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ABSTRACT 

In this study, we develop a real-time estimation approach for lane-based queue lengths. Our 
aim is to determine the numbers of queued vehicles in each lane, based on detector information at 
isolated signalized junctions. The challenges involved in this task are to identify whether there is a 
residual queue at the start time of each cycle and to determine the proportions of lane-to-lane traffic 
volumes in each lane. Discriminant models are developed based on time occupancy rates and impulse 
memories, as calculated by the detector and signal information from a set of upstream and 
downstream detectors. To determine the proportions of total traffic volume in each lane, the 
downstream arrivals for each cycle are estimated by using the Kalman filter, which is based on 
upstream arrivals and downstream discharges collected during the previous cycle. Both the computer 
simulations and the case study of real-world traffic show that the proposed method is robust and 
accurate for the estimation of lane-based queue lengths in real time under a wide range of traffic 
conditions. Calibrated discriminant models play a significant role in determining whether there are 
residual queued vehicles in each lane at the start time of each cycle. In addition, downstream arrivals 
estimated by the Kalman filter enhance the accuracy of the estimates by minimizing any error terms 
caused by lane-changing behavior. 

Keywords: isolated signalized junction, discriminant model, Kalman filter, conservation equation, 
queue-length estimation. 

 

1. INTRODUCTION 

Adaptive traffic control systems (ATCS) traffic management strategies in which traffic signal 
settings are based on the actual traffic demand of the network. To construct the adaptive signal control 
logic for a real-time signal plan, an estimation of queue lengths is needed. The fundamental concepts 
of queue lengths and delay were introduced by Webster (1958) and Akçelik (1980). Their studies 
provided the cornerstones for the development of diverse methods for estimating queue lengths, 
including the conservation equation (Lindley, 1952; Miller, 1965), the shockwave theory (Lighthill 
and Whitham, 1955; Richards, 1956) and the probe vehicle approach (Comert and Cetin, 2009; Cheng 
et al., 2011, 2012; Christofa, 2013).  

Methods based on the conservation equation have been widely adopted for the estimation of 
queue lengths over the past several decades due to their simplicity, robustness and applicability. For 
example, Chang and Su (1995) developed a neural network approach to examine the accuracy of 
queue-length estimates by using various levels of available detector data such as time intervals and 
numbers of lanes. Furthermore, Heidemann (1994) and Mung et al. (1996) used the distributions of 
queue lengths to improve the accuracy of estimates based on the conservation equation. Next, 
Mystkowski and Khan (1999) found that queue lengths tended to be overestimated in low traffic 
volume conditions. They compared the maximum queue lengths estimated by SIGNAL94, 
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SYNCHRO3, TRANSYT-7F, PASSER II-90 and CORSIM. Likewise, Viloria et al. (2000) compared 
the estimations of queue lengths (as calculated by the accumulation and the discharge of vehicular 
queues) with the results from existing queue models (such as SIDRA, NETSIM, TRANSYT-7F, 
SOAP, SIGNAL 97 and HCM 2000). Wu et al. (2008) used detector occupancy data to revise queue 
lengths estimated at metered on-ramps, and compared the results with those derived from other queue-
length estimation methods such as the Kalman filter, the HCM model or the random numbers 
approach. To overcome the accumulated errors induced by the conservation equation, Liu et al. (2007) 
developed an equation to estimate queue lengths by following a metering strategy that considered the 
levels of counting errors from both queue and passage detectors. Recently, Mucsi et al. (2011) used 
occupancy data to improve the accuracy of queue length estimates by adding mid-block detectors to 
an adaptive neuro-fuzzy inference system. Furthermore, Papamichail and Papageorgiou (2011) 
explained the interactions between queues generated at adjacent approaches on metered dual-branch 
on-ramps by balancing the relative queues with conservation equations and occupancy data.  

In addition to the conservation equation, several other methods have been used for making 
real-time estimations of queue lengths at isolated signalized intersections. Probabilistic models have 
used different methods than deterministic models for estimating queue lengths. Viti and Van Zuylen 
(2004, 2010a, 2010b) performed analytic comparisons of traditional and probabilistic models. Vigos 
et al. (2008) and Vigos and Papageorgiou (2010) transformed time occupancy data into space 
occupancy data to reduce the accumulative counting errors and improve the accuracy of queue 
estimates. Furthermore, these authors applied the Kalman filter and additional mid-block detectors to 
estimate the queue lengths for each lane. Chung et al. (2012), Chang (2013) and Lee et al. (2013) 
introduced simple methods based on the conservation equation for using occupancy data that was 
collected from mid-block detectors to reduce the calculation time. To resolve the limitations of the 
conservation equation for oversaturated traffic conditions, Liu et al. (2009) calculated queue lengths 
by estimating the shockwave speed and by identifying break points based on the Lighthill-Whitham-
Richards (LWR) shockwave theory (Lighthill and Whitham, 1955; Richards, 1956). In recent years, 
Li et al. (2013) and Comert (2013) have used vehicle data to estimate vehicular queues, and they 
combined this method with the conventional estimation method. Lu and Chang (2012) and Lu and 
Yang (2014) estimated dynamic queue length distribution by integrating the classic queuing model 
and probability generating model. 

