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ABSTRACT 

 

Of course, there is not enough memory on a PC with 16 GB RAM, and tetrahedra constructed 

have to be output to leave rooms for the creation of new tetrahedra in the next round of point 

insertion. A segmental zonal insertion scheme is developed, in which large data sets of more 

than 100 million points are partitioned into zones, each of which is triangulated in turn by the 

parallel zonal insertion module. An overlapping zone between two steps of insertion has to be 

allowed to ensure Delaunay tetrahedra formed at the boundary between two insertion zones. 

Tetrahedra between zones can be easily eliminated by the minimum vertex allocation method. 

The collection of all the tetrahedra from each insertion zone/step will produce the required 

triangulation for the point set. As the work of each typical step for the insertion of an equal 

number of points is very much similar, the processing time bears roughly a linear relationship 

with the number of points in the set, at a construction rate of more than 5 million Delaunay 

tetrahedra per second for the triangulation of 1 billion randomly generated points. 
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1.   INTRODUCTION 

Based on a sound geometrical concept, Delaunay triangulation has important applications in 

many fields, including data visualization and imaging, terrain modeling, finite element mesh 

generation, surface reconstruction and structural networking for arbitrary point sets, etc. [1,2] 

The popularity of Delaunay triangulation is attributed to its nice geometric properties as a 

dual of Voronoi tessellation and the speed with which it can be constructed in two and higher 

dimensions. In view of its diverse applications, many strategies for its construction have been 

proposed [3-7]. With a rapid increase in the problem size from thousands of points to millions 

of points, it is necessary to devise ever more efficient schemes for the construction of 

Delaunay triangulations. Today’s microcomputers, PC, are all equipped with more than one 

processors, and a standard machine with four cores and 16GB memory is quite common. 

Using one single processor for Delaunay triangulation represents a pitiful 25% usage of the 

total capacity of the machine, and an efficient parallel Delaunay algorithm making the full use 

of all the processors will simply boost the speed by more than four times, cutting down the 

triangulation time to one quarter of that by a serial process. 

In 1999, Blelloch et al [8] presented a dividing path of Delaunay edges by projecting points 

on paraboloid surface for parallel triangulation of 2D points using divide-and-conquer 

algorithm. There was about 50% or four times speed up running in parallel with eight 

processors for uniformly or non-uniformly distributed points. In 2002, Kolingerova and 

Kohout [9] introduced the “optimistic method” based on the idea that the probability of 

collision of threads on the same triangle is relatively low for large data set. 2D points were 

divided into subsets, and concurrent insertions by several processors were handled by 

synchronization.  

Based on the divide-and-conquer algorithm, Chen et al in 2004 [10] presented a parallel 

procedure for the near Delaunay triangulation of 2D points. The main challenge of the method 

was the subsequent merge of isolated triangulated patches into one coherent piece. Nave et al 

in 2004 [11] proposed a parallel Delaunay refinement algorithm by a synchronized point 

insertion with guaranteed quality provided certain boundary constraints are fulfilled. A 

parallel divide-and-conquer scheme for 2D Delaunay triangulation was proposed by Chen et 

al in 2006 [12], in which the “affected zone” was introduced to combine “sub-Delaunay” 

triangulations. Wu et al in 2011 [13] introduced ParaStream: a parallel streaming Delaunay 

triangulation algorithm for LiDAR points on multi-core architectures, in which kd-tree was 

applied to distribute workload among processors. 

Parallel mesh refinement to triangular and tetrahedral meshes is a direct application of the 

parallel Delaunay triangulation to mesh generation. Chrisochoides and Nave [14] in 2003 

presented a parallel Bowyer-Watson insertion for mesh generation by synchronization of 

processors in case the cavities associated with two or more concurrent inserted points intersect. 

It was reported that code complexity might cause issues of stability near domain boundary. A 

template for developing parallel Delaunay refinement was also presented by Chernikov and 

Chrisochides in 2010 [15], in which rigorous analysis on how to avoid conflicting Delaunay 

insertion in mesh refinement was discussed.  
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Research works have only just been started in the parallelization of Delaunay triangulation 

over three and higher dimensions in recent years. In 2003, Kohout and Kolingerova [16] put 

forward a parallel Delaunay triangulation based on a randomized incremental insertion with 

edge and face swaps in 3D space, in which synchronization for multiple point insertion was 

applied at various stages of point insertion. A survey of parallel Delaunay triangulation 

algorithms was presented by Kohout et al in 2005 [17], in which a parallel insertion algorithm 

was also proposed based on a synchronization scheme using thread priorities. Beyer et al in 

2005 [18] presented a procedure for parallel dynamic and kinetic regular triangulation in three 

dimensions, based on an incremental construction with parallel flipping of tetrahedra arising 

from the idea of accessible and non-accessible simplices. Batista et al in 2010 [19] studied 

and implemented several parallel geometric algorithms for multi-core computers. YingLiang 

Ma [20] presented a surface extraction algorithm for large binary image data set based on 

parallel 3D Delaunay subdivision strategy. Points and surface data were partitioned into zones, 

in which Delaunay triangulation was carries out over each zone in parallel, which could then 

be connected to form the skeleton of the required surface. However, no details were given in 

the algorithm or in the implementation of the parallel 3D Delaunay triangulation. 

