
1

3D Delaunay Triangulation of 1 Billion Points on a PC

S.H. Lo

Department of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong

(Email: hreclsh@hku.hk)

ABSTRACT

Of course, there is not enough memory on a PC with 16 GB RAM, and tetrahedra constructed

have to be output to leave rooms for the creation of new tetrahedra in the next round of point

insertion. A segmental zonal insertion scheme is developed, in which large data sets of more

than 100 million points are partitioned into zones, each of which is triangulated in turn by the

parallel zonal insertion module. An overlapping zone between two steps of insertion has to be

allowed to ensure Delaunay tetrahedra formed at the boundary between two insertion zones.

Tetrahedra between zones can be easily eliminated by the minimum vertex allocation method.

The collection of all the tetrahedra from each insertion zone/step will produce the required

triangulation for the point set. As the work of each typical step for the insertion of an equal

number of points is very much similar, the processing time bears roughly a linear relationship

with the number of points in the set, at a construction rate of more than 5 million Delaunay

tetrahedra per second for the triangulation of 1 billion randomly generated points.

KEY WORDS: 3D Parallel Delaunay Triangulation, segmental zonal point insertion, 1

billion points

2

1. INTRODUCTION

Based on a sound geometrical concept, Delaunay triangulation has important applications in

many fields, including data visualization and imaging, terrain modeling, finite element mesh

generation, surface reconstruction and structural networking for arbitrary point sets, etc. [1,2]

The popularity of Delaunay triangulation is attributed to its nice geometric properties as a

dual of Voronoi tessellation and the speed with which it can be constructed in two and higher

dimensions. In view of its diverse applications, many strategies for its construction have been

proposed [3-7]. With a rapid increase in the problem size from thousands of points to millions

of points, it is necessary to devise ever more efficient schemes for the construction of

Delaunay triangulations. Today’s microcomputers, PC, are all equipped with more than one

processors, and a standard machine with four cores and 16GB memory is quite common.

Using one single processor for Delaunay triangulation represents a pitiful 25% usage of the

total capacity of the machine, and an efficient parallel Delaunay algorithm making the full use

of all the processors will simply boost the speed by more than four times, cutting down the

triangulation time to one quarter of that by a serial process.

In 1999, Blelloch et al [8] presented a dividing path of Delaunay edges by projecting points

on paraboloid surface for parallel triangulation of 2D points using divide-and-conquer

algorithm. There was about 50% or four times speed up running in parallel with eight

processors for uniformly or non-uniformly distributed points. In 2002, Kolingerova and

Kohout [9] introduced the “optimistic method” based on the idea that the probability of

collision of threads on the same triangle is relatively low for large data set. 2D points were

divided into subsets, and concurrent insertions by several processors were handled by

synchronization.

Based on the divide-and-conquer algorithm, Chen et al in 2004 [10] presented a parallel

procedure for the near Delaunay triangulation of 2D points. The main challenge of the method

was the subsequent merge of isolated triangulated patches into one coherent piece. Nave et al

in 2004 [11] proposed a parallel Delaunay refinement algorithm by a synchronized point

insertion with guaranteed quality provided certain boundary constraints are fulfilled. A

parallel divide-and-conquer scheme for 2D Delaunay triangulation was proposed by Chen et

al in 2006 [12], in which the “affected zone” was introduced to combine “sub-Delaunay”

triangulations. Wu et al in 2011 [13] introduced ParaStream: a parallel streaming Delaunay

triangulation algorithm for LiDAR points on multi-core architectures, in which kd-tree was

applied to distribute workload among processors.

Parallel mesh refinement to triangular and tetrahedral meshes is a direct application of the

parallel Delaunay triangulation to mesh generation. Chrisochoides and Nave [14] in 2003

presented a parallel Bowyer-Watson insertion for mesh generation by synchronization of

processors in case the cavities associated with two or more concurrent inserted points intersect.

It was reported that code complexity might cause issues of stability near domain boundary. A

template for developing parallel Delaunay refinement was also presented by Chernikov and

Chrisochides in 2010 [15], in which rigorous analysis on how to avoid conflicting Delaunay

insertion in mesh refinement was discussed.

3

Research works have only just been started in the parallelization of Delaunay triangulation

over three and higher dimensions in recent years. In 2003, Kohout and Kolingerova [16] put

forward a parallel Delaunay triangulation based on a randomized incremental insertion with

edge and face swaps in 3D space, in which synchronization for multiple point insertion was

applied at various stages of point insertion. A survey of parallel Delaunay triangulation

algorithms was presented by Kohout et al in 2005 [17], in which a parallel insertion algorithm

was also proposed based on a synchronization scheme using thread priorities. Beyer et al in

2005 [18] presented a procedure for parallel dynamic and kinetic regular triangulation in three

dimensions, based on an incremental construction with parallel flipping of tetrahedra arising

from the idea of accessible and non-accessible simplices. Batista et al in 2010 [19] studied

and implemented several parallel geometric algorithms for multi-core computers. YingLiang

Ma [20] presented a surface extraction algorithm for large binary image data set based on

parallel 3D Delaunay subdivision strategy. Points and surface data were partitioned into zones,

in which Delaunay triangulation was carries out over each zone in parallel, which could then

be connected to form the skeleton of the required surface. However, no details were given in

the algorithm or in the implementation of the parallel 3D Delaunay triangulation.

