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Abstract 

An electrically conductive interface crack with a contact zone in a magnetoelectroelastic (MEE) 

bimaterial system is considered. The bimaterial is polarized in the direction orthogonal to the crack 

faces and is loaded by remote tension and shear forces as well as electrical and magnetic fields parallel 

to the crack faces. It is assumed that the electrical field inside the crack faces is equal to zero and the 

magnetic quantities are continuous across the crack faces. Using special expressions of 

magnetoelectromechanical quantities via sectionally-analytic functions proposed in this paper, a 

combined Dirichlet-Riemann and Hilbert boundary value problem is formulated and solved analytically. 

Explicit analytical expressions for the characteristic mechanical, electrical and magnetic parameters are 

presented. A simple transcendental equation is derived for the determination of the contact zone length. 

Stress, electric field and magnetic field intensity factors and the contact zone length are found for 

various loading cases. A significant influence of the electric field on the contact zone length, stress and 

electric field intensity factors is observed. Magnetoelectrically permeable conditions in the crack region 
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are also investigated and comparisons of different crack models are performed. Results presented in 

this paper should have potential applications to the design of multilayered magnetoelectroelastic (MEE) 

structures and devices. 

 

Keywords: Electrically conductive interface crack; contact zone; magnetoelectroelastic material; field 

intensity factor 

1. Introduction 

As new multifunctional materials, magnetoelectroelastic (MEE) materials have found increasing 

applications in electronic technology, ultrasound technology, intelligence projects, as well as in other 

advanced smart structures, owing to their special magneto-electric coupling effect. However, MEE 

materials are usually brittle, possessing low fracture toughness and high imperfection sensitivity. These 

characteristics make the MEE devices susceptible to the formation of imperfections, such as cracks, 

during manufacture or service life and further lead to structural performance failure. Therefore, there 

has been tremendous interest in studying the fracture and failure behaviors of such materials (Zhou et 

al., 2004; Gao et al., 2004; Hu and Li, 2005; Feng et al., 2006; Feng and Su, 2006; Feng et al., 2007; 

Yong and Zhou, 2007; Wang et al., 2008; Li, 2001; Gao et al., 2003; Sih et al., 2003; Tian and Gabbert, 

2005; Hu and Li, 2005; Zhou et al., 2007; Wang and Mai, 2007; Zhao and Fan, 2008; Singh et al., 2009; 

Hou et al., 2009; Chen, 2009; Zhong et al., 2009; Wang et al., 2010; Zhong and Zhang, 2010; Sladek et 

al., 2011; Sladek et al., 2012; Zhao et al., 2013; Han and Pan, 2013). In engineering practice, layered 

structures are very common. In such structures, interface delamination is probable, which will result in 

interfacial cracks. This is the main reason behind structural failure. In the past couple of decades, many 

researchers have studied the interface crack problems of MEE materials (Gao and Noda, 2004; Li and 
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Kardomateas, 2007; Zhao et al., 2008; Herrmann et al., 2010; Zhu et al., 2010; Feng et al., 2011; Ma et 

al., 2012). 

On the other hand, electrically conductive cracks are very likely to form due to an extremely high 

local electric field inside the crack, since the dielectric permeability of the filling materials, such as air, 

is usually much less than that of MEE materials. In addition, electrode stratification or electrode-matrix 

debonding can often lead to the development of conductive cracks. When a conductive crack is loaded 

by an electrical and/or magnetic field parallel to the crack, electric charges in the conductive crack 

surfaces will rearrange themselves to develop an opposite field with the same magnitude, meaning that 

the electric field inside the conductive crack remains zero. Consequently, the charges in the upper and 

lower crack surfaces near the crack tip have the same sign. The phenomenon of these charges repelling 

each other has the effect of promoting crack propagation (Zhang et al., 2007). Therefore, the study of 

conductive cracks plays an important role in advancing our understanding of the failure behavior of 

MEE materials.    

Moreover, for some combinations of magnetoelectromechanical loads, a crack between dissimilar 

MEE materials can develop a crack face contact zone. The contact zone may exert cardinal influence 

on magnetoelectromechanical fields in the whole crack region, especially at the crack tips. In such 

cases, applying the classic Griffith crack model (without considering the contact zone) would lead to a 

physically unrealistic overlapping of the crack faces and an introduction of a false stress concentration 

near the crack tip. The aim of the contact zone is to eliminate these crack face overlapping zones and to 

determine the true open crack formed and the corresponding fracture parameters. Recently, Herrmann 

et al. (2012) and Ma et al. (2012) for the first time extended the contact zone model to interface crack 

problems of MEE materials, whereupon the oscillating singularity on the crack tip is eliminated. 

 However, to our best knowledge, an electrically conductive crack in an MEE bimaterial system 

has not been studied yet, despite the possibility of the appearance of large contact zones for such cracks 
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under the action of electric and magnetic fields. This situation is significantly different from the 

aforementioned cases of the interface crack models proposed by Herrmann et al. (2010) and Ma et al. 

(2012), in which electrical and/or magnetic loads are perpendicular to the crack face and exert only a 

small influence on crack face contact. In the present study, we consider a new model, namely an 

electrically conductive crack with a frictionless contact zone in an MEE bimaterial system under the 

action of mechanical loading as well as the electrical and magnetic fields parallel to the crack faces. 

The expressions for contact zone length, stress intensity factors as well as electrical and magnetic field 

intensity factors are derived. Numerical results demonstrate that the contact zone indeed exists and can 

be found mathematically. Additionally, a significant influence of the electric field on the length of the 

contact zone and other fracture parameters is observed. These obtained results and/or conclusions could 

be of particular interest to the analysis and design of smart sensors/actuators composed of 

magnetoelectroelastic composite laminates. 