Basically, the estimated lengths of queues have been used to measure delay, which was the 
most important measure of effectiveness (MOE) for ATCSs at isolated signalized junctions. 
Theoretically, measurements of delay were used to modify signal plans through changing factors such 
as the duration of green lights, cycle times and the structures of phases. Mirchandani and Head (2001) 
described a simple process for estimating queue lengths and making real-time predictions based on 
vehicle arrivals and queue discharge rates. The diverse real-time adaptive control algorithms 
introduced by Shelby (2004) have also been implemented to estimate real-time queue lengths by using 
the conservation equation. Li and Prevedouros (2004) estimated queue lengths as a means of 
developing traffic-adaptive control systems based on real-time turning proportions, arrival rates at 
upstream detectors and discharge rates at downstream detectors. Fang and Elefteriadou (2006) used 
the free-flow travel time between the advanced detectors (200 m from the stop-line) and the stop-line 
detectors to estimate the average queue lengths, and hence to calculate the minimum performance 
measure index (PMI) for the optimization of signal plans. Gartner et al. (2002) developed a different 
performance function for switching a stage of signal timing based on the conservation equation bound 
by the initial queue lengths, the arrivals and the discharge conditions. Moreover, a recent study by 
Zheng and Recker (2013) introduced an adaptive control algorithm that used combined arrival and 
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discharge curves to estimate queue accumulation curves and to specify the real-time control objectives. 
In addition, one of the conservation equation-based approaches for measuring vehicle queues played 
an important role in the max pressure (MP) signal control policy developed by Varaiya (2013). 

Recently, the group-based and lane-based optimization methods have provided more flexible 
specifications for signal timings in fixed-time control systems (Heydecker and Dudgeon, 1987; Wong, 
1995, 1996; Wong and Wong, 2003; Wong et al., 2006). It appears promising to extend such methods 
of adaptive control logic for adjusting the durations, start times and sequences of signal groups for 
real-time control. Lee et al. (2014) made a first step toward estimating lane-to-lane turning flows at 
isolated signalized junctions on a real-time basis. The next step is to estimate the queue lengths on 
individual lanes at signalized junctions. Data on both the turning flows and queue lengths are essential 
inputs for the development of adaptive control logic. Therefore, this study aims to address the second 
step of devising a real-time estimation procedure for the queue lengths for individual lanes. 

2. METHODOLOGY 

This section discusses the formulation of the proposed method for using discriminant models, 
proportions of total traffic flows and downstream arrivals as estimated by a recursive process. The 
proposed data-processing method for the real-time estimation of lane-based queue lengths is 
illustrated in Figure 1. The detailed explanations for this proposed method are provided in the 
following sub-sections.  

 
Figure 1. Data processing method for the real-time estimation of lane-based queue lengths 
 
The definition of the indices, parameters and variables used in this study are given below.  

K number of lanes 
N number of cycles 
T number of time steps in a cycle 
tf the free-flow travel time from the upstream detector to the downstream detector 

)( f,u tton
k   the time occupancy from the upstream detector in lane k at time t – tf in the nth cycle 

)(,d ton
k

 the time occupancy from the downstream detector in lane k at time t in the nth cycle 
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2.1 Discriminant Model 

2.1.1 Model formulation 

To develop the real-time estimation of lane-based queue lengths, the first step is to establish 
the discriminant models by logistic regression. These models identify the existence of residual queues 
in each lane at the start time of every cycle and prevent the cumulative errors induced by passage 
detectors or counting errors. The probability of the existence of a residual queue in lane k at start time 
t in cycle n is specified as 
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where )(txn
k  is a binary variable with a value of either “1” or “0” to identify the existence or absence 

of a residual queue, respectively. Moreover, )(tun
k  is the logit (or utility function) that is defined as  
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In Equation (2), 
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1  is the average time occupancy rate, which is collected by 

the downstream detector on lane k during the effective time duration m in the (n ˗ 1)th cycle. The 
average time occupancy rate can explain how the discharging speeds and rates at a stop line influence 
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the traffic flows during the red and green periods, respectively, which can be calculated from 
upstream detector data in the (n ˗ 1)th cycle. R is the end time of the red signal for lane k, and T ˗ R + 
1 is the start time of the green signal for lane k. The reason why we set the traffic flows for red and 
green periods separately is that we consider the different levels of effectiveness in traffic flows for the 

red and green periods in terms of utility. The proportion of downstream discharges in each lane, 1
,d
n
kp , 