A parallel insertion scheme by zonal subdivision has recently been proposed by Lo [21], in

which points are partitioned into cells which are then grouped into zones for parallel insertion.

A high efficiency of this method is attributed to its absolute independence for zonal insertion

by each processor and the ease and robustness in the elimination of redundant tetrahedra at the

boundary between zones by the elegant minimum vertex allocation rule. By means of the

parallel zonal insertion, on a PC i7 CPU 870@2.93GHz with 16GB RAM, it is able to

construct 350 million Delaunay tetrahedra in less than 100 seconds.

However, 16 GB RAM is what we can have nowadays on a PC. In case, we would like to

tackle a large point set of more than 50 million 3D points, a more powerful machine of more

than 16 GB RAM is needed. From this, we can see that the bottleneck for the construction of

Delaunay triangulation for a large point set is not the speed but the memory restriction. In the

light of the parallel zonal insertion scheme, each processor works independently within its

assigned zone, and the tetrahedra so constructed will be subsequently put together to form the

final triangulation. This gives us the idea that a large point set can be first divided into zones,

which are to be handled by one or more processors as a typical parallel zonal insertion step. A

segmental zonal insertion scheme can thus be formulated by taking one zone at a time until all

the zones have been processed.

Nevertheless, in each step, tetrahedra have to be output to allow rooms for the creation of new

tetrahedra in the next step of zonal insertion. The coordinates and the zonal label of the points

have to be synchronized with the step by step insertion process as well, so that the number of

coordinate points could be controlled to within a reasonable limit, just good enough for each

step of zonal insertion. An overlapping zone between two steps of insertion has to be provided

too to ensure Delaunay tetrahedra are formed at the boundary between two insertion zones.

mailto:870@2.93GHz

4

In this paper, a segmental zonal insertion scheme will be introduced to triangulate large sets

of randomly generated points and typical non-uniformly distributed points. In theory, there is

no limit to the number of points in a triangulation, and it is only a matter of computer running

time and the amount of tetrahedra that can be stored in the available permanent memory. By

the nature of the segmental zonal insertion, the time complexity is basically linear, and about

3.1 million Delaunay tetrahedra per second can be created in the triangulation of 1 billion

randomly generated points.

2. DELAUNAY TRIANGULATION

The Delaunay triangulation of a set of

points on a plane is defined to be a

triangulation such that the circumcircle of

every triangle in the triangulation contains

no point from the set in its interior. Such a

triangulation exists for a given set of points,

and it is the dual of the Voronoi

tessellation. The triangulation is unique if

the points are in general position, i.e. no

four points are cyclic. A triangle T is said

to be Delaunay with respect to a point p if

p does not lie inside the circumcircle of T.

A triangle T in a triangulation of a set of

points is call Delaunay triangle if T is

Delaunay with respect to every point in the

set. A triangulation of a set of points is

called the Delaunay triangulation of the

point set if every triangle in the triangulation is a Delaunay triangle as shown in Figure 1. The

notion of Delaunay triangulation is very general, which can be easily extended to higher

dimensions. For instance, the Delaunay triangulation in three dimensions is given by

replacing triangle by tetrahedron, circle by sphere and 2D plane by 3D space. The following

lemma provides the basis for many algorithms in the construction and verification of

Delaunay triangulation.

Lemma of Delaunay [22]

Let T(S) be a triangulation of the point set S. The necessary and sufficient condition that no

point of S is contained in the circumsphere of any tetrahedron in the triangulation is that any

two adjacent tetrahedra in the triangulation are Delaunay with respect to each other’s vertices.

Figure 1. Delaunay triangulation of 17 points

5

2.1 The Insertion Algorithm

For the construction of Delaunay triangulation in

three and higher dimensions, point insertion

algorithm is the most popular, and many interesting

methods have been proposed [3-7]. For a set of 3D

points, the initial triangulation is a cuboid

consisting of five or six Delaunay tetrahedra large

enough to contain all the given points as shown in

Figure 2. The Delaunay triangulation is achieved by

inserting points one by one into the initial

triangulation. Each cycle of point insertion can be

divided into three steps.

(i) For a newly inserted point, identify all the tetrahedra whose circumsphere contains the

point in its interior. The cavity left behind upon removal of these tetrahedra forms a star-

shaped insertion polyhedron.

(ii) Owing to the finite precision arithmetic, the triangulation facets on the boundary of the

cavity have to be verified with the visibility check and corrected before they are

connected with the inserted point to form tetrahedra.

(iii) The triangulation of the insertion polyhedron should be trivial. However, the adjacency

relationship of the tetrahedra has to be established, which will be frequently referred to

throughout the triangulation process.

When a new point p is inserted in a Delaunay triangulation, it is required to find all the

tetrahedra whose circumsphere contains the point p. A simple method to determine those non-

Delaunay tetrahedra is to scan through all the existing tetrahedra for those circumspheres

containing the point p. However, a more efficient approach is to start with the tetrahedron

which contains the inserted point p and find the others by means of the adjacency relationship.

