some illustrative examples. Lastly, Section 5 concludes
the paper with some final remarks.

2 Preliminaries

2.1 Problem Formulation

Notation: N,Z,R,C: sets of natural (including zero), integer, real, and com-
plex numbers; j: imaginary unit; ℜ(A), ℑ(A): real and imaginary parts of
A; Ā: complex conjugate of A; I: identity matrix (of size specified by the
context); AT , AH : transpose and complex conjugate transpose of A; Her-
mitian matrix A: a matrix satisfying A = AH ; ⋆: corresponding block in
Hermitian matrices; A > 0, A ≥ 0: positive definite and positive semidefi-
nite matrix A; λmin(A): minimum real eigenvalue of A; matrix polynomial:
a matrix whose entries are polynomials; det(A): determinant of A; ⊗: Kro-
necker product; ⌊a⌋: largest integer not greater than a; ⌈a⌉: smallest integer
not smaller than a; |a|: magnitude of a; mod(a, b); modulo between a and
b.

Let us denote the unit circle in C as

T = {z ∈ C : |z| = 1} . (1)
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We say that F : T n → C
m×m is a trigonometric matrix polynomial if

F (z) =
∑

k∈S

Fkz
k (2)

where S is a given finite subset of Z
n, Fk ∈ C

m×m for k ∈ S are given
matrices, and the notation zk stands for

zk =

n
∏

l=1

zkll . (3)

Moreover, we say that the trigonometric matrix polynomial F (z) is Hermi-
tian over T n if

F (z) = F (z)H ∀z ∈ T n. (4)

Problem. Let F : T n → C
m×m and gi : T

n → C, i = 1, . . . , nG, be
Hermitian trigonometric matrix polynomials over T n. The problem is to
solve

µ∗ = min
z∈G

λmin(F (z)) (5)

where G ⊆ T n is the semi-algebraic set

G = {z ∈ T n : gi(z) ≥ 0 ∀i = 1, . . . , nG} . (6)

�

2.2 SOS Matrix Polynomials

Here we briefly define SOS matrix polynomials and explain how they can
be investigated via LMIs. See also [7–14] and references therein for details.
For reasons that will become clear in the next section, we consider matrix
polynomials in 2n variables of size m×m.

Let us start by considering the real case. Let A : R2n → R
m×m be a

matrix polynomial. We say that A(v), v ∈ R
2n, is SOS if there exist matrix

polynomials Ai : R
2n → R

m×m, i = 1, . . . , k, such that

A(v) =
k

∑

i=1

Ai(v)
TAi(v). (7)

A necessary and sufficient condition for establishing whether A(v) is SOS
can be obtained via an LMI feasibility test. Indeed, A(v) can be expressed
as

A(v) = (I ⊗ b(v))T (C + L(α)) (I ⊗ b(v)) (8)
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where b(v) is a vector of monomials in v, C is a symmetric matrix, and L(α)
is a linear parametrization of the linear set

L =
{

L̃ = L̃T : (I ⊗ b(v))T L̃ (I ⊗ b(v)) = 0
}

(9)

with α free real vector. The representation (8) is known as square matrix
representation (SMR) and extends the Gram matrix method for (scalar)
polynomials to the matrix case. One has that A(v) is SOS if and only if
there exists α satisfying the LMI

C + L(α) ≥ 0. (10)

Next, let us consider the complex case. Let A : R2n → C
m×m be a matrix

polynomial. We say that A(v) is SOS if there exist matrix polynomials
Ai : R

2n → C
m×m, i = 1, . . . , k, such that

A(v) =

k
∑

i=1

Ai(v)
HAi(v). (11)

Similarly to the real case, this condition holds if and only if there exists α
satisfying the LMI

(

ℜ(C + L(α)) ℑ(C + L(α))
⋆ ℜ(C + L(α))

)

≥ 0 (12)

where C and L(α) are Hermitian and satisfy (8), in particular L(α) (with
α free real vector) is a linear parametrization of the linear set in (9) where
L̃ is Hermitian instead of symmetric.