2. Basic equations 

The governing equations and general solutions for MEE half-spaces in a Cartesian coordinate 

system are consistent with those in Feng et al. (2011). Hence, for brevity, those equations will not be 

presented in this paper.  

For the following analysis related to the conducting crack, it is convenient to introduce the vectors 

 
T

1 2 3 3 3, , , ,u u u D B  C ,  
T

31 32 33 1 1, , , ,E H  Y , (1) 

where 1u , 2u  and 3u  are the mechanical displacement components;  1E and 1H  are the components of 

the electrical field and the magnetic field respectively; 31 , 32  and 33  are the components of the 

stress; 3D  and 3B  are the components of the electrical displacement and the magnetic induction 
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respectively and the prime means the differentiation on 
1x . Combined with the general solutions, these 

vectors can be written in the form (Loboda et al., 2014) 

   z z  C Mf Mf ,  (2) 

   z z  Y Nf Nf ,  (3) 

where             
T

1 1 2 2 3 3 4 4 5 5, , , ,z z z z z zf f f f f f ,  1 3 1,2, ,5j jz x p x j    and the matrices 

M and N are found by means of the reconstruction of the matrices A and B in Feng et al. (2011). They 

can be expressed as 

 
T

1 2 3 4 5, , , ,j j j j ja a a b bM ,  
T

1 2 3 4 5, , , , , 1,2,...,5j j j j jb b b a a j   N .  (4) 

 

3. Statement of the problem 

Figure 1 shows an electrically conducting crack located at  1c x b  , 3 0x   between two semi-

infinite MEE half-spaces x3 > 0 and x3 < 0 with material properties defined by the following material 

constants  (1)

ijksc , (1)

ikse , (1)

iksh , (1)

isd , (1)

is , (1)

si  and (2)

ijksc , (2)

ikse , (2)

iksh , (2)

isd , (2)

is , (2)

si , respectively. The half-

spaces are assumed to be loaded at infinity with uniform stresses ( )

33 0

m  , ( )

31 0

m  , electrical field 

( )

1 0

mE E  and magnetic field ( )

1 0

mH H  (where m=1 stands for the upper domain and m=2 for the 

lower domain). 

Furthermore, the crack surfaces are assumed to be traction-free for  1 1,x c a L    whereas  they  

are  in  frictionless  contact  for  1 2,x a b L  , and the position of Point a is arbitrarily chosen for the 

time being. It has been shown that the longer contact zone develops at the right crack tip for the shear 

stress at infinity 0 0   if the lower material is softer than the upper one and it develops for 0 0   in the 

opposite case (Loboda, 1998; Herrmann et al, 2001). Also it is revealed by Dundurs and Gautesen 



 6 

(1998) and Kharun and Loboda (2003) that neglecting the left short contact zone, the oscillating 

singularity at the left crack tip will not significantly influence the stress and strain fields at the right 

crack tip. Therefore, in the present study only the contact zone at the right crack tip is considered. 

Certainly, a contact zone at the left crack-tip can be treated similarly. 

Since the load and the displacement 
2u  of the vector-function  1 2 3, , , ,u u u   , in which   and 

  are the electrical potential and magnetic potential respectively, decouples in the  1 3,x x -plane from 

the components  1 3, , ,u u   , in the following sections, our attention will be focused on the 

components  1 3, , ,u u    in a generalized plane strain condition. 

Thus, for the present interface crack problem, the continuity and boundary conditions at the 

interface can be written in the following form: 

   1 1,x x      C 0 Y 0 ,  1 ,x c b ,  (5a) 

         ( ) ( ) ( )

13 1 33 1 1 1 1 1 3 1,0 0, ,0 0, ,0 0, 0, 0m m mx x E x H x B x            , 1 1x L , (5b) 

           ( ) ( )

3 1 13 1 33 1 1 1 1 1 3 10, ,0 0, 0, ,0 0, 0, 0m mu x x x E x H x B x                     , 1 2x L , 

(5c) 

where  

          

                

T

1 1 1 3 1 3 1 3 1

T

1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1

, , ,

,0 ,0 , ,0 ,0 , ,0 ,0 , ,0 ,0 ,

x u x u x D x B x

u x u x u x u x D x D x B x B x       

                   

       

C
  

(6a) 

          

                

T

1 31 1 33 1 1 1 1 1

T

31 1 31 1 33 1 33 1 1 1 1 1 1 1 1 1

, , ,

,0 ,0 , ,0 ,0 , ,0 ,0 , ,0 ,0 ,

x x x E x H x

x x x x E x E x H x H x

 

          

                  

    

Y

(6b) 
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     3 1 3 1 3 1,0 ,0u x u x u x     .   (6c) 

In Eqs. (5) and (6), square brackets mean the jump of the correspondent function through material 

interface, and the signs “+” and “-” denote the upper and lower parts of the interface. Additionally, it 

has been shown that for an electrically conductive crack the total electric charge on the crack faces may 

significantly influence the fracture parameter (Ru et al., 2000; Loboda and Mahnken, 2011; Knysh et al, 

2012). In the present study, it is assumed that the total electric charge on crack faces is zero (Zhang et 

al., 2004; Gao et al., 2006), namely,   

  3 1 1d 0

b

c

D x x    .   (7) 

4. The MEE solution 

Similar to Loboda et al. (2014), from Eqs. (2), (3) and (5), the following expressions at the 

interface are obtained:  

     1 1 1x x x     C W W ,   (8) 