)( f,u ttin
k   the upstream arrivals according to the binary impulse memory from the upstream 

detector in lane k at time t – tf in the nth cycle 
)(,d tin

k
 the downstream discharges according to the binary impulse memory from the 

downstream detector in lane k at time t in the nth cycle  
)(ˆ ,d ta n

k
 the estimated downstream arrivals according to the estimated arrival rates from the 

downstream detector in lane k at time t in the nth cycle 
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is used to examine the lane-changing behavior. Then, the last term, 
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average time occupancy rate, which is collected from the upstream detectors during the (n ˗ 1)th cycle. 
To consider the lane-changing behavior between the upstream and the downstream detectors, 
aggregated time occupancy rates are applied across all of the lanes between the start time t and the 
free flow travel time tf.  

2.1.2 Model calibration  

To calibrate the discriminant models, the time occupancy and impulse memories at the 
upstream and downstream points are collected at the target intersection. After calibration, the 

parameters , β1, β2, β3 and β4 in Equation (2) are obtained. The logit  )(tun
k represents the likelihood 

of a residual queue in lane k at the start time of cycle n. If }1)({Prob txn
k  > 0.5, then we set the 

initial queue in lane k at the start time of the present cycle n as equal to the queue in this lane at the 
end time of the previous cycle n-1; otherwise, the initial queue is set as zero. 

2.2 Conservation Equation Based on Lane-to-Lane Proportions 

The traditional conservation equation is the basic form for the real-time estimation of lane-
based queue lengths. To deal with the possibility of counting and passage errors, the number of 

queued vehicles in lane k at time t in the nth cycle, )(tqn
k  is the maximum value between the 

conservation equation and zero, as specified in the following equation. 
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In Equation (4), the first equation is used for the start time of each cycle, whereas the second 

equation is used for other time intervals. )(1 Tqn
k
  is the number of queued vehicles in lane k at the last 

time point T in the (n ˗ 1)th cycle, and )(txn
k  is the output of the discriminant models. For example, if 

there is a residual queue in lane k at time T in the (n ˗ 1)th cycle, then 1)( txn
k , and otherwise 0. 

Furthermore, let J be the set of upstream lanes, and K be the set of downstream lanes. 

2.2.1 Modification of the conservation equation 

To account for the lane-changing behavior and counting errors, the figure for estimated 

downstream arrivals, )(ˆ ,d tan
k , is used to replace the figure for upstream arrivals in Equation (4). The 

modified conservation equation is therefore given as 
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The estimated downstream arrivals, )(ˆ ,d tan
k , are calculated by four different methods for determining 

the proportion of traffic flows.  
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The first method is based on the proportion of the total downstream discharges, n
kd ,d , in the 

following equation. 
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. Equation (6) compares the proportion of downstream discharges in lane k 

(collected in the (n ˗ 1)th cycle) to the proportion of upstream arrivals. 

The second method is based on the proportion of lane-to-lane traffic volume in the following 
equation.  
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In equation (7), 1n
jkv  is the proportion of lane-to-lane traffic volume from the upstream detector j to 

the downstream detector in lane k at time t in the (n ˗ 1)th cycle, which is specified as 
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Condition (1) is for vehicles that do not change lane moving from the upstream to the downstream 
detectors, k = j. If a vehicle is detected on the upstream detector, the proportion of lane-to-lane traffic 

volume, 1n
jkv , can be expressed as the equation, which is composed of the proportion of upstream 

arrivals, 1
,u
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ka , and the downstream discharges, 1
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arrivals to calculate the proportions, is subtracted from 2. 

Condition (2): when k ≠ j, and 01
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Condition (2) is for vehicles that change lane moving from the upstream to the downstream detectors, 
k = j. If a vehicle is detected on the upstream detector, upstream arrivals are larger than downstream 
discharges on lane j, upstream arrivals are smaller than impulse memories on lane k and upstream 
arrivals are larger than downstream discharges on rest lane m. Thus, we can simply calculate the 

proportion of lane-to-lane traffic volume, 1n
jkv  by  1n

kkv subtracted from 1. When upstream arrivals are 

smaller than and equal to downstream discharges on rest lane m, the difference between the 
downstream discharges on lane k and the upstream arrivals on lane j is divided by the upstream 
arrivals on lane j. The proportions of upstream arrivals in lanes k and j during the nth cycle are 
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In Equations (8) and (9), the data on the proportions of upstream arrivals and downstream 

discharges (as collected in the (n ˗ 1)th cycle) are used to obtain )(ˆ ,d tan
k . After this, a recursive 

process using the Kalman filter (Kalman, 1960) is applied on the third and fourth methods, based on 
the first and second methods, respectively, to improve the accuracy of the estimated downstream 
arrivals. These third and fourth methods are discussed in the next section. 