3 Main Results

3.1 Proposed Approach

Let us express F (z) as in (2), and define its degree as

deg(F ) = max
k∈S
Fk 6=0

n
∑

l=1

|kl|. (13)

Assumption 1. For all i = 1, . . . , nG, deg(gi) is even. �
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Let us observe that Assumption 1 can be introduced without loss of
generality. Indeed, if deg(gi) is odd for some i, one can redefine such a gi(z)
as

gi(z) → gi(z)ci(z) (14)

where ci(z) : T
n → C is any trigonometric polynomial such that deg(ci) = 1

and

∀z ∈ T n

{

ci(z) = ci(z)
H

ci(z) > 0
(15)

which ensures that the newly defined trigonometric polynomial has even
degree and G is not modified.

Let us write z ∈ T n as
z = x+ jy (16)

where x, y ∈ R
n, and define v ∈ R

2n as

v = (xT , yT )T . (17)

Let us express F (z) as in (2), and introduce the matrix polynomial

∆(F, v) =
∑

k∈S

Fk

n
∏

σ=1

δ(v, k, σ) (18)

where

δ(v, k, σ) =

{

(vσ + jvσ+n)
kσ if kσ ≥ 0

(vσ − jvσ+n)
kσ otherwise.

(19)

Let us define the set

D =

{

R if ∆(F, v),∆(g1, v), . . . ,∆(gnG
, v) are real

C otherwise.
(20)

Let A : R2n → Dm×m be a matrix polynomial expressed as

A(v) =
∑

k∈N2n

Akv
k (21)

for some Ak ∈ Dm×m, and introduce

Θ(A, v) =
∑

k∈N2n

Ak

2n
∏

σ=1

θ(v, k, σ) (22)
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where
θ(v, k, σ) =

{

vkσσ if σ ≤ n or kσ ≤ 2

(1− v2σ−n)
⌊kσ/2⌋v

mod(kσ ,2)
σ otherwise.

(23)

Let us observe that Θ(A, v) is a matrix polynomial obtained by limiting to
2 the degrees in the variables vn+1, . . . , v2n while preserving the equivalence
with A(v) over T n. Lastly, let us define the polynomials

sl(v) = 1− v2l − v2l+n ∀l = 1, . . . , n. (24)

Theorem 1 One has
F (z) > 0 ∀z ∈ G (25)

if and only if there exist µ > 0 and Hermitian matrix polynomials Pi, Ql :
R
2n → Dm×m, i = 1, . . . , nG and l = 1, . . . , n, such that

A(v), P1(v), . . . , PnG
(v) are SOS (26)

where
A(v) = Θ(A0, v) (27)

and

A0(v) = ∆(F, v)− µI −

nG
∑

i=1

∆(gi, v)Pi(v)

−

n
∑

l=1

sl(v)Ql(v).

(28)

Moreover, without loss of generality (i.e., without introducing conservatism),
Pi(v) can be chosen to contain only monomials vk that satisfy

kσ ≤ 2 ∀σ = n+ 1, . . . , 2n (29)

and Ql(v) can be chosen to contain only monomials vk that satisfy

{

kσ ≤ 2 ∀σ = n+ 1, . . . , 2n
kl+n = 0.

(30)

Consequently, the Gram matrices of the matrix polynomials in (26) can be
built with respect to vector of monomials vk that satisfy

kσ ≤ 1 ∀σ = n+ 1, . . . , 2n. (31)
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Proof. “⇐” Suppose that (26)–(28) hold. It follows that A(v), P1(v), . . . , PnG
(v)

are positive semidefinite for all v ∈ R
2n. Let us observe that F (z) = ∆(F, v)

and gi(z) = ∆(gi, v). Moreover,

z ∈ G ⇐⇒ v ∈ V

where
V = {v ∈ R

2n : ∆(gi, v) ≥ 0 and
sl(v) = 0 ∀i = 1, . . . , nG ∀l = 1, . . . , n}.

Since A(v) = A0(v) for all v ∈ V, it follows that A0(v) ≥ 0 for all v ∈ V.
This implies that F (z) > 0 for all z ∈ G.

“⇒” Suppose that (25) holds. Let us observe that G is compact because
bounded (being a subset of T n) and closed (since T n is closed and the
polynomial inequalities in (6) are not strict). Hence, it follows that there
exists µ1 > 0 such that

F (z) ≥ µ1 ∀z ∈ G.