     (1)

1 1 1,0x x x  SW SWY ,   (9) 

where           1 3 4 5, , ,z W z W z W z W z


W  is an introduced unknown vector function, and 

   1 1 i0 ,x x  WW     1 1 i0x x  WW . The matrix S  is reduced from the known matrix S , 

defined as (1) 1S N D ,  
1

(1) (2) (2) (1)


 D M M N N , by removing its second row and column. The 

matrix S  has the following structure (Loboda et al., 2014): 

11 13 14 1511 13 14 15

31 33 34 3531 33 34 35

41 43 44 4541 43 44 45

51 53 54 5551 53 54 55

i i i

i

i i i

i i i

s s s sS S S S

s s s sS S S S

s s s sS S S S

s s s sS S S S

   
   
    
   
   
    

S , (10) 
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where all ijs  are real and 31 13s s  , 41 14s s  , 51 15s s  , 43 34s s , 53 35s s , 54 45s s . Using the 

proposed expressions (8) and (9), many mixed mode problems for MEE bimaterials can be solved. 

These expressions are different from the traditional expressions of the magnetoelectromechanical 

quantities via sectionally analytic functions (Herrmann et al., 2010; Ma et al., 2012), because the third 

and fourth components of the vectors C  and Y  and the corresponding entries of the matrices M and N 

are permuted compared to the aforementioned expressions. It  is  important  to  note  that  the  condition 

   (1) (2)

1 1,0 ,0x xY Y  holds true for  1 ,x    . Therefore, Eqs. (8) and (9) are convenient for 

analyzing mixed problems provided that the components of the vector Y  are continuous throughout 

the plane 3 0x  . Moreover, by combining the boundary condition at infinity with Eqs. (8) and (9), it is 

easily found that     
1

5 1 50 0
4

W x W
   S S Y , where   

1

T

0 0 0 0 0, , ,x E H  Y Y .   

Taking into account the fact that the magnetic quantities are continuous across the crack region, i.e., 

 1 1 0H x    ,  3 1 0B x     and introducing a row matrix  1 3 4, ,R R RR  and considering a product 

 (1)

1
ˆ ,0xRY  with         (1) (1) (1) (1)

1 31 1 33 1 1 1
ˆ ,0 ,0 , ,0 , ,0x x x E x 



Y , the following relations can be 

obtained from Eqs. (8) and (9):  

     (1)

1 1 1
ˆ ,0x x x   RY F F Rh ,   (11) 

where 

 

 

 

 

1

3

4

W z

z W z

W z

 
 

  
 
 

F T , 

15 50

45 50

2i

0

2i

s W

s W

 
 

  
 
 

h ,  (12a) 

 1 3 4
ˆ, ,T T T T RS , 

11 13 14

31 33 34

41 43 44

i i

ˆ i

i i

s s s

s s s

s s s

 
 


 
  

S ,   (12b) 
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and   and T
R are, respectively, the eigenvalues and eigenvectors of the system  TT Tˆ 0ˆ  RS S . 

1

3 1   and 4 1   hold true. The matrix R  composed of eigenvectors T

jR  has the following form:  

11 14

31 34

41

i 1 i

i 1 i

i 0 i

r r

r r

r

 
 


 
  

R ,  (13) 

where all ijr  are real and 
31 11r r  , 

34 14r r   hold true. The components of the matrix T composed of 

line matrices  1 3 4, , ( 1,3,4)j j j j jT T T j  T R S  can be presented in the form 
1 1j jT t , 

3 3ij jT t , 

4 4j jT t  where all ( , 1,3,4)jkt j k   are real and 
43 0t  . 

It is worth mentioning that     ( 1,3,4)j jF z z j T W  have the same properties as  zW . For 

the boundary conditions (5), Fj(z) are analytical in the whole plane except at the crack  ,c b . 

Taking into account the properties of the matrix R  and T and Eq. (8), we have 

         (1) (1) (1)

3 33 1 1 13 1 4 1 1 1 1,0 i ,0 i ,0 j jj j j j jr x r x r E x x xF F         , (14) 

         1 1 1 3 3 1 4 3 1 1 1i j jj j jt u x t u x t D x x xF F
                , (15) 

where   1 15 4 45 502j j jr s r s W    , 
13 33 44 1r r r    and 43 0r  . 

Considering that for 1x L , the relationships      1j j x j xF x F x F x    holds true, one has 

     (1)

1 1
ˆ1 ,0jj j jx xF   R Y ,  1x  .   (16) 

Using    (1)

1 0 0 0
ˆ ,0 , ,x E 


Y  for 1x  , one can get 

     
1

3 0 1 0 4 01 i ij j j j j jz r r r EF    


     ,   1x  . (17) 

By introducing new functions 

     
1

1j j j jz F z  


    ,  (18) 



 10 

Eqs. (14), (15) and (17) can be written in the form 

         (1) (1) (1)

3 33 1 1 13 1 4 1 1 1 1,0 i ,0 i ,0 j jj j j jr x r x r E x x x        , (19) 

         1 1 1 3 3 1 4 3 1 1 1i j jj j jt u x t u x t D x x x                  , (20) 

     
1

3 0 1 0 4 01 i ij j j j jz
z r r r E  




     .  (21) 

By using boundary conditions (5b) and (5c) as well as Eqs. (19) and (20), we can obtain 

     1 1 1 10, 1,3,4 ,j jjx x j x L      ,  (22) 

           

   

1 1 1 1

1 2

4 41 1

Im 0, Im 0, 1,3 ,

0,

j j j jjx x x x j
x L

x x

   

 

        


  

. (23) 

It is remarked that the problems (22) are rather simple and can be solved by referring to Muskhelishvili 

(1963). However, this solution leads to the appearance of the oscillating singularity at crack tip and the 

overlapping of crack faces (Loboda et al., 2014). Eliminate these unrealistic phenomenon is the 

physical reason of introducing the contact zone.  