2.3 Kalman Filter 

The Kalman filter is an effective and efficient recursive process for time series analysis which 
is used in signal processing. To start the recursive process, the system variables, time update 

equations and measurement equations are set. The proportion of downstream arrivals, n
ka ,d , and the 

proportion of downstream discharges, 1
,d
n
kd , are defined as the state variable and the measurement 

variable for cycle n, respectively. The recursive process of the Kalman filter, as used by Bishop and 

Welch (2001) in estimating n
ka ,dˆ , is described in Table 1. n

ka ,dˆ  is then used to estimate )(ˆ ,d tan
k  instead 

of 1
,d
n
kd  in Equation (6). The third method for estimating downstream arrivals is given in the following 

equation (10). 

n
k

K

k

n
k

n
k attita ,d

0
f,u,d ˆ)()(ˆ 


.       (10) 

Likewise, we can obtain n
jkv̂  by applying the Kalman filter on the proportion of lane-to-lane traffic 

volume instead of 1n
jkv  in Equations (7), (8) and (9). 1ˆ n

jkv  and n
jkv̂  are used in Table 1 as the 
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measurement and the state variables on the recursive process of the Kalman filter instead of 1
,d
n
kd  and 

n
ka ,d , respectively. The fourth method is outlined in the following equation (11). 
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Table 1. The recursive process of the Kalman filter 
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in lane k during the nth cycle 

2) Generate a posteriori state estimate by 
incorporating the measurement 
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1
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  n
kk

n
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n
k
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k

n
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2) Update the error covariance 
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,d,d,d,d )(  n
kk

n
k

n
k PHKIP  
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2.4 Estimation Procedures 

To demonstrate the distinctive strength of the developed methods, a comparison of the various 
estimations of lane-based queue lengths based on various model structures is presented in the next 
section of this study. The specifications of the proposed models are described in Table 2.  

Table 2. Descriptions of the proposed models based on the conservation equation  

Class Model 
Conservation 

equation 
Reset 

Discriminant 
model 

Kalman filter Proportions 

Reference 
model 

1* √ – – – – 

Proposed 
models 

2 √ √ – – – 
3 √ √ √ – – 
4 √ √ √ – Equation (6) 
5 √ √ √ – Equation (7) 
6 √ √ √ √ Equation (10) 
7 √ √ √ √ Equation (11) 

* The traditional conservation equation is used (Lindley, 1952; Miller, 1965; Mirchandani and Head, 2001; Fu 
et al. 2001; Liu et al., 2007) 

Model 1 is the basic model, which is based on the traditional conservation equation for 
estimating the queue lengths, and which is commonly used to develop adaptive control logic models. 
Model 2 unconditionally resets the residual queue at the start time of every cycle, which prevents 
cumulative errors. Models 3 to 7 are the calibrated discriminant models, which have different 
functional forms for estimating the proportions of the downstream discharges and the upstream 
arrivals. For Model 3, the lane-changing behavior is not considered, and hence the upstream arrivals 
in each lane are used directly. Model 4, however, includes the proportions of downstream discharges 
in each lane, based on the data collected in the previous cycle. For Model 5, the proportions of the 
aggregated lane-to-lane traffic volumes in each lane are applied, as collected at the downstream 
detector in the previous cycle. For Models 6 and 7, the Kalman filter is applied to estimate the 
downstream arrivals and the lane-to-lane traffic volumes for the model formulation. 