A parallel insertion scheme by zonal subdivision has recently been proposed by Lo [21], in 

which points are partitioned into cells which are then grouped into zones for parallel insertion. 

A high efficiency of this method is attributed to its absolute independence for zonal insertion 

by each processor and the ease and robustness in the elimination of redundant tetrahedra at the 

boundary between zones by the elegant minimum vertex allocation rule. By means of the 

parallel zonal insertion, on a PC i7 CPU 870@2.93GHz with 16GB RAM, it is able to 

construct 350 million Delaunay tetrahedra in less than 100 seconds. 

However, 16 GB RAM is what we can have nowadays on a PC. In case, we would like to 

tackle a large point set of more than 50 million 3D points, a more powerful machine of more 

than 16 GB RAM is needed. From this, we can see that the bottleneck for the construction of 

Delaunay triangulation for a large point set is not the speed but the memory restriction. In the 

light of the parallel zonal insertion scheme, each processor works independently within its 

assigned zone, and the tetrahedra so constructed will be subsequently put together to form the 

final triangulation. This gives us the idea that a large point set can be first divided into zones, 

which are to be handled by one or more processors as a typical parallel zonal insertion step. A 

segmental zonal insertion scheme can thus be formulated by taking one zone at a time until all 

the zones have been processed.  

Nevertheless, in each step, tetrahedra have to be output to allow rooms for the creation of new 

tetrahedra in the next step of zonal insertion. The coordinates and the zonal label of the points 

have to be synchronized with the step by step insertion process as well, so that the number of 

coordinate points could be controlled to within a reasonable limit, just good enough for each 

step of zonal insertion. An overlapping zone between two steps of insertion has to be provided 

too to ensure Delaunay tetrahedra are formed at the boundary between two insertion zones.  

 

mailto:870@2.93GHz
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In this paper, a segmental zonal insertion scheme will be introduced to triangulate large sets 

of randomly generated points and typical non-uniformly distributed points. In theory, there is 

no limit to the number of points in a triangulation, and it is only a matter of computer running 

time and the amount of tetrahedra that can be stored in the available permanent memory. By 

the nature of the segmental zonal insertion, the time complexity is basically linear, and about 

3.1 million Delaunay tetrahedra per second can be created in the triangulation of 1 billion 

randomly generated points. 

 

2. DELAUNAY TRIANGULATION 

The Delaunay triangulation of a set of 

points on a plane is defined to be a 

triangulation such that the circumcircle of 

every triangle in the triangulation contains 

no point from the set in its interior. Such a 

triangulation exists for a given set of points, 

and it is the dual of the Voronoi 

tessellation. The triangulation is unique if 

the points are in general position, i.e. no 

four points are cyclic. A triangle T is said 

to be Delaunay with respect to a point p if 

p does not lie inside the circumcircle of T. 

A triangle T in a triangulation of a set of 

points is call Delaunay triangle if T is 

Delaunay with respect to every point in the 

set. A triangulation of a set of points is 

called the Delaunay triangulation of the 

point set if every triangle in the triangulation is a Delaunay triangle as shown in Figure 1. The 

notion of Delaunay triangulation is very general, which can be easily extended to higher 

dimensions. For instance, the Delaunay triangulation in three dimensions is given by 

replacing triangle by tetrahedron, circle by sphere and 2D plane by 3D space. The following 

lemma provides the basis for many algorithms in the construction and verification of 

Delaunay triangulation. 

 

Lemma of Delaunay [22] 

Let T(S) be a triangulation of the point set S. The necessary and sufficient condition that no 

point of S is contained in the circumsphere of any tetrahedron in the triangulation is that any 

two adjacent tetrahedra in the triangulation are Delaunay with respect to each other’s vertices. 