In this way, the boundary of the insertion polyhedron is given by the common faces of two

tetrahedra for which one is positive in the sphere inclusion test while the other fails. The

tetrahedron which contains the insertion point p is called the base, which is an integral part of

the insertion polyhedron.

In the point insertion algorithm, there are two basic steps, namely, (i) the location of the base

tetrahedron containing the inserted point and (ii) to ensure the circumsphere criterion is

verified for all the tetrahedra connected to the inserted point. If points are inserted cell by cell

as shown in Figure 3, the searching path in determining the base is a constant depending on

the number of points in a cell, and the verification of the circumsphere criterion is a local

process if we follow the adjacency relationship of the tetrahedra, thanks to lemma of

Delaunay. From this observation, it can be seen that Delaunay triangulation by point insertion

is one of the most efficient algorithms for its simplicity and linearity provided that points are

inserted in clusters in a contiguous manner.

Figure 2. Initial triangulation

of five tetrahedra

Points to be

inserted

6

Point insertion following an ordered cell sequence for Delaunay triangulation of points in

clusters is a very simple and efficient scheme as the number of operations is almost optimal.

Consider 3D point insertion, it takes n scans of tetrahedra on average in locating the base

tetrahedron, where n is the number of points in a cell, and on average a point is connected to

27 tetrahedra for which circumsphere criterion has to be verified. A simple count illustrates

that on average the number of operations for each point insertion is n+27=35 if each cell

contains roughly 8 points. Numerical tests of the insertion of 1 million randomly generated

points by single-processor insertion shows that over 1 million Delaunay tetrahedra can be

constructed per second on a PC.

3. PARALLEL DELAUNAY TRIANGULATION IN 3D

3.1 General Considerations and Strategies

A robust and efficient parallel 3D Delaunay triangulation algorithm has to be based on a

sound, reliable and fast sequential scheme, and hence parallelization of point insertion is

considered for the possibility of multiple point simultaneous insertions by several processors.

There are three main strategies proposed so far for Delaunay triangulation by a multiple

insertion of points concurrently with several processors. (i) Creation of Delaunay boundary

edges. Delaunay cutting lines are introduced by local Delaunay triangulation or by some more

sophisticated method such as the projection onto a paraboloid [8] to partition the two-

dimensional domain into two roughly equal portions. Further division can be done by

introducing more cut lines to produce as many regions as necessary for triangulation by point

insertion or any other techniques within each isolated region in parallel. (ii) Triangulation of

points within zones in parallel and the patches of triangulation are connected by filling up

gaps between zones. The given points for triangulation are first allocated to various zones, the

ensemble of which is a partition of space covering all the points. Delaunay triangulation can

now be carried out using points within the zones in parallel. The result is a collection of

isolated patches of triangles, which have to be connected properly to form the final Delaunay

Figure 3. Points sorted into cells

Regular cell partition kd-tree cell partition Inserted point

7

triangulation [23]. (iii) Synchronization. Parallel point insertion controlled by some verified

sequence/location of insertion, or by means of synchronized insertion for several processors

by blocking the access of a particular point or triangles from other processors to avoid

conflicts [9,14]. This idea can be readily extended to three dimensions [16,17] as the

procedure is not based on any two-dimensional features of the triangulation. However, single-

processor operations and the checking for the occurrence of such events will substantially

slow down the overall performance of parallel insertion.

3.2 The Zonal Insertion Scheme

In theory, a processor can be assigned to each point for the maximum speed up. Nevertheless,

machines with so many processors are not yet available, and even they exist it may not be

economical (most efficient) to have so many processors working together as conflicts are

bound to occur for the insertion of neighbouring points. It is impractical and unnecessary to

assign one processor to each point as there is a lot of redundancy in doing so, and an

optimized scheme is to group several cells together into a zone for a single processor insertion.

As a result, cells of spatial partitions of points are grouped into a number of zones depending

on the number of processors available. There are two major issues to be addressed in such a

scenario: (i) make sure that Delaunay tetrahedra are constructed at the boundary between

zones and (ii) how to get rid of the redundant tetrahedra efficiently in a rigorous manner. Such

a zonal parallel insertion scheme has recently been proposed by Lo in a paper entitled

“Parallel Delaunay Triangulation in three dimensions” [21]. The major steps are outlined as

follows.

3.2.1 Points partitioned into cells

Let N be the number of points in a 3D Delaunay triangulation, and n be the average number of

point desirable in a cell, then

 (1)

where Nx, Ny, Nz are respectively the number of cell division along the x, y, and z-axis and

the number of cells, Nc=Nx Ny Nz

Let xmin, xmax ymin, ymax, zmin, zmax be the bounds of the (x,y,z) coordinates of the point set,

compute Rx = xmax – xmin, Ry = ymax – ymin and Rz = zmax – zmin, then

Nx, Ny and Nz can be determined by substituting Rx = Nx, Ry = Ny and Rz = Nz into (1).

The most important requirement in a spatial partition of points into cells is to ensure that each

point belongs to one and only one cell, and the sum of points in all the cells equal to the total

number of points, i.e.