Following the previous part of the proof, it follows that

∆(F, v) ≥ µ1 ∀v ∈ V.

Analogously to G, one has that V is compact. Moreover, the polynomials
∆(gi, v) and sl(v) have even degree and their highest degree homogeneous
parts do not have common zeroes in R

2n except 0. From Putinar’s Posi-
tivstellensatz, see Theorem 1.4 in [15], it follows that there exist µ > 0 and
matrix polynomials Pi(v) and Ql(v) such that A0(v) and P1(v), . . . , PnG

(v)
are SOS.

Next, let us show that, through substitutions v2l+n = 1 − v2l , it is possi-

ble to transform A0(v) into a SOS matrix polynomial whose monomials vk

satisfy (29). Since A0(v) is SOS, one can write

A0(v) =
k

∑

i=1

A0i(v)
HA0i(v)

for some matrix polynomials A0i : R
2n → Dm×m. Let us define

A1(v) =

k
∑

i=1

A1i(v)
HA1i(v)

where A1i(v) is obtained from A0i(v) with the transformation (22)–(23)
where the condition kσ ≤ 2 is replaced by kσ ≤ 1. It follows that A1(v) is
SOS and

A1(v) = A0(v) ∀v ∈ V.
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Moreover, there exist matrix polynomials Q̃l(v) such that

A1(v) = A0(v) +

n
∑

l=1

sl(v)Q̃l(v).

Since the monomials vk of A1(v) satisfy (29), one has

Θ(A1, v) = A1(v),

which implies that there exist µ > 0 and matrix polynomials Pi(v) and
Ql(v) → Ql(v) + Q̃l(v) such that A(v) is SOS. In particular, its Gram
matrix can be built with respect to vector of monomials of the form vk

where each k satisfies (31). The same procedure also shows that Θ(Pi, v),
i = 1, . . . , nG, can be assumed SOS, and that their Gram matrices can be
reduced according to (31). Lastly, let us observe that Pi(v) and Ql(v) can
be chosen to satisfy (29)–(30) because the monomials vk that do not satisfy
these conditions do not add degrees of freedom to A(v). �

Theorem 1 provides an LMI condition for establishing whether (25)
holds. This condition is sufficient for any degree of Pi(v) and Ql(v), and
also necessary for a sufficiently large degree.

This theorem also states that Pi(v) and Ql(v) do not need to contain all
monomials according to (29)–(30). In particular, the degree on the imag-
inary part of z (i.e., vn+1, . . . , v2n) is not greater than 2 according to (29)
and the first line in (30). Also, the degree on the imaginary part of zl (i.e.,
vl+n) is 0 for Ql(v) according to the second line in (30).

Moreover, the theorem states that the Gram matrices of the Hermitian
matrix polynomials in (26) can be built with respect to reduced vectors of
monomials according to (31), in particular the degree on the imaginary part
of z is not greater than 1.

In order to clarify with a simple example why Pi(v) and Ql(v) do not
need to contain all monomials according to (29)–(30), let us consider, for
n = 1 and m = 1, Q1(v) of degree 2 parametrized by

Q1(v) =
∑

k∈N2

k1+k2≤2

akv
k

where ak ∈ R. It follows that

Θ(s1Q1, v) = s1(v)(a00 − a02 + a10v1 + (a20 + a02)v
2
1)
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which means that a01 and a11 do not affect Θ(s1Q1, v), while a02 can be
considered null by redefining a00 and a20. Hence, the monomials v2, v1v2
and v22 do not need to be introduced in Q1(v).

For chosen degree of the matrix polynomials Pi(v) and Ql(v), let us
define the SDP

µ̂ = sup
µ,Pi(v),Ql(v)

µ

s.t. (26)–(31) hold.
(32)

From Theorem 1 it turns out that

µ̂ ≤ µ∗. (33)

Once that the lower bound µ̂ has been computed, a question arise: is
this lower bound tight? In order to answer this question, let us define the
function ξ : R2n → C

n as

ξ(v) = (v1 + jvn+1, . . . , vn + jv2n)
T . (34)

Theorem 2 One has
µ̂ = µ∗ (35)

if and only if there exists v ∈ R
2n such that







λmin(Â(v)) = 0
λmin(F (ξ(v)) = µ̂

ξ(v) ∈ G

(36)

where Â(v) is the matrix polynomial A(v) evaluated for the optimal values
of the variables in (32). Moreover, ξ(v) with such a v is a minimizer of the
original optimization problem (5).