 

 

Figure 1. Delaunay triangulation of 17 points  
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2.1  The Insertion Algorithm 

For the construction of Delaunay triangulation in 

three and higher dimensions, point insertion 

algorithm is the most popular, and many interesting 

methods have been proposed [3-7]. For a set of 3D 

points, the initial triangulation is a cuboid 

consisting of five or six Delaunay tetrahedra large 

enough to contain all the given points as shown in 

Figure 2. The Delaunay triangulation is achieved by 

inserting points one by one into the initial 

triangulation. Each cycle of point insertion can be 

divided into three steps. 

(i)  For a newly inserted point, identify all the tetrahedra whose circumsphere contains the 

point in its interior. The cavity left behind upon removal of these tetrahedra forms a star-

shaped insertion polyhedron. 

(ii) Owing to the finite precision arithmetic, the triangulation facets on the boundary of the 

cavity have to be verified with the visibility check and corrected before they are 

connected with the inserted point to form tetrahedra. 

(iii) The triangulation of the insertion polyhedron should be trivial. However, the adjacency 

relationship of the tetrahedra has to be established, which will be frequently referred to 

throughout the triangulation process. 

When a new point p is inserted in a Delaunay triangulation, it is required to find all the 

tetrahedra whose circumsphere contains the point p. A simple method to determine those non-

Delaunay tetrahedra is to scan through all the existing tetrahedra for those circumspheres 

containing the point p. However, a more efficient approach is to start with the tetrahedron 

which contains the inserted point p and find the others by means of the adjacency relationship. 

In this way, the boundary of the insertion polyhedron is given by the common faces of two 

tetrahedra for which one is positive in the sphere inclusion test while the other fails. The 

tetrahedron which contains the insertion point p is called the base, which is an integral part of 

the insertion polyhedron. 

In the point insertion algorithm, there are two basic steps, namely, (i) the location of the base 

tetrahedron containing the inserted point and (ii) to ensure the circumsphere criterion is 

verified for all the tetrahedra connected to the inserted point. If points are inserted cell by cell 

as shown in Figure 3, the searching path in determining the base is a constant depending on 

the number of points in a cell, and the verification of the circumsphere criterion is a local 

process if we follow the adjacency relationship of the tetrahedra, thanks to lemma of 

Delaunay. From this observation, it can be seen that Delaunay triangulation by point insertion 

is one of the most efficient algorithms for its simplicity and linearity provided that points are 

inserted in clusters in a contiguous manner.  

Figure 2. Initial triangulation 

of five tetrahedra 

Points to be 

inserted 
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Point insertion following an ordered cell sequence for Delaunay triangulation of points in 

clusters is a very simple and efficient scheme as the number of operations is almost optimal. 

Consider 3D point insertion, it takes n scans of tetrahedra on average in locating the base 

tetrahedron, where n is the number of points in a cell, and on average a point is connected to 

27 tetrahedra for which circumsphere criterion has to be verified. A simple count illustrates 

that on average the number of operations for each point insertion is n+27=35 if each cell 

contains roughly 8 points. Numerical tests of the insertion of 1 million randomly generated 

points by single-processor insertion shows that over 1 million Delaunay tetrahedra can be 

constructed per second on a PC. 

 

3. PARALLEL DELAUNAY TRIANGULATION IN 3D 

3.1  General Considerations and Strategies 

A robust and efficient parallel 3D Delaunay triangulation algorithm has to be based on a 

sound, reliable and fast sequential scheme, and hence parallelization of point insertion is 

considered for the possibility of multiple point simultaneous insertions by several processors.  

There are three main strategies proposed so far for Delaunay triangulation by a multiple 

insertion of points concurrently with several processors. (i) Creation of Delaunay boundary 

edges. Delaunay cutting lines are introduced by local Delaunay triangulation or by some more 

sophisticated method such as the projection onto a paraboloid [8] to partition the two-

dimensional domain into two roughly equal portions. Further division can be done by 

introducing more cut lines to produce as many regions as necessary for triangulation by point 

insertion or any other techniques within each isolated region in parallel. (ii) Triangulation of 

points within zones in parallel and the patches of triangulation are connected by filling up 

gaps between zones. The given points for triangulation are first allocated to various zones, the 

ensemble of which is a partition of space covering all the points. Delaunay triangulation can 

now be carried out using points within the zones in parallel. The result is a collection of 

isolated patches of triangles, which have to be connected properly to form the final Delaunay 

  

Figure 3. Points sorted into cells  

Regular cell partition  kd-tree cell partition  Inserted point  
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triangulation [23]. (iii) Synchronization. Parallel point insertion controlled by some verified 

sequence/location of insertion, or by means of synchronized insertion for several processors 

by blocking the access of a particular point or triangles from other processors to avoid 

conflicts [9,14]. This idea can be readily extended to three dimensions [16,17] as the 

procedure is not based on any two-dimensional features of the triangulation. However, single-

processor operations and the checking for the occurrence of such events will substantially 

slow down the overall performance of parallel insertion. 