8

 ∑

and is the number of cells in the partition

3.2.2 Grouping cells into zones

Let NZone=DxDyDz be the number of zones, which is usually a multiple of the number of

processors available for parallel zonal insertion, where Dx, Dy and Dz are the zonal divisions

along x-axis, y-axis and z-axis respectively as shown in Figure 4, then cells are grouped into

zones such that each zone will consist of m cells given by

 (

) (

) (

)

For the best performance of the parallel

insertion, the number of zones has to be

an integral multiple of the number of

processors available; for example,

division into 2x2x3=12 zones for 4 or 6

processors is a sound division. However,

division into 12 zones for 8 processors

may not be that desirable, because

12=8+4 and not all processors will be

working to their full capacity all the time.

However, since we are working with

millions of points, the partition into cells

and the division into zones which are

multiples of the number of processors

will never be a problem. The number of

cells in some zones near the boundary

may have fewer or more cells if Nx/Dx,

Ny/Dy or Nz/Dz is not a whole number. Such a variation would not cause any problem in the

subsequent operations, as a zone is identified by the bounding cells in x-, y- and z-directions,

i.e. a zone I, I=1~NZone, is specified by , where

(Nx1,Nx2), (Ny1,Ny2) and (Nz1,Nz2) are respectively the starting and ending cell division lines

along x-, y- and z-directions.

Dx=2

Figure 4. Partitioned into 2x4x3=24 zones

D
y
=4

D
z
=3

9

3.2.3 Simultaneous insertion in 3D

A division into 2x2x2=8 zones for the insertion of 2000 three-dimensional points is shown in

Figure 5, in which the average number of points in a cell, n=8, Rx, Ry and Rz are in the ratios

1:1:1, hence Nx=Ny=Nz=6, and nNxNyNz=1728 2000. The initial triangulation for each zone

is a cuboid of five tetrahedra large enough to contain all the points. Point insertion in each

zone will be handled by one single processor in a completely independent manner. All the

points within each zone I, I=1~8, will be processed concurrently by inserting points in those

cells belonging to the zone under consideration. This will generate all the Delaunay tetrahedra

within the zone; however, Delaunay tetrahedra crossing the zonal boundary are missing as

shown in Figure 6. The next step is to construct all the Delaunay tetrahedra at the boundary

between zones. To do so, boundary cells are added around the zone to all the boundary

surfaces of the zone as shown in Figure 7. For easy visualization, only those boundary

tetrahedra with the neighbouring zones and their associated circumspheres are shown,

whereas tetrahedra formed with the auxiliary corner points and their associated circumspheres

are not shown. Boundary tetrahedra are defined as those tetrahedra supported on vertex or

vertices from the current zone and vertex or vertices from neighbouring zone(s) as shown in

Figure 7. This simple definition is also applicable to Octree and kd-tree spatial partitions.

Layers of cells can be added to the boundary surfaces of the augmented zone until all the

circumspheres of the boundary tetrahedra are bounded to ensure all boundary tetrahedra are

Delaunay as shown in Figure 7. As each cell contains roughly equal number of points, the

process converges fairly rapidly and evenly on all the zonal boundary faces in one or two

layers of cells. In this particular example shown in Figure 7, no additional layer of cells is

needed, as all circumspheres of the boundary tetrahedra are already bounded by the

augmented zone. Similar to the two-dimensional case, points considered before need not be

reconsidered after further point insertions as the union of circumspheres will always shrink for

the introduction of a new point.

10

Figure 5. 2000 random points partitioned into 8 zones

Figure 6. Tetrahedra generated within a zone

Zonal boundary

Tetrahedra within zone I

Nx=6, Dx=2
Ny=6, Dy=2

Nz=6, Dz=2

Points partitioned in

6x6x6 = 216 cells

2x2x2 = 8 zones

Each zone consists

of 3x3x3=27 cells

11

3.2.4 Elimination of redundant tetrahedra

Delaunay triangulation by zonal insertion is complete in the sense that it contains all the

Delaunay tetrahedra of the point set as Delaunay tetrahedra in a patch around each point are

constructed in the insertion process for all the points partitioned into zones. As each zone is

processed by a processor independently, all the tetrahedra within a zone are generated by one

processor. However, tetrahedra on the boundary between zones may be generated by one or

more processors. A general rule for assigning tetrahedra to zones can be formulated such that

tetrahedra with vertex zone labels z1, z2, z3 and z4 will be assigned to zone z given by

This is a surprisingly simple and elegant scheme, by which redundant tetrahedra can be

eliminated independently almost without effort. By the minimum vertex allocation, redundant

tetrahedra for the parallel insertion of 2000 3D points are eliminated and distributed into 8

zones as shown in Figure 8. This is not the convex hull of the given points as the auxiliary

corner points are not placed at infinity, but a Delaunay triangulation of the points with some

missing boundary edges and faces.

Figure 7. Boundary tetrahedra and circumspheres

Boundary tetrahedra

Circumspheres

Augmented zone with additional

layers on boundary surfaces

12

The simple insertion scheme by means of a regular grid for uniformly or mildly non-

uniformly distributed points is slightly more efficient (about 10% on average) compared to the

well-established triangulation algorithm CGAL4.2 [24]. For highly non-uniform point

distributions, the multi-grid insertion scheme can be used, which is one of the most efficient

triangulation methods ever proposed [24]. The scalability of the parallel zonal point insertion

has been fully described in reference [21]. The purpose of this paper is to make use of these

advanced techniques just developed in conjunction with the novel segmental triangulation

algorithm to be introduced in the next section into a single triangulation scheme for ultra large

point sets on a standard PC. In principle, even for the limited resources of a PC, there is no

restriction to the size of the point set to be triangulated so long as sufficient time is allowed

for its execution.