3. MODEL RESULTS 

3.1 Example Settings 

In this study, the performance of a typical directional dual three-lane section at an isolated 
intersection was simulated by using the VISSIM computer software. The vehicle-actuated 
programming in VISSIM was used to generate the impulse memories and time occupancy rates of the 
upstream and the downstream detectors. A four-phase signalized intersection with a cycle length of 60 
seconds was created. The green signal duration for each phase was 10 seconds, with an inter-green 
time of 5 seconds. A full set of 2 m × 2 m loop detectors was installed to record the impulse memory 
and time occupancy rate data. The upstream detectors were set back at distance L from the stop-line. 
Left turns on red (LTOR) were prohibited in accordance with the driving rule for left-hand traffic. The 
geometric layout of the simulated intersection is presented in Figure 2. 
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Figure 2. Geometric layout of the simulated intersection in VISSIM 
 

The simulation period was 18,000 seconds and the simulation resolution was 1 second. 
Furthermore, the first and last 30 signal cycles were the warming up and warming down periods, 
respectively. Then, the saturation flow of this approach, which is calculated on the simulation, is 874 
vehicles per hour (vph). Seven levels of traffic volume (degree of saturation), i.e., 700 (0.8), 750 
(0.86), 800 (0.92), 850 (0.97), 900 (1.03), 950 (1.09) and 1,000 (1.14) vph, were set on all of the 
approaches in each 2,000-second interval for model calibration and validation. We further assumed 
that the turning proportions were evenly distributed among all of the movements. One-third of the 
vehicles were assigned to each turning movement for model calibration, but the proportions were 
randomly generated among all of the movements for model validation. 

3.2 Discriminant Models 

SPSS 20.0 was used to calibrate three logistic regression models, one for each setback of 100 
m, 200 m and 300 m of the upstream detectors, as specified in Equation (2). The stepwise method was 
adopted to identify the significant variables. The calibration results are tabulated in Table 3. 

Table 1. The calibration results of the discriminant models 

Distance Coefficients 
Lanes 

1 2 3 

100 m 
(tf = 6 s) 

α -6.602* -3.143* -5.562* 
β1 14.787* 6.479* 9.553* 
β2 0.507* – – 
β3 – – – 
β4 24.369* 14.245* 94.969* 

200 m 
(tf = 12 s) 

α -6.238* -5.271* -4.936* 
β1 14.677* 5.206* 9.196* 
β2 0.540* – – 
β3 – – – 
β4 19.270* 81.326* 97.605* 

300 m 
(tf = 18s) 

α -5.640* -5.182* -5.155* 
β1 15.322* 6.364* 9.971* 
β2 – -0.445* – 
β3 – – – 
β4 72.442* 126.926* 107.512* 

* 0.1% significance level 
** 1% significance level 
*** 5% significance level 
 

In Equation (2), the number of lanes was K = 3, and the u was m = 4 seconds for time 
occupancy rates at the downstream. The effective time duration is identical across all cycles and the 
value is determined by trial and error based on the calibration set. The calibration results 
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demonstrated that the constants  were negative, and the coefficients βk were positive, except β2 for 
the 300 m upstream detector for Lane 2 (at the 0.1% significance level). For β1, a high average time 
occupancy rate at the downstream in each lane 4 seconds before the end of the previous cycle was 
likely to create a residual queue at the start time of the present cycle. For β2, a high upstream arrival 
during the previous cycle was likely to create a residual queue at the start time of the present cycle in 
Lane 1 at the 100 m and 200 m upstream detectors only. For β4, a high average time occupancy rate at 
the upstream on each lane was likely to create a residual queue at the start time of the present cycle. 
However, the coefficients β3 were not selected by the stepwise method, as illustrated in the 
discriminant model.  

3.3 System Parameters for the Kalman Filter 

3.3.1 The proportion of the total traffic flow 

For the recursive process based on the Kalman filter, the system parameters Ad,k, Qd,k, Hd,k and 
Rd,k were calibrated according to the proportion of the total traffic flow in each specific lane, and the 
proportion of lane-to-lane traffic volume. It was assumed that these factors were linearly related to 
each other and were normally distributed. For the proportion of the total traffic flow in each specific 
lane, Ad,k was the constant that related the proportion of downstream arrivals into lane k during the (n ˗ 

1)th cycle to the proportion of arrivals during the nth cycle in the equation k
n

kk
n

k waAa ,d
1

,d,d,d   , 

P(wd,k)~N(0, Qd,k). Qd,k was the process error covariance at the downstream in lane k. In the equation 

k
n

kk
n

k vaHd ,d,d,d
1

,d  , P(vd,k)~N(0, Rd,k), Hd,k was the constant that related the proportion of 

downstream arrivals into lane k in the nth cycle to the proportion of downstream discharges from lane 
k in the (n ˗ 1)th cycle. Rd,k was the measurement error covariance at the downstream in lane k. The 
calibration results of the system parameters are presented in Table 4.  

Table 2. The calibration results of the system parameters for the Kalman filter 
 System parameter 

k Ad,k  Qd,k  Hd,k  Rd,k 
1 0.9362 0.0147 0.9238 0.0176 
2 0.8918 0.0156 0.8929 0.0151 
3 0.9528 0.0163 0.9540 0.0160 

 

Both constants, Ad,k and Hd,k, were approximately equal to 1, and both error covariances, Qd,k 
and Rd,k, were approximately equal to 0. These parameters were then used to estimate the proportion 
of traffic volumes in lane k during the present cycle through the recursive process given in Table 1. 