 

3.2  The Zonal  Insertion Scheme 

In theory, a processor can be assigned to each point for the maximum speed up. Nevertheless, 

machines with so many processors are not yet available, and even they exist it may not be 

economical (most efficient) to have so many processors working together as conflicts are 

bound to occur for the insertion of neighbouring points. It is impractical and unnecessary to 

assign one processor to each point as there is a lot of redundancy in doing so, and an 

optimized scheme is to group several cells together into a zone for a single processor insertion. 

As a result, cells of spatial partitions of points are grouped into a number of zones depending 

on the number of processors available. There are two major issues to be addressed in such a 

scenario: (i) make sure that Delaunay tetrahedra are constructed at the boundary between 

zones and (ii) how to get rid of the redundant tetrahedra efficiently in a rigorous manner. Such 

a zonal parallel insertion scheme has recently been proposed by Lo in a paper entitled 

“Parallel Delaunay Triangulation in three dimensions” [21]. The major steps are outlined as 

follows. 

 

3.2.1 Points partitioned into cells 

Let N be the number of points in a 3D Delaunay triangulation, and n be the average number of 

point desirable in a cell, then 

               (1) 

where  Nx, Ny, Nz are respectively the number of cell division along the x, y, and z-axis and 

the number of cells, Nc=Nx Ny Nz 

Let xmin, xmax ymin, ymax, zmin, zmax be the bounds of the (x,y,z) coordinates of the point set, 

compute Rx = xmax – xmin,  Ry = ymax – ymin  and  Rz = zmax – zmin, then 

Nx, Ny and Nz can be determined by substituting Rx = Nx, Ry = Ny and Rz = Nz into (1). 

The most important requirement in a spatial partition of points into cells is to ensure that each 

point belongs to one and only one cell, and the sum of points in all the cells equal to the total 

number of points, i.e. 
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  ∑                                                   

  

   

 

and           is the number of cells in the partition 

 

3.2.2 Grouping cells into zones 

Let NZone=DxDyDz be the number of zones, which is usually a multiple of the number of 

processors available for parallel zonal insertion, where Dx, Dy and  Dz are the zonal divisions 

along x-axis, y-axis and z-axis respectively as shown in Figure 4, then cells are grouped into 

zones such that each zone will consist of m cells given by 

      (
  

  
)    (

  

  
)    (

  

  
)     

 

For the best performance of the parallel 

insertion, the number of zones has to be 

an integral multiple of the number of 

processors available; for example, 

division into 2x2x3=12 zones for 4 or 6 

processors is a sound division. However, 

division into 12 zones for 8 processors 

may not be that desirable, because 

12=8+4 and not all processors will be 

working to their full capacity all the time. 

However, since we are working with 

millions of points, the partition into cells 

and the division into zones which are 

multiples of the number of processors 

will never be a problem. The number of 

cells in some zones near the boundary 

may have fewer or more cells if Nx/Dx, 

Ny/Dy or Nz/Dz is not a whole number. Such a variation would not cause any problem in the 

subsequent operations, as a zone is identified by the bounding cells in x-, y- and z-directions, 

i.e. a zone I, I=1~NZone, is specified by                                     , where 

(Nx1,Nx2), (Ny1,Ny2) and (Nz1,Nz2) are respectively the starting and ending cell division lines 

along x-, y- and z-directions.  

  

Dx=2  

Figure 4. Partitioned into 2x4x3=24 zones 

D
y
=4  

D
z
=3  
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3.2.3 Simultaneous insertion in 3D 

A division into 2x2x2=8 zones for the insertion of 2000 three-dimensional points is shown in 

Figure 5, in which the average number of points in a cell, n=8, Rx, Ry and Rz are in the ratios 

1:1:1, hence Nx=Ny=Nz=6, and nNxNyNz=1728 2000. The initial triangulation for each zone 

is a cuboid of five tetrahedra large enough to contain all the points. Point insertion in each 

zone will be handled by one single processor in a completely independent manner. All the 

points within each zone I, I=1~8, will be processed concurrently by inserting points in those 

cells belonging to the zone under consideration. This will generate all the Delaunay tetrahedra 

within the zone; however, Delaunay tetrahedra crossing the zonal boundary are missing as 

shown in Figure 6. The next step is to construct all the Delaunay tetrahedra at the boundary 

between zones. To do so, boundary cells are added around the zone to all the boundary 

surfaces of the zone as shown in Figure 7. For easy visualization, only those boundary 

tetrahedra with the neighbouring zones and their associated circumspheres are shown, 

whereas tetrahedra formed with the auxiliary corner points and their associated circumspheres 

are not shown. Boundary tetrahedra are defined as those tetrahedra supported on vertex or 

vertices from the current zone and vertex or vertices from neighbouring zone(s) as shown in 

Figure 7. This simple definition is also applicable to Octree and kd-tree spatial partitions.  