Proof. “⇐” Suppose that (36) holds. Let us define

z = ξ(v).

Since z ∈ G and λmin(F (z) = µ̂, it follows that µ̂ ≥ µ∗. From (33) we
conclude that (35) holds.

“⇒” Suppose that (35) holds. Since G is compact (see proof of Theorem
1), it follows that there exists a minimizer z of (5). Define

v =
(

ℜ(z)T ,ℑ(z)T
)T

.
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It follows that the second and third conditions in (36) hold since

ξ(v) = z.

Moreover, let Â0(v), P̂i(v), Q̂l(v), µ̂ be A0(v), Pi(v), Ql(v), µ evaluated for
the optimal values of the variables in (32). One has

Â0(v) = ∆(F, v) − µ̂I − µ̂I −

nG
∑

i=1

∆(gi, v)P̂i(v)

−

n
∑

l=1

sl(v)Q̂l(v)

≤ ∆(F, v) − µ̂I

since µ̂ = 0, ∆(gi, v) ≥ 0, P̂i(v) ≥ 0, and sl(v) = 0. Since (35) holds and
F (z) = ∆(F, v), one has that

det(∆(F, v) − µ̂I) = 0.

Let us observe that
Â0(v) = Â(v)

because sl(v) = 0 for all l = 1, . . . , n. Moreover,

Â(v) ≥ 0

which implies that the first condition in (36) holds. �

Theorem 2 provides a sufficient and necessary condition for establishing
whether the lower bound µ̂ is tight based on the construction of a minimizer
of the original optimization problem (5). Specifically:

1) one looks for vectors v such that the first condition in (36) holds.
Since Â(v) is positive semidefinite, this is equivalent to the existence
of w ∈ Dm, w 6= 0, such that

b(v)⊗ w ∈ ker(Ĉ) (37)

where Ĉ is the Gram matrix of Â(v) obtained from (32) and b(v) is
the corresponding vector of monomials. The computation of such v
and w can be addressed via linear algebra as explained in [16] (specif-
ically, via Cholesky factorizations, column echelon forms, and Schur
decompositions) or in [17] (specifically, via pivoting operations and
computing the roots of univariate polynomials);
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2) then, one verifies if, for any of such vectors v, the second and third
conditions in (36) hold;

3) if yes, the lower bound µ̂ is tight and ξ(v) is a minimizer of the original
optimization problem (5).

Let us mention that conditions for establishing tightness in optimization
over polynomials have been proposed such as the flat truncation (see for
instance [18]), which consists of checking whether the rank of the moment
matrix stabilizes, and it is always sufficient and almost necessary. With
respect to the flat truncation, the condition of Theorem 2 requires some
additional computations to determine the minimizer, however this results in
a condition that is always necessary and sufficient, moreover it also provides
a minimizer of the original optimization problem (5).

3.2 Numerical Complexity

Here we compare the numerical complexity of the proposed approach with
that of the existing method in [5] (we have chosen this method because it has
been published recently, hence it is expectable that it is competitive with
respect to other ones). The method in [5] allows one to solve the original
optimization problem (5) in the unconstrained case, i.e., nG = 0.

In [5], the positive definiteness of the trigonometric matrix polynomial
F (z) is ensured by looking for a scalar µ > 0 and a Gram matrix Z = ZH

satisfying the LMI







(

ℜ(Z) ℑ(Z)
⋆ ℜ(Z)

)

− µI ≥ 0

F (z) = (I ⊗ h(z))H Z (I ⊗ h(z))

(38)

where h(z) is a vector containing all monomials in z of degree not greater
than dhv, where the integer dhv satisfies dhv ≥ deg(F ). Let us observe that
this method does not require to substitute the complex variable z with its
parametrization (16) obtained through the real variables x and y.