Figure 8. Partitioning of tetrahedra into 8 zones by the minimum vertex scheme

13

4. SEGMENTAL TRIANGULATION

4.1 Partition into zones

In case the set of points is too large to be

handled all at the same time, points can be

partitioned into zones which are read in

progressively step by step for triangulation in

a segmental insertion process zone by zone.

Following the idea of parallel triangulation

described in Section 3, Delaunay triangulation

of all the points in a zone can be assured if

Delaunay point insertion is applied to all the

points within the zone and the entire zone is

covered by a layer of Delaunay tetrahedra.

Depending on the value of Rx, Ry and Rz, the

set of points is divided into zones along the

longer dimension. Without loss of generality,

suppose Rz is the largest and the point set is

divided along the z-direction. As shown in

Figure 9, the number of point per layer along

the z-direction is given by

 where n is the average number of points in a cell

From the experience of parallel zonal insertion for randomly generated points, 2 to 3 layers

are usually sufficient to ensure a Delaunay cover of the zone. Hence, if an overlapping zone

of m layers of cells is allowed between two insertion zones, the number of points in this

buffer zone is given by

where m can be conveniently set to 5, which is about twice the number of layers needed for

Delaunay triangulation. In the actual implementation, Delaunay triangulation at the zonal

boundary is achieved by adding layers of cells from the buffer zone in a progressive manner,

and it would be easy to find out if the buffer zone has been exceeded or not. Let Ns be the

number of points that can be handled in one insertion step. If NI is the number of points to be

inserted in a step, we have

NB has to be multiplied by 2 as there are overlapping zones both in the front and at the back of

the insertion zone as shown in Figure 10.

Nx

Figure 9. Partitioned into cells

N
y

N
z

14

Knowing NI, it is not difficult to estimate the number of steps needed for the entire segmental

insertion process.

and the number of points to be inserted in each step is then adjusted to

In a typical insertion step, points in the insertion zone are fed into a parallel insertion module

to create a Delaunay triangulation for the insertion zone. Tetrahedra not belonging to the zone

can be readily eliminated by the minimum vertex allocation scheme.

4.2 Memory Management

Perhaps, the most difficult part of the segmental zonal insertion for a large set of point is to

make the best use of the available memory in a simple robust manner. No extra memory is

needed for the parallel zonal insertion scheme compared to the classical sequential insertion

process, except a zonal label for each point stored as a 2-byte integer in a linear array. To

minimize the use of memory, the circumcentre and the circumradius of each tetrahedron are

not stored, which are re-calculated whenever necessary. For each point insertion, about

 bytes memory are required to store the vertices and the

neighbours of the 7 tetrahedra (rounded up from an average of 6.75) generated and the x, y

and z-coordinates of the point. Thus, a PC with 16G Bytes, apart from the memory taken up

by the operating system, can generate quite comfortably 350 million tetrahedra for an

insertion of more than 50 million points without being appreciably slowed down due to a lack

of memory. In the segmental zonal insertion process, about 60 million points can be handled

in one single insertion step, i.e. , subtracting points in the overlapping zones,

points in the insertion zone is about 50 million, or .

Figure 10. Insertion zone bounded by buffer zones on both sides

Insertion zone (NI)

Overlapping zones (NB)

15

The quantities that are needed in a parallel insertion process are the (x, y, z) coordinates of the

points, the tetrahedra constructed, the adjacency information of the tetrahedra, namely, their

neighbours and the zonal label of the points. Once triangulation is done for the insertion zone

in an insertion step, the tetrahedra constructed can be output to allow room for new tetrahedra

to be created in the next insertion step. However, points in the overlapping zones have to be

retained for the next round of point insertion, and the label to identify individual point will

continue to increase as the segmental insertion process advances with more insertion steps.

A simple solution to access correctly the coordinates of the points is as follows. Coordinates

of point i, { } with N >> NS, is given by

 ()

where { }

As the number of points in an insertion step is given by

which is always smaller than NS, and each point in the insertion zone will be unique and

within the range { } Of course, when points are input for the next zonal insertion,

coordinates of point i will occupy coordinates of the point with label j, such that most

coordinates () , { } will be over written for each insertion step. The

zonal label, which is also an attribute of the points, has to be treated in a similar manner as the

spatial point coordinates.

4.3 Dynamic Grid Update

Based on this modulus point labeling scheme, there is no limit to the number of points in a

triangulation, and it is only a matter of computer running time to handle very large point sets.

However, the number of cells will keep increasing when more and more insertion zones are

processed as shown in Figure 11. Hence, it is necessary to reset the cell label to smaller

numbers for each insertion step; otherwise the maximum number of cells will be exceeded in

the segmental insertion process.