3.3.2 The proportion of the lane-to-lane traffic volume 

For the proportion of lane-to-lane traffic volume, time update equations and measurement 

equations were specified as jk
n
jkjk

n
jk wvAv  1  and jk

n
jkjk

n
jk vHv 1 , respectively. Similarly, 

these time and volume factors were linearly related to each other and were normally distributed as 

P(wjk)~N(0, Qjk) and P(υjk)~N(0, Rjk), respectively. jkA  was the constant that related the proportion of 

traffic volume from the upstream detector j to the downstream detector in lane k during the (n ˗ 1)th 

cycle, and to the same proportion during the nth cycle. In addition, jkQ  was the process error 

covariance in the proportion of traffic volume from upstream detector j to the downstream detector in 

lane k. Furthermore, jkH  was the constant that related the proportion of downstream arrivals into lane 
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k in the nth cycle to the proportion of traffic volume from the upstream detector j to the downstream 
detector in lane k during the nth cycle, as compared to the same proportions during the (n ˗ 1)th cycle. 

jkR  was the measurement error covariance in the proportion of traffic volume from the upstream 

detector j to the downstream detector in lane k. The estimated system parameters for the proportion of 
lane-to-lane traffic volume are specified in Table 5.  
 

Table 3. Estimated Kalman system parameters for lane-to-lane traffic flows 
 100 m 200 m 300 m 

j k A Q H R A Q H R A Q H R 

21 

11 0.9805 0.0345 0.9805 0.0345 0.9450 0.0836 0.9450 0.0836 0.9432 0.0852 0.9432 0.0852
12 0.0568 0.0067 0.0568 0.0067 0.1118 0.0059 0.1118 0.0059 0.1280 0.0055 0.1280 0.0055
13 0.1970 0.0111 0.1970 0.0111 0.3620 0.0435 0.3620 0.0435 0.3479 0.0429 0.3479 0.0429

22 

11 0.3447 0.0345 0.3447 0.0345 0.4090 0.0331 0.4090 0.0331 0.3049 0.0290 0.3049 0.0290
12 0.9224 0.1065 0.9224 0.1065 0.8912 0.1215 0.8912 0.1215 0.9000 0.1166 0.9000 0.1166
13 0.2698 0.0321 0.2698 0.0321 0.4474 0.0570 0.4474 0.0570 0.4353 0.0571 0.4353 0.0571

23 

11 0.1324 0.0074 0.1324 0.0074 0.0906 0.0053 0.0906 0.0053 0.0160 0.0048 0.0160 0.0048
12 0.1335 0.0075 0.1335 0.0075 0.0000 0.0006 0.0000 0.0006 0.0521 0.0004 0.0521 0.0004
13 0.9791 0.0358 0.9791 0.0358 0.9906 0.0180 0.9906 0.0180 0.9912 0.0169 0.9912 0.0169

 

The highlighted cells in Table 5 represent the traffic flows without lane-changing. The 
constants were approximately equal to 1, and the error covariances were approximately equal to 0 for 
these straight-moving traffic flows. However, the constants and the error covariances of other lane-to-
lane traffic flows were both approximately equal to 0. 

3.4 Lane-to-Lane Estimation of Queue Lengths 

To measure the accuracy of the proposed model, the root mean square error (RMSE) was 
adopted in this study. The definition of the RMSE is given as, 

KT

t
tk k



 ,

2

RMSE
)(

 ,         (12) 

where )()()(ε estobs tqtqt kkk   is the difference between the observed and the estimated lane-based 

queue lengths in lane k at the time interval t; )(obs tqk  is the observed queue length in lane k at the time 

interval t, and )(est tqk  is the estimated queue length in lane k at the time interval t, from Equations (4) 

and (5). T is the number of time intervals — 14,400 seconds (250 signal cycles) for the five levels of 
traffic volumes, excluding the warming up and warming down times. The queue capacity between the 
upstream detector and the downstream detector was 15, 30 and 45 vehicles for the 100 m, 200 m and 
300 m detectors, respectively. The RMSE values of the calibration results from the seven models are 
specified in Table 6.  