Relations (22) and (23) for j=1, 3 lead to the following combined Dirichlet-Riemann boundary 

value problem:  

     1 1 1 10, 1,3k kkx x k x L      ,  (24) 

   1 1 20, 1,3Im j x k x L    .  (25) 

While Eq. (22) for j=4 and (23)2 lead to a Hilbert problem:  

   4 41 1 1 1 20,x x x L L      ,  (26) 

with the condition at infinity  

  i , 1,3,4j j jz
z j 


    ,  (27) 

where 3 0j j jr   ,  1 0 4 0j j j jr r E     , 1j j   .  
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For the following analysis, it is sufficient to use the relation (24), (25) and (27) for j=1. The 

relations for j=3 are only required if some magnetoelectromechanical characteristics have to be found 

for the points situated outside the interface. Therefore, in the following section only the solution for j=1 

will be considered. 

An exact solution of the combined Dirichlet-Riemann boundary value problem (24), (25) and (27) 

for j=1 has been developed by Herrmann et al. (2010) and can be written as  

         1 1 2z P z X z Q z X z   ,  (28) 

where  P z ,  Q z ,  1X z ,  2X z  are given in Herrmann et al. (2010). 

Substituting solution (28) into Eqs. (19) and (20), one can get the following expressions at the 

interface:  

for 1 :x b  

     
     1 1 1 1(1) (1) (1)

13 33 1 11 13 1 14 1 1

1 1 1

i exp i ( )
,0 i ,0 i ,0

Q x P x x
r x r x r E x

x a x b x c

 
 

  
    

    

,                             (29) 

for 1 2 :x L  

 
 

  

 

  

1 1(1) 1
33 1 0 1 0 1

11 1

1 1 1
0 1 0 1

11 1

1
,0 cosh ( ) sinh ( )

1

1
cosh ( ) sinh ( ) ,

1

P x
x x x

x c b x

Q x
x x

x c x a

 
  



 
 



 
  

   

 
  

   

 (30a) 

   
   1 1

11 1 1 14 3 1 0 1 0 1

1 1 1

2
cosh ( ) sinh ( )

P x Q x
t u x t D x x x

x c b x x a
 

  
           

    

,  (30b) 

for 1 1 :x L  

     
      *

11 1

11 1 1 13 3 1 14 3 1

1 1 1

exp i
i 2 i

xP x Q x
t u x t u x t D x

b x a x x c



  

                
    

,  (31) 
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where  
2

1 11 4    , and 

 
  

    
2 ln

b a z c
z

l z a a c z b
 

 


   
,   

  

  
11

0 1

1

2 tan
a c b x

x
b c x a

  
 


 

, (32a) 

 
  

    

1*

1

1 1

2 ln
b a x c

x
l a x a c b x

 
 


   

,   
1

1
ln

2
 


 . (32b) 

The solution of the Hilbert problem (26) can be obtained by referring to Muskhelishvili (1963):  

 
  

04 14
4

C C z
z

z c z b


 

 
.  (33) 

To determine the coefficients 04C  and 14C , we use the condition at infinity (27) for j=4 and the 

condition for the total electric charge on crack faces, i.e., Eq.(7). By applying the Gaussian theorem to 

the contour that lies on the lower and upper faces of the crack, the singled-value conditions of 

displacement and the total electric charge in the crack region can be presented in the form (Knysh et al., 

2012) 

    4 1 4 1 1d 0

b

c

x x x    .  (34) 

These give the following formula: 

 
  

4
4

i 1

2 2

c b
z z

z c z b

  
   

   
,  (35) 

where 4 41 0 44 0r r E   . 

It follows from Eq. (19) with an account 43 0r   and Eq. (35) that 

      
  

(1) (1) 4
41 13 1 44 1 1 4 1 1 1

1 1

2 1
,0 ,0 ,

i 2 2

c b
r x r E x x x x b

x c x b


  
      

   
. (36) 

The imaginary part of Eq. (29) and Eq. (36) formulate a system of linear algebraic equations from 
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which the mechanical stress  
   1

13 1,0x  and the electric field 
   1

1 1,0E x  can be easily found for 
1x b . 

Using Eqs. (35) and (15) with j=4 and taking into account 
43 0t   one gets 

   
  

4
41 1 1 44 3 1 1 1 1 2

1 1

,
2

b c
t u x t D x x x L L

x c b x

 
            

   
. (37) 

From the system of linear algebraic equations composed of the real part of Eq. (31) and Eq. (37) 

for 1 1x L  and of Eq. (30b) and Eqs. (37) for 
1 2x L , the expression for  1 1u x    and  3 1D x    in the 

aforementioned intervals can be easily found. 

By introducing the mechanical stress and electrical field intensity factors  

   
1

1 1 33 1
0

2 ,0lim
x a

k x a x 
 

  ,  (38a) 

   
1

2 1 13 1
0

2 ,0lim
x b

k x b x 
 

  ,  (38b) 

   
1

1 1 1
0

2 ,0limE
x b

k x a E x
 

  ,  (38c) 

and using Eq. (30a) to determine k1 and taking into account that  0 1lna  , one has  

 1 1 2cos sin
2

l
k


   


  .  (39) 

where 
1 13 0 11 2r      , 

2 1 13 01 2 r       , 
1 1

ln
1 1


 



 


 
,  b a l   , l b c  . 