16

As shown in Figure 11, the bounding region of segmental insertion AEFD consists of two

portions, the overlapping zone ABCD from the previous insertion and the current input zone

BEFC, which can be re-partitioned into three zones for parallel insertion, namely the buffer

zone in the front AGJD, the insertion zone GHIJ and the buffer zone at the back HEFI. The

first cell of the overlapping zone ABCD from the last round of point insertion has to be reset

to 1, and cells in the input zone BEFC will be labeled sequentially following those in the

overlapping zone ABCD. The number of cells in the input zone BEFC and the overlapping

zone ABCD should not exceed the number of cells allowed in the segmental insertion process.

To reset the cell label of overlapping zone ABCD, simply copy the content of the cells in the

zone ABCD to cells with label starting from 1. In the present implementation, points in cell k

is given by a pointer array P such that points in cell k = {Pi, i=Pk+1, Pk+1}, k=1,2, . . . , Nc,

where Nc is the number of cells. Let k1 and k2 be respectively the first cell and the last cell of

the overlapping zone ABCD. Then the number of cells in the zone ABCD, No = k2-k1+1.

Hence, the contents in the cells k1 to k2 have to be transferred to cells 1 to No.

(i) The number of points (offsets) in each cell:

{ } { }

(ii) The points in each cell from k1 to k2:

Points in cells k1 to k2 are given by {Pj1, Pj1+1, . . . , Pj2} where j1 = Pk1+1, j2 = Pk2+1.

Number of points in cells k1 to k2, NP = j2 – j1 +1. These points have to be relocated within

pointer array P so that P would not be exhausted in the insertion process.

Let L be the allowable size of array P, usually L=2NI is good enough for the segmental

insertion as for a regular grid the memory requirement for the pointer array P is given by

Memory required = Nc + NP

where Nc is the number of cells and NP is the number of points.

Figure 11. Typical step of segmental zonal insertion

Points input for processing BEFC

Overlapping zones ABCD

A B

C D

E

F

G H

I J

Step: 1 Step: NStep

17

As, on the average, there are more than one point in each cell, Nc < NP, and memory required

is less than 2NP. If each cell contains roughly points, it is pretty safe to set L = 2NI. As

shown in Figure 12, points in cells k1 to k2, {Pj1, Pj1+1, . . . , Pj2}, are relocated in array P to

positions starting from s given by

s = L – NI – NP

where NI is the number of points read in for the current round of insertion, such that

{ } { }

Remark: The performance of the zonal insertion scheme is not very sensitive to the

number of points in a cell (n), as long as it is of the right order for evenly distributed points on

a larger scale. The theoretical optimal value for n is not known, as it is only a statistical

average depending also on the point distribution. Indeed, for randomly generated points, the

number of points in a cell is not a constant but varies from 1 or 2 up to 2n or more.

Figure 12. Memory arrangement of pointer array P for zonal partition into cells

Points in cells k1 to k2 (NP)

Number of points (offsets) in cells k1 to k2 (No)

s

Pointer array P, size = L

Points in the input zone (NI)

Cell offsets for points of input zone (

18

5 EXAMPLES

The segmental parallel Delaunay triangulation scheme was tested with 200 million to 1 billion

randomly and non-uniformly distributed points on a PC, Intel®, Core™, i7 CPU,

870@2.93GHz with 16 GB RAM running on Window 7 using Intel Fortran VS2010 on 64 bit,

which supports OpenMP directives for parallel processing on shared memory architecture.

The validity of the segmental insertion scheme has been thoroughly checked against a single

processor insertion process with up to 50 million randomly generated points triangulated all in

one zone. As shown in Table 1, 6 sets of randomly generated points ranging from 200 million

to 1 billion points were triangulated by the segmental insertion scheme. In these tests, only

memory for handling 10% of the points was allowed for the triangulation of the point sets, i.e.

for the triangulation of 200 million points only 20 million points were read in at a time, and as

a result, the point set was triangulated in 14 steps. As for the triangulation of 400 million

points, 40 million points were allowed for each insertion, and 13 steps were required for the

triangulation of the point set.

Example Distribution NP Step NI NB NT NT* T1 T2 NT#

U1 Random 200 14 14.3 1.55 1562.6 1350.7 431.4 459.9 3.13

U2 Random 400 13 30.8 2.46 3012.3 2702.6 845.7 910 3.20

U3 Random 600 15 40 3.22 4495.1 4054.9 1300.2 1403.9 3.12

U4 Random 800 17 47.1 3.9 5990.6 5407.4 1717.8 1854.8 3.15

U5 Random 1000 22 45.5 4.52 7576.6 6760.3 2191.9 2360.6 3.08

U6 Random 1000 38 26.3 4.52 8029 6761.1 2328.3 2475.8 2.90

N1 Mixed Patterns 200 14 14.3 1.77 1627.6 1343.1 522.3 552.1 2.57

N2 Mixed Patterns 400 13 30.8 2.46 3084.8 2691.2 937.1 1001.2 2.87

N3 Ellipsoid 600 20 30 3.22 4719.2 4018 1419.5 1514.8 2.83

N4 Ellipsoid 800 21 38.1 3.9 6220.5 5360.7 1915.7 2047.2 2.80

N5 Ellipsoid 1000 22 45.5 4.52 7724.3 6703.6 2363.5 2530.2 2.84

NP = Number of points in million

Step = Number of steps in the segmental triangulation process

NI = Number of points in million input for each insertion step

NB = Number of point in million in the buffer zone

NT = Total number of tetrahedra in million created in the segmental insertion process

NT* = Number of Delaunay tetrahedra in million retained in the convex hull

T1 = CPU time for segmental triangulation

T2 = Total CPU time including data input/output, grid construction, etc.