For the proposed approach, the LMI certifying the SOS condition (27)
is built as explained in Section 2.2. The vector of monomials b(v) used to
define the Gram matrix of A(v) contains all monomials in v of degree not
greater than d that satisfy (31), where the integer d satisfies d ≥ ⌈deg(F )/2⌉.
The multipliers Ql(v) have degree 2(d− 1) and satisfy (26).

Theorem 3 Let us consider the case of unconstrained trigonometric poly-
nomials (i.e., m = 1 and nG = 0). For the method in [5], the size of the
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LMI and the number of independent real LMI variables in (38) are ζhv× ζhv
and ηhv, where

ζhv = 2
(n + dhv)!

n!dhv!
(39)

and

ηhv =
1

4
ζ2hv − φ1 + 1 (40)

where φ1 is the number of vectors k ∈ Z
n that satisfy















k = k+ − k−

k+, k− ∈ N
n

k+1 + . . . + k+n ≤ dhv
k−1 + . . . + k−n ≤ dhv.

(41)

For the proposed approach in Section 3.1, the size of the LMI and the number
of independent real LMI variables are ζ × ζ and η, where

ζ =

min{n,d}
∑

i=0

(n+ d− i)!

n!(d− i)!

n!

(n − i)!i!
(42)

and

η =
1

2
ζ(ζ + 1)− φ2(n, d) + nφ2(n − 1, d− 1) + 1 (43)

where φ2(n, d) is the number of vectors k ∈ N
2n that satisfy

{

kσ ≤ 2 ∀σ = n+ 1, . . . , 2n
k1 + . . .+ k2n ≤ 2d.

(44)

Proof. First, (39) holds because ζhv is the number of monomials in n vari-
ables of degree not greater than dhv, which has to be doubled since the real
LMI has double size than the complex Gram matrix Z from (38). Then, (40)
holds because the number of independent real LMI variables is the number
of independent entries of Z, i.e. ζ2hv/4, minus the number of monomials
(in the extended variable (z, (̄z))) that can be generated by the product
h(z)HZh(z) for some Z, i.e. φ1, plus one for µ.

Next, (42) holds because ζ is the number of monomials in 2n variables of
degree not greater than d where n variables have powers not greater than 1
(in particular, (n+d−i)!

n!(d−i)! is the number of monomials in n variables of degree

not greater than d − i, and n!
(n−i)!i! is the number of monomials in n vari-

ables of degree i with powers not greater than 1). Then, (43) holds because
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the number of independent real LMI variables is the number of independent
entries of the Gram matrix of A(v), i.e. ζ(ζ + 1)/2, minus the number of
monomials that can be generated by the product b(v)TCb(v) for some C, i.e.
φ2(n, d), plus the independent coefficients of the matrix polynomials Ql(v),
i.e. nφ2(n− 1, d− 1), plus one for µ. �

Tables 1–2 show the quantities ζhv, ηhv, ζ and η found in Theorem 3.
The degrees dhv of the method in [5] and d of the proposed approach are set
in order to generate trigonometric polynomials of the same degree deg(F ),
i.e.

{

dhv = deg(F )

d = ⌈deg(F )/2⌉.
(45)

n \ deg(F ) 1 2 3 4 5 6

1 4 6 8 10 12 14
2 6 12 20 30 42 56
3 8 20 40 70 112 168
4 10 30 70 140 252 420

(ζhv)

n \ deg(F ) 1 2 3 4 5 6

1 3 3 5 5 7 7
2 5 5 13 13 25 25
3 7 7 25 25 63 63
4 9 9 41 41 129 129

(ζ)

Table 1: Size of the LMI for the method in [5] (ζhv) and for the proposed
approach (ζ).