By multiplying Eqs. (29) and (36) by  12 x b   and considering 1 0x b  , the following 

system of linear algebraic equations are derived: 

11 2 14

41 2 44 4

,
2

,
2

E

E

l
r k r k

l
r k r k




 




  


  (40) 
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where 
1 2cos sin      , 

1 1 02 1      , 
2 0 12 1       , 

1 11 0 14 0r r E   . 

Solving Eq. (40) gives the following expressions for k2 and kE : 

44 14 4 11 4 41
2

11 44 14 41 11 44 14 41

,
2 2

E

r r r rl l
k k

r r r r r r r r

    
 

 
.  (41) 

Using Eq. (31) for 1 0x a   yields the following expression of  3 1u x    via the stress intensity 

factor k1: 

 
 

3 1 1

13 1 1

2

2
u x k

t a x



 
    


.  (42) 

Using Eqs. (30b) and (37) for 1 0x b   one gets 

   

   

11 1 1 14 3 1

1 1

1

4
41 1 1 44 3 1

1

,

0

,
2

l
t u x t D x

b x
x b

l
t u x t D x

b x






          

 
          

. (43) 

From Eq. (43), the asymptotic expression for  1 1u x    and  3 1D x    for 1 0x b   can be 

presented in the form 

   
11 1 0 11 2 14

1

1
,0 x b Eu x k k

b x
 

     


,     
13 1 0 41 2 44

1

1
x b ED x k k

b x
      


. (44) 

where  11 44 11 1 14 412t r t r    ,  14 44 14 1 14 442t r t r    ,  41 1 11 41 41 112t r t r    , 

 44 1 11 44 41 142t r t r    ,   1 11 44 14 412 t t t t   . 

Similarly, the field intensity factors associated with the crack opening displacement and electrical 

displacement jump across the crack near the crack tip are defined and easily derived as 

 
 

1

3

COD 3 1 1
0

1 13 1

2
lim

2x a

k u x k
a x t

 

 

   
,   (45a) 



 15 

 
   

1

1

COD 1 1 11 2 14
0

1

2lim
2

E
x b

k u x k k
b x




 

      
, (45b) 

     
1

D 1 3 1 41 2 44
0

lim
2 2

E
x b

k b x D x k k
 

 

       . (45c) 

Considering that  3 1 3 3,0u x W W      , the first, third and fourth components of Eq. (9)  can be 

written as  

             

             

             

(1)

13 1 11 1 1 1 1 13 3 1 14 4 1 4 1 15 50

(1)

1 1 41 1 1 1 1 43 3 1 44 4 1 4 1 45 50

(1)

1 1 51 1 1 1 1 53 3 1 54 4 1 4 1 55 50

,0 i ,0 i 2i ,

,0 i ,0 i 2i ,

,0 i ,0 i 2i .

x s W x W x s u x s W x W x s W

E x s W x W x s u x s W x W x s W

H x s W x W x s u x s W x W x s W

    

   

   

        

       

       







 (46) 

By defining from the first and third components of Eq. (46) the expressions for    1 1 1 1W x W x  ,  and 

   4 1 4 1W x W x  , respectively, and substituting them into the third component of Eq. (46) we are led 

to the expression of  (1)

1 1,0H x  via  (1)

13 1,0x ,  (1)

1 1,0E x  and  3 1,0u x   . On the basis of this 

obtained equation and taking into account 
   1

13 1 0x   and  3 1,0 0u x     for 1 2x L , the following 

expression for magnetic field intensity factor has been defined and finally derived as follows: 

   
1

11 54 14 51
1 1 1

0
11 44 14 41

lim 2 ,0H E
x b

s s s s
k x a H x k

s s s s


 


  


.  (47) 

It is worthy to mention that the magnetic field intensity factor obtained from the present model is only 

dependent on the electrical field intensity factor, which is different from the previous contact zone 

model (Herrmann et al., 2010; Ma et al., 2012). 

Additionally, it should be noted that the normal stress is singular in the left neighborhood of the 

crack tip and the corresponding intensity factor can be defined and derived as 

     
1

1
1 1 33 1 11 2 14

0
1

1
lim 2 ,0

1

b

E
x b

k b x x r k r k


  
 


   


.  (48) 
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It is found that all field intensity factors for 
1 0x b   in Eqs. (45), (47) and (48) are completely 

defined by 
1k , 

2k  and 
Ek . 

5. Contact zone model  

The solution of an interface crack problem, obtained in the previous chapter, is mathematically 

valid for any position of Point a. However, to preserve the physical sense of the obtained solutions, the 

following inequalities 

 

 

(1)

33 1 1 2

3 1 1

,0 0, ,

0, ,

x x L

u x L

  


 
  (49) 

should be satisfied. In this case, the contact zone model in Comninous’s (1977) sense takes place. The 

aforementioned position of Point a (or parameter  ) can be found from Eq. (39) by setting 1 0k   

which leads to the following transcendental equation with respect to  : 

0 1

0 1

1 2
tan

2 1

 


 

  


  
.  (50) 

To satisfy both inequalities (49) excluding the small zone of oscillation near the left crack tip, the 

maximum root of Eq. (50) from the interval (0, 1) should be taken. 

The required solution 0   of Eq. (50) can always be found numerically but if   is small 

compared to 1, one can assume 1 1  . This leads to the following asymptotic formula for 0 0   : 

 1 1 1
0

0

1 1
4exp tan 2 tan

2
n  

 

 
     

         
     

, (51) 

and the appropriate n should be taken. 