Layers of cells can be added to the boundary surfaces of the augmented zone until all the 

circumspheres of the boundary tetrahedra are bounded to ensure all boundary tetrahedra are 

Delaunay as shown in Figure 7. As each cell contains roughly equal number of points, the 

process converges fairly rapidly and evenly on all the zonal boundary faces in one or two 

layers of cells. In this particular example shown in Figure 7, no additional layer of cells is 

needed, as all circumspheres of the boundary tetrahedra are already bounded by the 

augmented zone. Similar to the two-dimensional case, points considered before need not be 

reconsidered after further point insertions as the union of circumspheres will always shrink for 

the introduction of a new point.  
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Figure 5. 2000 random points partitioned into 8 zones 

Figure 6. Tetrahedra generated within a zone 

Zonal boundary 

Tetrahedra within zone I 

Nx=6, Dx=2 
Ny=6, Dy=2 

Nz=6, Dz=2 

Points partitioned in 

6x6x6 = 216 cells 

2x2x2 = 8 zones 

Each zone consists 

of 3x3x3=27 cells 
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3.2.4 Elimination of redundant tetrahedra 

Delaunay triangulation by zonal insertion is complete in the sense that it contains all the 

Delaunay tetrahedra of the point set as Delaunay tetrahedra in a patch around each point are 

constructed in the insertion process for all the points partitioned into zones. As each zone is 

processed by a processor independently, all the tetrahedra within a zone are generated by one 

processor. However, tetrahedra on the boundary between zones may be generated by one or 

more processors. A general rule for assigning tetrahedra to zones can be formulated such that 

tetrahedra with vertex zone labels z1, z2, z3 and z4 will be assigned to zone z given by 

                     

This is a surprisingly simple and elegant scheme, by which redundant tetrahedra can be 

eliminated independently almost without effort. By the minimum vertex allocation, redundant 

tetrahedra for the parallel insertion of 2000 3D points are eliminated and distributed into 8 

zones as shown in Figure 8. This is not the convex hull of the given points as the auxiliary 

corner points are not placed at infinity, but a Delaunay triangulation of the points with some 

missing boundary edges and faces. 

Figure 7. Boundary tetrahedra and circumspheres 

Boundary tetrahedra 

Circumspheres 

Augmented zone with additional 

layers on boundary surfaces 
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The simple insertion scheme by means of a regular grid for uniformly or mildly non-

uniformly distributed points is slightly more efficient (about 10% on average) compared to the 

well-established triangulation algorithm CGAL4.2 [24]. For highly non-uniform point 

distributions, the multi-grid insertion scheme can be used, which is one of the most efficient 

triangulation methods ever proposed [24]. The scalability of the parallel zonal point insertion 

has been fully described in reference [21]. The purpose of this paper is to make use of these 

advanced techniques just developed in conjunction with the novel segmental triangulation 

algorithm to be introduced in the next section into a single triangulation scheme for ultra large 

point sets on a standard PC. In principle, even for the limited resources of a PC, there is no 

restriction to the size of the point set to be triangulated so long as sufficient time is allowed 

for its execution.  

Figure 8. Partitioning of tetrahedra into 8 zones by the minimum vertex scheme 
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4. SEGMENTAL TRIANGULATION 

4.1  Partition into zones 

In case the set of points is too large to be 

handled all at the same time, points can be 

partitioned into zones which are read in 

progressively step by step for triangulation in 

a segmental insertion process zone by zone. 

Following the idea of parallel triangulation 

described in Section 3, Delaunay triangulation 

of all the points in a zone can be assured if 

Delaunay point insertion is applied to all the 

points within the zone and the entire zone is 

covered by a layer of Delaunay tetrahedra. 

Depending on the value of Rx, Ry and Rz, the 

set of points is divided into zones along the 

longer dimension. Without loss of generality, 

suppose Rz is the largest and the point set is 

divided along the z-direction. As shown in 

Figure 9, the number of point per layer along 

the z-direction is given by 

         where n is the average number of points in a cell 

From the experience of parallel zonal insertion for randomly generated points, 2 to 3 layers 

are usually sufficient to ensure a Delaunay cover of the zone. Hence, if an overlapping zone 

of m layers of cells is allowed between two insertion zones, the number of points in this 

buffer zone is given by 

          

where m can be conveniently set to 5, which is about twice the number of layers needed for 

Delaunay triangulation. In the actual implementation, Delaunay triangulation at the zonal 

boundary is achieved by adding layers of cells from the buffer zone in a progressive manner, 

and it would be easy to find out if the buffer zone has been exceeded or not. Let Ns be the 

number of points that can be handled in one insertion step. If NI is the number of points to be 

inserted in a step, we have 

          

NB has to be multiplied by 2 as there are overlapping zones both in the front and at the back of 

the insertion zone as shown in Figure 10. 