4 Examples

This section provides some illustrative examples of the proposed conditions.
The SDPs are solved with the toolbox SeDuMi for Matlab [19] on a standard
PC (Windows 7, Intel Core 2, 3 GHz, 4 GB RAM).
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n \ deg(F ) 1 2 3 4 5 6

1 2 5 10 17 26 37
2 3 18 64 165 351 658
3 4 46 254 917 2576 6134
4 5 95 755 3650 13126 38780

(ηhv)

n \ deg(F ) 1 2 3 4 5 6

1 2 2 7 7 16 16
2 3 3 52 52 247 247
3 4 4 200 200 1684 1684
4 5 5 547 547 7261 7261

(η)

Table 2: Number of independent real LMI variables for the method in [5]
(ηhv) and for the proposed approach (η).

4.1 Example 1

Let us start by considering (5) with n = 4, nG = 0, and











F (z) = E(z) + E(z)H

E(z) = jz1z2z3z4 +

4
∑

i=1

(izi + z4i ).

First, we compute the lower bound µ̂ in (32). The degree of the multipliers
Ql(v) and the vector of monomials used to define the Gram matrix of A(v)
are chosen as explained in Section 3.2 with the smallest admissible degree d
(i.e., d = 2). We find

µ̂ = −24.966.

The size of the LMI is 41×41, the number of independent real LMI variables
is 547, and the computational time is 1.1 seconds.

Second, let us establish if the found lower bound is tight. We find that
(36) holds with

v = (−0.734,−0.760,−0.784,−0.812,
−0.680,−0.650,−0.621, 0.584)T .

Hence, from Theorem 2 we conclude that µ̂ is tight, and ξ(v) is a minimizer
of the original optimization problem (5).
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For comparison we test the method in [5] solving (38) with the smallest
admissible degree dhv (i.e., dhv = 4), however our Matlab runs out of memory
(the number of independent real LMI variables is 3650 as shown by Table
2).

4.2 Example 2

Here we consider an application in the estimation of reduced order models.
Specifically, the problem consists of determining a polynomial p̂(z) in a
chosen class A that approximates a given polynomial p(z) on a region G of
T n to the best achievable accuracy, i.e.,

γ∗ = inf
γ,p̂(z)

γ

s.t.

{

|p(z)− p̂(z)| < γ ∀z ∈ G
p̂(z) ∈ A.

We choose














p(z) = 0.4 + j0.1z2 + 0.3z21 − 0.4z1z2 + 0.2z41 + j0.3z42
G =

{

z ∈ T 2 : ℜ(z1) ≥ 0.5
}

A : set of polynomials in z of degree 1
with real coefficients.

Let us observe that the condition |p(z)− p̂(z)| < γ for all z ∈ G can be
equivalently rewritten as

F (z) > 0 ∀z ∈ G

by defining

F (z) =

(

γ p(z)− p̂(z)
⋆ γ

)

.

Moreover, the region G can be expressed as in (6) by choosing nG = 1 and

g1(z) =
(

z1 + z−1
1 − 1

) (

3− z1 − z−1
1

)

(observe that this choice of g1(z) ensures that Assumption 1 holds).
First, we solve the LMI feasibility test (26)–(31) letting γ and the coef-

ficients of p̂(z) be variables. The degree of the multipliers Pi(v) and Ql(v)
are chosen as the largest ones for which A(v) has its minimum degree. We
find the upper bound of γ∗ given by

γ̂ = 0.913
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which is achieved by

p̂(z) = 0.193 + 0.263z1 − 0.253z2.

The sizes of the LMIs are 52 × 52 and 20 × 20, the number of independent
real LMI variables is 620, and the computational time is 1.5 seconds.

Second, by following a strategy similar to the one given in Theorem 2,
we find that this upper bound is tight. Indeed,

z =

(

0.989 − j0.149
−0.450 − j0.893

)

⇒ |p(z)− p̂(z)| = γ̂.

It is interesting to observe that, removing the constraint ℜ(z1) ≥ 0.5
(i.e., considering G = T 2), the solution would change. In particular, one
would obtain γ̂ = 1.171.

5 Conclusions

The contribution of this paper is to show that, by exploiting Putinar’s Pos-
itivstellensatz and introducing suitable transformations, it is possible to de-
rive a nonconservative approach based on SDP whose computational burden
can be significantly smaller than that of an existing method recently pub-
lished. Other advantages of the proposed approach include the possibility of
taking into account the presence of constraints in the form of semi-algebraic
sets and establishing tightness of a found lower bound.
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