It is seen from Eq. (38a) and Eq. (42) that, for 0  , the normal stress  (1)

33 1,0x  is not singular 

at Point a and the crack closes smoothly at this point. 
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6. The crack faces free from electrodes  

In this section, it is assumed that the electrodes are absent at the crack faces and the faces are free 

from mechanical, electrical and magnetic sources. In this case, the magnetoelectrically permeable and 

electrically impermeable and magnetically permeable conditions were considered by Herrmann et al. 

(2010) and by Ma et al. (2012), respectively, in which the electric displacement and/or magnetic 

induction was applied orthogonal to the crack faces. Since the contact zone model has never previously 

been considered for the electric and magnetic field parallel to the crack faces, and for the sake of 

comparison with the presented results, we consider the contact zone model for the crack faces to be free 

from electrodes. Taking into account that the derivation for magnetoelectrically permeable cracks and 

electrically impermeable and magnetically permeable cracks are similar, for simplicity the main 

attention will be paid to magnetoelectrically permeable cracks in this section.  

For the problem depicted in Fig. 1, for the magnetoelectrically permeable crack assumption, the 

boundary conditions at the interface can be written in the form 

   1 1,x x       L 0 Y 0 ,  1 ,x c b ,  (52a) 

           ( ) ( )

13 1 33 1 1 1 3 1 1 1 3 1,0 0, ,0 0, 0, 0, 0, 0m mx x E x D x H x B x                    , 1 1x L , 

(52b) 

     

       

( )

3 1 13 1 33 1

1 1 3 1 1 1 3 1

0, ,0 0, 0,

0, 0, 0, 0,

mu x x x

E x D x H x B x

          

                 

     1 2x L . (52c) 

It follows from Eq. (51) that  3 1 0D x     and  3 1 0B x    for  1 ,x    . This relationship, 

together with Eq. (8), gives  4 4 0W W    and 5 5 0W W    for  1 ,x     and means that 4W  and 

5W  are analytical functions in the whole plane. Taking into account the constant value of 

magnetoelectromechanical quantities for z  , one has 4 40W W const   and 5 50W W const  . 
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Moreover, by using Eq. (9) we have 

    
1

4 1 40 0
3

W x W
   S S Y ,     

1

5 1 50 0
4

W x W
   S S Y , (53) 

where     
1

T

0 1 0 0 0 0,0 , , ,xx E H  Y Y . 

Considering the form of matrix S, Eq. (9) can be written in the following form for  1 ,x    : 

           

           

           

        

(1)

13 1 11 1 1 1 1 13 3 1 3 1 14 40 15 50

(1)

33 1 31 1 1 1 1 33 3 1 3 1

(1)

1 1 41 1 1 1 1 43 3 1 3 1 44 40 45 50

(1)

1 1 51 1 1 1 1 53 3 1 3

,0 i 2i 2i ,

,0 i ,
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 (54) 

Combining the first and second relationships of Eqs. (54) leads to the following expression:  

              1 1

33 1 13 1 1 1 14 40 15 50,0 i ,0 2j j j j j jx m x t x x m s W s W          , (55) 

where 

     1 3i , 1,3j jz W z W z j    ,  (56) 

and 

33 13

31 11

j

j

j

s m s

s m s






, 

31 11

31 11

j

j

j

s m s

s m s



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
, 31 33
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11 13

s s
m

s s
  , 1,3j  , (57) 

Eqs. (8) and (56) lead to the following expression for the derivations of the displacement jumps:  

       1 1 3 1 1 1i , 1,3j jju x u x x x j               , (58) 

and it is easily seen from Eqs. (52a) and (58) that the functions  j z  are analytical in the whole plane 

cut along  ,c b . 

By performing a similar analysis to Herrmann et al. (2010), one can obtain the following 

transcendental equation for the determination of the contact zone length:  
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The shear stress can be found from the following formula:  

    2 0 1 0 0 1 0

1

1
sin cos 2 1 cos sin

2

l
k m m

m


               . (60) 

It is worthy to mention that Eqs. (59) and (60) have the same form as seen in Herrmann et al. (2010), 

the only difference being that   is calculated using the quantities related to matrix S in the present 

paper instead of matrix G in Herrmann et al. (2010). 

After determination of the contact zone length from Eq. (59) the stress can be found by Eq. (55). 

Further, by use of Eq. (54) the electrical field can be found as  

                 1 1 1 15141
1 1 13 1 0 0 1 1 13 1 0 0 1

11 11

,0 ,0 , ,0 ,0 ,
ss

E x x E H x x H x L
s s

          . (61) 

A detailed analysis of the contact zone model for an electrically impermeable and magnetically 

permeable crack was performed by Ma et al. (2012), and an insignificant difference in the contact zone 

length with respect to the present magnetoelectrically permeable crack was found for a pure mechanical 

loading case. Besides this, the influence of the applied electrical displacement orthogonal to the crack 

faces on the contact zone characteristics was found to be highly insignificant (Ma et al., 2010). 

7. Numerical results and discussion   

In this section, the numerical calculations are described. In all numerical procedures, 0  and 0  

are, respectively, determined by   and  , where without loss of generality, 6 24.2 10 N m    ; 

and 0 33E E e   is introduced to reflect the electrical load. Meanwhile, magnetic load  0H  is always 

set to zero. The interface crack between two dissimilar CoFe2O4-BaTiO3 composites is considered. 

Material properties of the MEE materials as volume percentage (or volume fraction vf) of BaTiO3-
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CoFe2O4 are listed in Table 1 (Annigeri et al., 2007; Feng et al., 2009). In what follows, material 1 and 

material 2 correspond to CoFe2O4-BaTiO3 composites as vf =0.2 and and vf =0.4, respectively. A crack 

length of l=2 mm is assumed. 