Table 4. RMSE values of the calibration set 
Distance from 

stop line 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

100 m 8.60 4.36 3.20 2.57 2.83 2.30 2.69
200 m 21.03 7.52 7.33 2.71 2.67 2.67 2.50
300 m 30.39 8.18 8.36 3.81 3.51 4.21 3.48
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The results demonstrated that Model 7 had the highest level of estimation accuracy. The 
RMSE values for this model were 2.69, 2.50 and 3.48 vehicles for the 100 m, 200 m and 300 m 
upstream detectors, respectively. In contrast, Model 1 had the lowest level of estimation accuracy, 
with RMSE values of 8.60, 21.03 and 30.39 vehicles for the 100 m, 200 m and 300 m upstream 
detectors, respectively. These results indicated that the proposed methods, based on the modified 
conservation equation and using the discriminant models and the Kalman filter, improved the 
accuracy of real-time estimation of lane-based queue lengths under diverse traffic situations. 

3.5 Validation 

To further validate the accuracy and the robustness of these models, five additional scenarios 
were randomly generated, with traffic volumes and turning proportions varying from 0% to 100% per 
turning flow. The total traffic volume was increased gradually from 700 vph to 1,000 vph, to test the 
performance of the models under free-flow and congested conditions. The RMSE values of Models 1 
to 7 for the five aggregated scenarios are described in Figure 3.  

 
Figure 3. The RMSE values for the seven model formulations 

 

In Figure 3, the RMSE values of Model 1 were distributed from 8 to 33 vehicles. The RMSE 
values of Models 2 and 3 were scattered between 2 and 25 vehicles, whereas those of Models 4 to 7 
were scattered between 1 and 8 vehicles. For Models 1, 2 and 3, the RMSE values tended to mainly 
increase as the distance from the stop line to the upstream detectors increased. Among these models, 
Model 7 was the most stable, because the cumulative errors induced by lane-changing behavior and 
the counting errors were dramatically reduced by the discriminant model and the estimated 
downstream arrivals.  

The average RMSE values for each model are specified in Table 7. The average RMSE values 
from Model 1 dramatically declined as the distance increased. The RMSE values from Models 2 and 3 
doubled from the 100 m to the 300 m upstream detectors. Despite these changes in values, the 
accuracy of the models based on the discriminant model and the proportions of traffic volumes was 
more robust than the accuracy of the traditional conservation equation. Among the models developed 
in this study, Model 6 showed the highest accuracy for the estimation of lane-based queue lengths at 
the 100 m upstream detector, and Model 7 showed the greatest robustness and highest accuracy for 
queue length estimation at the 200 m and 300 m upstream detectors.  
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Table 5. Average RMSE values of the validation sets 
Distance from 

stop line 
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

100 m 8.73 5.00 4.13 2.87 2.94 2.48 2.65
200 m 20.29 8.63 8.48 3.65 3.09 3.53 2.64
300 m 29.29 10.42 10.99 4.21 3.79 4.34 3.61

  

The models that were based on the discriminant model and included lane-changing behavior 
(Models 4 to 7) showed noticeably improved accuracy. We therefore further analyzed the accuracy 
fluctuations of these models as traffic volumes increased at the stop line, and examined the tendency 
of RMSE values to aggregate over 10 cycles from 1,800 seconds to 16,200 seconds under different 
scenarios. A total of 3,600 RMSE values were calculated for each model, and the results are presented 
in Figure 4.  

Figure 4. RMSE values for estimating lane-based queue lengths in the validation scenarios 
 

In Figure 4, the RMSE values of all the models were scattered between 0.8 and 2.5 vehicles 
when the traffic volume at stop line was below 130 vph for 10 cycles (600 seconds). Furthermore, the 
RMSE values were widely distributed from 0.8 to 18.2 vehicles in the range of 135 to 155 vph, 
whereas the distributions narrowed down toward saturated conditions when the traffic volume was 
over 155 vph. In other words, all of the developed models showed relatively similar estimations of 
lane-based queue lengths at the lower traffic volumes, and the accuracy of the models tended to 
decrease as the traffic volume rose. Nonetheless, from the projection of the trend line, Model 7 still 
had the highest accuracy across all traffic conditions. In addition, the increase of RMSE values in 
Model 7 was lower than that for the other models as traffic volumes increased. 

As illustrated in Figure 5, the observed and the estimated maximum queue lengths from 
Models 1 and 7 were subsequently compared, to demonstrate the effectiveness of the proposed 
method over that of the traditional conservation equation. For each lane, Model 7 estimated a 
maximum number of queued vehicles that was nearly identical to the observed number of queued 
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vehicles. In Model 1, however, lane changing behavior was not explained, and it was found that the 
cumulative errors increased dramatically during a long-term analysis. In Model 7, the estimated 
maximum queue lengths were almost identical to the observed maximum queue lengths on the 
approach. Model 1, however, tended to overestimate the queue lengths. 