NT
#
 = Number of Delaunay tetrahedra in million constructed per second

With 16GB RAM, the maximum number of points that could be handled is about 60 million,

which was employed to triangulate 800 million and 1 billion points in 17 and 22 steps

respectively. Fewer points of 40 million (4% of 1 billion) for each insertion step were also

tested, and the number of steps increased from 22 to 38. However, the number of tetrahedral

constructed per second only dropped slightly from 3.08 to 2.9 million, showing the overhead

for handling the overlapping zones between two insertion zones was not significant. Indeed,

Table 1. CPU times for segmental triangulation

mailto:870@2.93GHz

19

the speed of segmental Delaunay triangulation is pretty fast using just 10% memory for each

insertion step, and 3.2 million tetrahedral per second can be constructed for the insertion of

400 million points. As shown in Figure 13, this rate is quite linear with respect to the number

of points in the set, which is however the expected result of the segmental insertion process as

the work for each insertion step is fairly similar and probably would take just equal amount of

CPU time.

As for the non-uniform point distributions, as long as the loading could be evenly distributed

and points are not highly concentrated in a tiny volume, the performance of the segmental

insertion scheme is only slightly lower compared to random point distributions, at a speed of

creating about 2.8 million tetrahedra per second. For instance, for the triangulation of 200 and

400 million points of mixed patterns of non-uniform distributions, i.e. line, ellipsoid and spiral

distribution patterns (with 1% spread relative to the large dimension) were repeatedly

triangulated by a segmental insertion process as shown in Figure 14.

The slow down for the segmental triangulation of non-uniformly distributed points was

probably due to two reasons; (i) slightly more CPU time was needed for the triangulation of

non-uniformly distributed points, and (ii) a slightly larger overlapping zone had to be allowed

between two insertion zones. For the segmental triangulation of 600, 800 and 1000 million

non-uniformly distributed points, the distribution over an ellipsoidal surface was tested. With

an almost balanced load for each processor and locally uniformly distributed points, the

triangulation times taken were very similar to those of the randomly distributed points.

0

500

1000

1500

2000

2500

200 400 600 800 1000

Figure 13. Segmental Triangulation - CPU time vs number of points

Uniform

Non-Uniform

Number of points (million)

C
P

U
 T

im
e (s)

20

6 CONCLUSIONS AND DISCUSSIONS

A segmental point insertion method has been proposed for the Delaunay triangulation of

exceptionally large point sets of more than 1 billion points on a PC in three dimensions. The

points to be triangulated are partitioned into zones (segments), and points in each zone are

triangulated by a parallel insertion module, step by step until all the points in the set are

processed. Based on a modulus labeling scheme to access point coordinates and a dynamic

update of points stored in cells, in theory, there is no limit to the number of points that can be

handled by a machine with limited memory.

As the work of each typical step for the insertion of an equal number of points is very similar,

the processing time bears, more or less, a linear CPU time relationship with the number of

points in the set, with a construction rate of about 3.1 million Delaunay tetrahedra per second

for randomly generated points. 3.1 million Delaunay tetrahedra is based on earlier test runs

done on a relatively old PC, and later tests indicated that more than 5 million tetrahedra per

second could be achieved in a faster PC, Intel Core i7-4770 @ 3.4GHz with 32GB RAM. The

performance of the segmental insertion scheme has also been tested on non-uniformly

Figure 14. Non-uniform point distribution of mixed patterns

Line

Ellipsoid
Spiral

Line
Ellipsoid

Spiral

21

distributed points. Provided that a balanced load could be set up for the parallel insertion

kernel, the performance is only slightly lower compared to that of randomly distributed points

at about 2.8 million tetrahedra per second. More complicated segmental partition into zones

can also be considered, instead of a line subdivision, the points set can as well be partitioned

by a block subdivision scheme into zones to reduce common inter-zonal boundary.

However, this may not be more effective, as synchronization in the use of memory is bound to

be more complicated for insertion zones having common boundary with many other adjacent

zones.

In theory, there is no limit to the number of points in the triangulation. However, there are two

bottlenecks in the practical implementation. The first concern is whether the current Windows

operating system and the available C++/FORTRAN programming language can effectively

handle memory addresses more than 32GB RAM. The second concern is that for the present

computer code 4-byte integers have been used, whose dynamic range is and

dividing this by 4, the number of tetrahedral elements in a zone is limited to 536870912. In

other words, using 4-byte integers, the array indices have to be carefully controlled to avoid

overflow of indices for handling large array of tetrahedra, their neighbours and vertices.

ACKNOWLEDGEMENTS

The Area of Excellence Scheme “Theory, Modeling and Simulation on Emerging Electronics”

granted by UGC, Hong Kong SAR, is gratefully acknowledged. The author would also like to

thank Ms. Lillian Chan of the Computer Centre, the University of Hong Kong, for her help in

the parallel computing of the examples, which was conducted using the HKU Computer

Centre research computing facilities that are supported in part by the Hong Kong UGC

Special Equipment Grant (SEG HKU09).