Firstly, the effects of shear load on the contact zone length, the Mode-II stress intensity factor and 

the electric field intensity factor are examined under only applied mechanical loads. Numerical results 

are plotted in Figs. 2-4, where 0 0.5k l  and  b a l   . Fig. 2 shows that, for a fixed tension 

load, with the increasing of shear load, the contact zone length   increases and finally tends to a 

constant. This is a new phenomenon for the electrically conductive crack problem although it has also 

been observed within the context of interface crack problems of both anisotropic bimaterial (Wang and 

Choi, 1983) and piezoelectric bimaterial (Herrmann and Loboda, 2000). For comparison, Fig. 2 

simultaneously shows the corresponding contact zone length given by the corresponding formula in Ma 

et al. (2012) for the electrically impermeable and magnetically permeable interface crack model and the 

magnetoelectrically permeable crack model.  The results shown in Fig. 2 demonstrate that there is a 

small difference in the contact zone length among the three models; however, the contact zone length 

finally reaches an identical constant of 0.3053 when the applied shear load is much larger than the 

tension load, which is equivalent to the case of pure shear load. Fig. 3 indicates that, as expected, the 

normalized Mode-II stress intensity factor 2k  increases with an increase of shear load. For comparison, 

the corresponding results calculated by the formula given in Ma et al. (2012) and the formula for 

magnetoelectrically permeable interface cracks are plotted simultaneously. It can be seen that the 

normalized Mode-II stress intensity factor 2k obtained using the present model is less than that of the 

other two. This may be attributed to the variation of magnetoelectrical conditions throughout the crack 

region. Fig. 4 shows that, for a fixed tension load 0E  , an increase in shear load will lead to an 

increase in the electric field intensity factor. 
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The relationship between the fracture parameters and the normalized electric load for different 

tension loads is presented in Figs. 5-7. The parameter of load combination E  varies from -3 to 3, i.e., 

the electric field 0E from 
63.15 10 V m   to 63.15 10 V m . Fig. 5 shows that the contact zone length 

decreases rapidly as the electric field increases. This means that a large negative electric field may 

produce a large contact zone for the present model, which is consistent with the results given by 

Loboda et al. (2014) for conducting a crack model of piezoelectric bimaterial. In addition, Fig. 5 

demonstrates that, as expected, increasing tension load leads to a rapid decrease in contact zone length. 

The results shown in Fig. 6 and Fig. 7 indicate that, for a fixed shear load, an increasing electric field 

causes increases in both the Mode-II stress intensity factor and electric field intensity factor. 

Additionally, an increase in tension load leads to an increase in the Mode-II stress intensity factor and a 

decrease in the electric field intensity factor. 

The normalized displacement jump along the crack face and the normalized normal stress at the 

crack continuation for different tension loads are presented in Figs. 8 and 9, and these quantities for 

different electric fields are presented in Figs. 10 and 11. The origin of the coordinates is situated at the 

center of the crack region. Fig. 8 and Fig. 10 demonstrate that increasing tension load and the 

magnitude of negative electric field causes an increase in the maximum value of displacement jump. 

The results shown in Fig. 9 and Fig. 11 indicate that increasing tension load leads to an increase in 

normal stress at the crack continuation while increasing the magnitude of the negative electric field has 

the opposite effect. From Fig. 10 and Fig. 11, it can be seen that the electric field has a significant 

influence on crack opening displacement along the crack faces and the normal stress at the crack 

continuation.  This is different from the case of the previous studied interface crack with contact zone, 

in which the influence of electrical displacement on the contact zone is not visible. Additionally, 

although the normal stress  33 1,0x  is not singular in the right neighborhood of point b, its value 
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remains very high in this region and perhaps can induce crack propagation. All these findings agree 

with the results given by Loboda et al. (2014) in their conducting of crack modeling of piezoelectric 

bimaterial. Fig. 8 and Fig. 10 also show that at 
0 0E   the contact zone, which is equal to 32.056 10 , 

51.230 10 , 86.648 10 , respectively, at 
0  =1, 2, 3, is extremely small whilst, as a large negative 

electric field is applied, as shown in Fig. 5, the contact zone becomes much larger; for example at 

0 5E   ,  it is 0.02961 and at 0 10E   ,  it is 0.06918. The obtained results confirm the strong 

influence of electric fields on the contact zone length and reveal that, for the combination of 

mechanical load, electric field and magnetic field, the classical open crack model induces an important 

error and, therefore, the contact zone model should be adopted. For comparison, the corresponding 

results for magnetoelectrically permeable cracks are also plotted simultaneously in Fig. 9 and Fig. 11. It 

can be seen that there is only a small difference in the obtained results between the electrically 

conductive crack model and the magnetoelectrically permeable crack under the pure mechanical 

loading case. However, whilst the electric field essentially influences the crack opening displacement 

along the crack face and the normal stress at crack continuation for electrically conductive cracks, it 

has no influence on magnetoelectrically permeable cracks. This phenomenon fully agrees with simple 

physical arguments because the crack does not disturb an electric field in magnetoelectrically 

permeable conditions. 