Nx 

Figure 9. Partitioned into cells 

N
y
  

N
z
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Knowing NI, it is not difficult to estimate the number of steps needed for the entire segmental 

insertion process. 

             

and the number of points to be inserted in each step is then adjusted to 

  
          

In a typical insertion step, points in the insertion zone are fed into a parallel insertion module 

to create a Delaunay triangulation for the insertion zone. Tetrahedra not belonging to the zone 

can be readily eliminated by the minimum vertex allocation scheme. 

 

4.2 Memory Management 

Perhaps, the most difficult part of the segmental zonal insertion for a large set of point is to 

make the best use of the available memory in a simple robust manner. No extra memory is 

needed for the parallel zonal insertion scheme compared to the classical sequential insertion 

process, except a zonal label for each point stored as a 2-byte integer in a linear array. To 

minimize the use of memory, the circumcentre and the circumradius of each tetrahedron are 

not stored, which are re-calculated whenever necessary. For each point insertion, about 

                      bytes memory are required to store the vertices and the 

neighbours of the 7 tetrahedra (rounded up from an average of 6.75) generated and the x, y 

and z-coordinates of the point. Thus, a PC with 16G Bytes, apart from the memory taken up 

by the operating system, can generate quite comfortably 350 million tetrahedra for an 

insertion of more than 50 million points without being appreciably slowed down due to a lack 

of memory. In the segmental zonal insertion process, about 60 million points can be handled 

in one single insertion step, i.e.         , subtracting points in the overlapping zones, 

points in the insertion zone is about 50 million, or         . 

Figure 10. Insertion zone bounded by buffer zones on both sides 

Insertion zone (NI) 

Overlapping zones (NB) 



15 

 

The quantities that are needed in a parallel insertion process are the (x, y, z) coordinates of the 

points, the tetrahedra constructed, the adjacency information of the tetrahedra, namely, their 

neighbours and the zonal label of the points. Once triangulation is done for the insertion zone 

in an insertion step, the tetrahedra constructed can be output to allow room for new tetrahedra 

to be created in the next insertion step. However, points in the overlapping zones have to be 

retained for the next round of point insertion, and the label to identify individual point will 

continue to increase as the segmental insertion process advances with more insertion steps.  

A simple solution to access correctly the coordinates of the points is as follows. Coordinates 

of point i,   {         } with N >> NS, is given by 

           (        )  

where                    {          }  

 

As the number of points in an insertion step is given by 

  
      

which is always smaller than NS, and each point in the insertion zone will be unique and 

within the range {          }  Of course, when points are input for the next zonal insertion, 

coordinates of point i will occupy coordinates of the point with label j, such that most 

coordinates (        ) ,   {          }   will be over written for each insertion step. The 

zonal label, which is also an attribute of the points, has to be treated in a similar manner as the 

spatial point coordinates.  

 

4.3 Dynamic Grid Update 

Based on this modulus point labeling scheme, there is no limit to the number of points in a 

triangulation, and it is only a matter of computer running time to handle very large point sets. 

However, the number of cells will keep increasing when more and more insertion zones are 

processed as shown in Figure 11. Hence, it is necessary to reset the cell label to smaller 

numbers for each insertion step; otherwise the maximum number of cells will be exceeded in 

the segmental insertion process. 
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As shown in Figure 11, the bounding region of segmental insertion AEFD consists of two 

portions, the overlapping zone ABCD from the previous insertion and the current input zone 

BEFC, which can be re-partitioned into three zones for parallel insertion, namely the buffer 

zone in the front AGJD, the insertion zone GHIJ and the buffer zone at the back HEFI. The 

first cell of the overlapping zone ABCD from the last round of point insertion has to be reset 

to 1, and cells in the input zone BEFC will be labeled sequentially following those in the 

overlapping zone ABCD. The number of cells in the input zone BEFC and the overlapping 

zone ABCD should not exceed the number of cells allowed in the segmental insertion process.  