REFERENCES

[1] N Amenta and M. Bern, “Surface reconstruction by Voronoi filtering”, Discrete Computational

Geometry, 22 4 (1999) 481-504

[2] Hang Si, “Constrained Delaunay tetrahedral mesh generation and refinement”, Finite Elements in

Analysis and Design, 46 (2010) 33-46

[3] H. Borouchaki and S.H. Lo, “Fast Delaunay triangulation in three dimensions”, Comput. Methods

Appl. Mech. Engrg. 128 (1995) 153-167

[4] S.H. Lo and W.X. Wang, “Generation of tetrahedral mesh of variable element size by sphere

packing over an unbounded 3D domain”, Computer Methods in Applied Mechanics and

Engineering, Volume 194, Issues 48-49 , 15 November 2005, 5002-5018

[5] H. Borouchaki, P. L. George, and S. H. Lo, "Optimal Delaunay point insertion", Int. J. for Num.

Methods in Engg., 39, 3407-3437 (1996)

[6] Olivier Devillers and Monique Teillaud, “Perturbations for Delaunay and weighted Delaunay 3D

triangulations”, Computational Geometry, 44 (2011) 160-168

http://www.sciencedirect.com/science?_ob=IssueURL&_tockey=%23TOC%235697%232005%23998059951%23605693%23FLA%23&_auth=y&view=c&_acct=C000003298&_version=1&_urlVersion=0&_userid=28301&md5=309d4c649e28d556788928475eeabdc5

22

[7] J.D. Boissonnat, M. Sharir, B. Tagansky, M. Yvinec, “Voronoi diagram in higher dimensions

under certain polyhedral distance functions”, Discrete Comput. Geom. 19:485-519 (1998)

[8] G.E. Blelloch, J.C. Hardwick, G.L. Miller and D. Talmor, “Design and implementation of a

practical parallel Delaunay algorithm”, Algorithmica (1999) 24: 243-269

[9] Ivana Kolingerova, Josef Kohout, “Optimistic parallel Delaunay triangulation”, Visual Computer

(2002) 18:511-529

[10] Min-Bin Chen, Tyng-Ruey Chuang and Jan-Jan Wu, “Efficient parallel implementations of near

Delaunay triangulation with high performance Fortran”, Concurrency Computation: Practice and

Experience, 2004; 16: 1143-1159

[11] Demian Nave, Nikos Chrisochoides, L. Paul Chew, “Guaranteed-quality parallel Delaunay

refinement for restricted polygonal domains”, Computational geometry 28 (2004) 191-215

[12] Min-Bin Chen, Tyng-Ruey Chuang and Jan-Jan Wu, “Parallel divide-and-conquer scheme for 2D

Delaunay triangulation”, Concurrency and Computation: Practice and Experience, 2006, 18: 1595-

1612

[13] Huayi Wu, Xuefeng Guan, Jianya Gong, “ParaStream: A parallel Delaunay triangulation

algorithm for LiDAR points on multicore architectures”, Computers & geosciences 37 (2011)

1355-1363

[14] Nikos Chrisochoides and Demian Nave, “Parallel Delaunay mesh generation kernel”, Inter. J.

Numer. Methods Engrg., 2003; 58: 161-176

[15] Andrey N. Chernikov, Nikos P. Chrisochoides, “A template for developing next generation parallel

Delaunay refinement methods”, Finite Elements in Analysis and Design 46 (2010) 96-113

[16] Josef Kohout, Ivana Kolingerova, “Parallel Delaunay triangulation in E
3
: make it simple”, Visual

Computer (2003) 19:532-548

[17] Josef Kohout, Ivana Kolingerova, Jiri Zara, “Parallel Delaunay triangulation in E
2
 and E

3
 for

computers with shared memory”, Parallel Computing 31 (2005) 491-522

[18] Tilo Beyer, Gernot Schaller, Andreas Deutsch, Michael Meyer-Hermann, “Parallel dynamic and

kinetic regular triangulation in three dimensions”, Computer Physics Communications 172 (2005)

86-108

[19] Vicente H.F. Bastista, David L. Millman, Sylvain Pion, Johannes Singler, “Parallel geometric

algorithms for multi-core computers”, Computational Geometry 43 (2010) 663-677

[20] YingLiang Ma, “A Parallel surface extraction algorithm for large binary image data sets based on

an adaptive 3D Delaunay subdivision strategy”, IEEE Transaction and visualization and Computer

Graphics, Vol. 14, No. 1, Jan/Feb 2008, 160-172

[21] S.H. Lo, “Parallel Delaunay Triangulation in three dimensions”, Comput. Methods Appl.

Mech. Engrg., 237 (2012) 88-106

[22] B. Delaunay, “Sur la sphere vide”, Bull. Acad. Sci. URSS, Class. Sc. Nat., 793-800, 1934

[23] Lemaire C and Moreau JM (2000), “A probabilistic result on multi-dimensional Delaunay

triangulations, and its application to the 2D case”, Computational Geometry, 17, 69-96

 [24] S.H. Lo, “3D Delaunay triangulation of non-uniform point distributions”, Finite Elements

Analysis and Design, 90 (2014) 113-130