8. Conclusions   

A new model for interface cracks with a contact zone in an MEE bimaterial system under the 

action of a mixed-mode mechanical load as well as electric and magnetic fields parallel to the crack 

faces is considered. The interfacial crack is assumed to be an electrically conductive crack. Merging 

with the boundary conditions, a combination of the Dirichlet-Riemann boundary value problem and the 
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Hilbert problem is formulated. Using an exact analytical approach, the stress, electrical field and 

magnetic field intensity factors have been derived in a clear analytical form. The transcendental 

equations for the determination of real contact zone length have been obtained. Also, the case of 

magnetoelectrically permeable cracks is discussed. Finally, lots of numerical results are given 

graphically for the material combination of BaTiO3–CoFe2O4 composites. From the theoretical and 

numerical results, the following conclusions can be drawn: 

(i) In the present model, the magnetic field intensity factor is only dependent on the electrical field 

intensity factor and is independent of stress intensity factors, which differs from the results of previous 

crack models with contact zone. 

(ii) The applied mechanical load and electrical field have important and different effects on the 

contact zone length. Among others, the contact zone length generally increases with an increase in 

shear load and decreases rapidly with an increase in tension load. Under a pure shear load, the contact 

zone length approaches a constant, which is mostly dependent on material constants. Additionally, a 

high negative electric field is likely to induce a large contact zone length. 

(iii) The electrical field essentially influences the crack opening displacement along the crack faces 

and the normal stress at the crack continuation for electrically conductive cracks.  

(iv) From the present model, the normal stress is not singular in the right neighborhood of Point b 

and it increases as the applied tension increases whilst decreasing as the magnitude of the negative 

electrical field increases. 
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Figure and table captions  

Fig. 1. An electrically conductive interface crack with frictionless contact zones under remote mixed 

mode mechanical load 0 , 0 , electrical field 0E  and magnetic field 0H  

Fig. 2. Contact zone lengths versus the normalized applied shear load at 10   and 0E  : 

(a) 
010 100   ; (b) 4

0 10100    

Fig. 3. Normalized Mode-II stress intensity factor 2 0k k  versus the normalized applied shear load at 

10   and 0E   

Fig. 4. Normalized electric field intensity factor 
0Ek k  versus the normalized applied shear load at 

10   and 0E   

Fig. 5. Contact zone lengths versus the applied electrical load E  for different tension loads at 

0 50    

Fig. 6. Normalized Mode-II stress intensity factor 2 0k k  versus the applied electrical load E  for 

different tension loads at 0 50    

Fig. 7. Normalized electric field intensity factor 0Ek k  versus the applied electrical load E  for 

different tension loads at 0 50    

Fig. 8. Normalized crack opening displacement along the crack face for different tension loads at 

0 50    and 0E   

Fig. 9. Normalized normal stress at the crack continuation for different tension loads at 0 50    and 

0E   
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Fig. 10. Normalized crack opening displacement along the crack face for different electric loads at 

0 1    and 
0 50    

Fig. 11. Normalized normal stress at the crack continuation for different electric loads at 
0 1    and 

0 50    

Table 1 Material properties of BaTiO3-CoFe2O4 composites as a percentage (volume fraction vf)  (cij in 

10
9
 N/m

2
, eij in C/m

2
, εij in 10

-9
C/Vm, fij in N/Am, μij in 10

-4
Ns

2
/ C

2
, gij in 10

-12
Ns/ VC), vf=0.0 

corresponding to CoFe2O4 and vf=1.0 to BaTiO3 (Annigeri et al., 2007; Feng et al., 2009) 
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Fig. 1. An electrically conductive interface crack with frictionless contact zone under remote mixed 

mode mechanical load 0 , 0 , electrical field 0E  and magnetic field 0H  
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Fig. 2. Contact zone lengths versus the normalized applied shear load at 10   and 0E  : 

(a) 010 100   ; (b) 4

0 10100    
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Fig. 3. Normalized Mode-II stress intensity factor 2 0k k  versus the normalized applied shear load at 

10   and and 0E   
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Fig. 4. Normalized electric field intensity factor 0Ek k  versus the normalized applied shear load 

at 10   and 0E   
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Fig. 5. Contact zone lengths versus the applied electrical load E  for different tension loads at 

0 50    
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Fig. 6. Normalized Mode-II stress intensity stress 2 0k k  versus the applied electrical load E  for 

different tension loads at 0 50    
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Fig. 7. Normalized electric field intensity factor 0Ek k  versus the applied electrical load E  for 

different tension loads at 0 50    
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Fig. 8. Normalized crack opening displacement along the crack face for different tension loads at 

0 50    and 0E   
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Fig. 9. Normalized normal stress at the crack continuation for different tension loads at 0 50    and 

0E   
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Fig. 10. Normalized crack opening displacement along the crack face for different electric loads at 

0 1    and 0 50    
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Fig. 11. Normalized normal stress at the crack continuation for different electric loads at 0 1    and 

0 50    
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Table 1 

Material properties of BaTiO3-CoFe2O4 composites as a percentage (volume fraction vf)  (cij in 10
9
 

N/m
2
, eij in C/m

2
, εij in 10

-9
C/Vm, fij in N/Am, μij in 10

-4
Ns

2
/ C

2
, gij in 10

-12
Ns/ VC), vf=0.0 

corresponding to CoFe2O4 and vf=1.0 to BaTiO3 (Annigeri et al., 2007; Feng et al., 2009) 

 

 c11 c12 c13 c33 c44 e15 e31 e33 ε11 

vf=0.2 250 146 145 240 45 0 -2 4 0.33 

vf=0.4 225 125 125 220 45 0 -3 7 0.8 

 ε33 μ11 μ33 f15 f31 f33 g11 g33  

vf=0.2 2.5 3.9 1.33 340 410 550 2.8 2000  

vf=0.4 5.0 2.5 1.0 220 300 380 4.8 2750  

 

 