To reset the cell label of overlapping zone ABCD, simply copy the content of the cells in the 

zone ABCD to cells with label starting from 1. In the present implementation, points in cell k 

is given by a pointer array P such that points in cell k = {Pi, i=Pk+1, Pk+1}, k=1,2, . . . , Nc, 

where Nc is the number of cells. Let k1 and k2 be respectively the first cell and the last cell of 

the overlapping zone ABCD. Then the number of cells in the zone ABCD, No = k2-k1+1. 

Hence, the contents in the cells k1 to k2 have to be transferred to cells 1 to No. 

(i) The number of points (offsets) in each cell: 

{                   }    {               } 

(ii) The points in each cell from k1 to k2: 

Points in cells k1 to k2 are given by {Pj1, Pj1+1, . . . , Pj2} where j1 = Pk1+1, j2 = Pk2+1. 

Number of points in cells k1 to k2, NP = j2 – j1 +1. These points have to be relocated within 

pointer array P so that P would not be exhausted in the insertion process. 

Let L be the allowable size of array P, usually L=2NI is good enough for the segmental 

insertion as for a regular grid the memory requirement for the pointer array P is given by 

Memory required = Nc + NP 

where Nc is the number of cells and NP is the number of points. 

Figure 11. Typical step of segmental zonal insertion 
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As, on the average, there are more than one point in each cell, Nc < NP, and memory required 

is less than 2NP. If each cell contains roughly      points, it is pretty safe to set L = 2NI. As 

shown in Figure 12, points in cells k1 to k2, {Pj1, Pj1+1, . . . , Pj2}, are relocated in array P to 

positions starting from s given by 

s = L – NI – NP 

where NI is the number of points read in for the current round of insertion, such that  

{                   }    {                   } 

 

 

Remark:  The performance of the zonal insertion scheme is not very sensitive to the 

number of points in a cell (n), as long as it is of the right order for evenly distributed points on 

a larger scale. The theoretical optimal value for n is not known, as it is only a statistical 

average depending also on the point distribution. Indeed, for randomly generated points, the 

number of points in a cell is not a constant but varies from 1 or 2 up to 2n or more. 

  

Figure 12. Memory arrangement of pointer array P for zonal partition into cells 

Points in cells k1 to k2 (NP) 
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s 
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5 EXAMPLES 

The segmental parallel Delaunay triangulation scheme was tested with 200 million to 1 billion 

randomly and non-uniformly distributed points on a PC, Intel®, Core™, i7 CPU, 

870@2.93GHz with 16 GB RAM running on Window 7 using Intel Fortran VS2010 on 64 bit, 

which supports OpenMP directives for parallel processing on shared memory architecture. 

The validity of the segmental insertion scheme has been thoroughly checked against a single 

processor insertion process with up to 50 million randomly generated points triangulated all in 

one zone. As shown in Table 1, 6 sets of randomly generated points ranging from 200 million 

to 1 billion points were triangulated by the segmental insertion scheme. In these tests, only 

memory for handling 10% of the points was allowed for the triangulation of the point sets, i.e. 

for the triangulation of 200 million points only 20 million points were read in at a time, and as 

a result, the point set was triangulated in 14 steps. As for the triangulation of 400 million 

points, 40 million points were allowed for each insertion, and 13 steps were required for the 

triangulation of the point set.  

Example Distribution NP Step NI NB NT NT* T1 T2 NT# 

U1 Random 200 14 14.3 1.55 1562.6 1350.7 431.4 459.9 3.13 

U2 Random 400 13 30.8 2.46 3012.3 2702.6 845.7 910 3.20 

U3 Random 600 15 40 3.22 4495.1 4054.9 1300.2 1403.9 3.12 

U4 Random 800 17 47.1 3.9 5990.6 5407.4 1717.8 1854.8 3.15 

U5 Random 1000 22 45.5 4.52 7576.6 6760.3 2191.9 2360.6 3.08 

U6 Random 1000 38 26.3 4.52 8029 6761.1 2328.3 2475.8 2.90 

N1 Mixed Patterns 200 14 14.3 1.77 1627.6 1343.1 522.3 552.1 2.57 

N2 Mixed Patterns 400 13 30.8 2.46 3084.8 2691.2 937.1 1001.2 2.87 

N3 Ellipsoid 600 20 30 3.22 4719.2 4018 1419.5 1514.8 2.83 

N4 Ellipsoid 800 21 38.1 3.9 6220.5 5360.7 1915.7 2047.2 2.80 

N5 Ellipsoid 1000 22 45.5 4.52 7724.3 6703.6 2363.5 2530.2 2.84 

 

NP  = Number of points in million 

Step  = Number of steps in the segmental triangulation process 

NI  = Number of points in million input for each insertion step 

NB  = Number of point in million in the buffer zone 

NT  = Total number of tetrahedra in million created in the segmental insertion process  

NT*  = Number of Delaunay tetrahedra in million retained in the convex hull 

T1  = CPU time for segmental triangulation 

T2 = Total CPU time including data input/output, grid construction, etc. 

NT
#
  = Number of Delaunay tetrahedra in million constructed per second  

 

With 16GB RAM, the maximum number of points that could be handled is about 60 million, 

which was employed to triangulate 800 million and 1 billion points in 17 and 22 steps 

respectively. Fewer points of 40 million (4% of 1 billion) for each insertion step were also 

tested, and the number of steps increased from 22 to 38. However, the number of tetrahedral 

constructed per second only dropped slightly from 3.08 to 2.9 million, showing the overhead 

for handling the overlapping zones between two insertion zones was not significant. Indeed, 

Table 1. CPU times for segmental triangulation 

mailto:870@2.93GHz
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the speed of segmental Delaunay triangulation is pretty fast using just 10% memory for each 

insertion step, and 3.2 million tetrahedral per second can be constructed for the insertion of 

400 million points. As shown in Figure 13, this rate is quite linear with respect to the number 

of points in the set, which is however the expected result of the segmental insertion process as 

the work for each insertion step is fairly similar and probably would take just equal amount of 

CPU time. 

As for the non-uniform point distributions, as long as the loading could be evenly distributed 

and points are not highly concentrated in a tiny volume, the performance of the segmental 

insertion scheme is only slightly lower compared to random point distributions, at a speed of 

creating about 2.8 million tetrahedra per second. For instance, for the triangulation of 200 and 

400 million points of mixed patterns of non-uniform distributions, i.e. line, ellipsoid and spiral 

distribution patterns (with 1% spread relative to the large dimension) were repeatedly 

triangulated by a segmental insertion process as shown in Figure 14. 

 

 

 

The slow down for the segmental triangulation of non-uniformly distributed points was 

probably due to two reasons; (i) slightly more CPU time was needed for the triangulation of 

non-uniformly distributed points, and (ii) a slightly larger overlapping zone had to be allowed 

between two insertion zones. For the segmental triangulation of 600, 800 and 1000 million 

non-uniformly distributed points, the distribution over an ellipsoidal surface was tested. With 

an almost balanced load for each processor and locally uniformly distributed points, the 

triangulation times taken were very similar to those of the randomly distributed points.  
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6 CONCLUSIONS AND DISCUSSIONS 

A segmental point insertion method has been proposed for the Delaunay triangulation of 

exceptionally large point sets of more than 1 billion points on a PC in three dimensions. The 

points to be triangulated are partitioned into zones (segments), and points in each zone are 

triangulated by a parallel insertion module, step by step until all the points in the set are 

processed. Based on a modulus labeling scheme to access point coordinates and a dynamic 

update of points stored in cells, in theory, there is no limit to the number of points that can be 

handled by a machine with limited memory. 

As the work of each typical step for the insertion of an equal number of points is very similar, 

the processing time bears, more or less, a linear CPU time relationship with the number of 

points in the set, with a construction rate of about 3.1 million Delaunay tetrahedra per second 

for randomly generated points. 3.1 million Delaunay tetrahedra is based on earlier test runs 

done on a relatively old PC, and later tests indicated that more than 5 million tetrahedra per 

second could be achieved in a faster PC, Intel Core i7-4770 @ 3.4GHz with 32GB RAM. The 

performance of the segmental insertion scheme has also been tested on non-uniformly 

Figure 14. Non-uniform point distribution of mixed patterns 
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distributed points. Provided that a balanced load could be set up for the parallel insertion 

kernel, the performance is only slightly lower compared to that of randomly distributed points 

at about 2.8 million tetrahedra per second. More complicated segmental partition into zones 

can also be considered, instead of a line subdivision, the points set can as well be partitioned 

by a block subdivision scheme into       zones to reduce common inter-zonal boundary. 

However, this may not be more effective, as synchronization in the use of memory is bound to 

be more complicated for insertion zones having common boundary with many other adjacent 

zones. 

In theory, there is no limit to the number of points in the triangulation. However, there are two 

bottlenecks in the practical implementation. The first concern is whether the current Windows 

operating system and the available C++/FORTRAN programming language can effectively 

handle memory addresses more than 32GB RAM. The second concern is that for the present 

computer code 4-byte integers have been used, whose dynamic range is              and 

dividing this by 4, the number of tetrahedral elements in a zone is limited to 536870912. In 

other words, using 4-byte integers, the array indices have to be carefully controlled to avoid 

overflow of indices for handling large array of tetrahedra, their neighbours and vertices. 
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