 
Figure 5. Maximum queue lengths as observed and as estimated by Models 1 and 7 in a validation set 
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4. CASE STUDY 

4.1 Real Dataset 

In the case study, the developed estimation approaches were applied to a real junction at 
Lankershim Boulevard in Los Angeles, USA. The dataset and detailed information were provided by 
the Federal Highway Administration’s Next Generation Simulation (NGSIM, 2006). The dataset was 
collected on June 16, 2005 from 8:28 a.m. to 9:00 a.m. by using five video cameras to establish the 
vehicle trajectory data. The junction of Lankershim Boulevard/ Campo De Cahuenga Way/ Universal 
Hollywood Drive (No. 2 intersection) was the target intersection for this study. An aerial photograph 
and the layout configuration of the target junction are shown in Figures 6(a) and 6(b), respectively. 
The recorded period had a total of 20 cycles, with a cycle length of 100 seconds. The data collected 
during the first 10 cycles were used to calibrate the discriminant models and the Kalman system 
parameters. The remaining data were used to validate the calibrated models.  

The impulse memories and occupancy rates of the downstream and upstream detectors were 
computed based on the provided vehicle trajectory data (Vehicle ID, Frame ID, Local X and Y, 
Vehicle length, Velocity, Acceleration, Lane and Direction). Assuming that the vehicles moved 
linearly along the section, 2 m × 2 m virtual detectors were installed by setting virtual lines offset 2 m 
from the start (downstream detectors) to the end (upstream detectors) of the section, respectively. The 
distance between the downstream and the upstream detectors was 167 m. For impulse memories, 
Frame IDs and Lane data for each vehicle for each 1/10 of a second were extracted from the 
downstream and upstream detectors. For occupancy data from the upstream detectors, the durations 
from the Frame IDs of each vehicle between the section start and the virtual line were calculated, with 
consideration for Vehicle length, Velocity and Lane. Similarly, the occupancy data from the 
downstream detectors were the calculated durations from the Frame IDs of each vehicle between the 
section end and the virtual line.  

To observe the real-time lane-based queue lengths, we computed the number of vehicles 
traveling below 5 km/h as Velocity, and revised the length by checking the recorded video. The 
resulting impulse memories and occupancy rates from the downstream and upstream detectors were 
used for calibration and validation. 

(a) Aerial photograph of the target junction 
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(b) Configuration of the target junction  
Figure 6. Geometric conditions of the target intersection 
 

4.2 The Kalman System Parameters 

The Kalman system parameters were calibrated based on the calibration set. The proportions 
of the total traffic flow in each lane and the proportions of lane-to-lane traffic flow in each lane were 
used to calibrate the parameters. The calibration results are specified in Tables 8 and 9.  

Table 6. Estimated Kalman system variables for total traffic flows in the case study 
 167 m 
k A Q H R 
1 0.8002 0.0057 0.8002 0.0057 
2 0.9180 0.0056 0.9180 0.0056 
3 0.9139 0.0083 0.9139 0.0083 
4 0.9045 0.0093 0.9045 0.0093 
5 0.8436 0.0218 0.8436 0.0218 
6 0.7962 0.0016 0.7962 0.0016 

 

Table 7. Estimated Kalman system variables for lane-to-lane traffic flows in the case study 
 167 m 

j k A Q H R 

21 

11 0.7251 0.0186 0.7251 0.0186
12 0.8193 0.0288 0.8193 0.0288
13 0.9007 0.0468 0.9007 0.0468
14 0.0000 0.0007 0.0000 0.0007
15 0.0000 0.0001 0.0000 0.0001
16 0.7805 0.0031 0.7805 0.0031

22 

11 0.3895 0.0054 0.3895 0.0054
12 0.5498 0.0076 0.5498 0.0076
13 1.0000 0.0001 1.0000 0.0001
14 0.8855 0.1638 0.8855 0.1638
15 0.0000 0.0000 0.0000 0.0000
16 0.3668 0.0019 0.3668 0.0019

23 

11 0.7242 0.0023 0.7242 0.0023
12 0.7358 0.0063 0.7358 0.0063
13 1.0000 0.0001 1.0000 0.0001
14 0.0000 0.0001 0.0000 0.0001
15 0.9167 0.1062 0.9167 0.1062
16 0.7108 0.0012 0.7108 0.0012
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The highlighted cells in Table 9 represent traffic flows without lane-changing. Even if the 
calibration set of the real field data was sufficient to calibrate the Kalman system parameters, the data 
were not adequate to calibrate the discriminant models. Hence, to calibrate the discriminant models, 
VISSIM software was used to simulate the calibration set with sufficient numbers of average 
occupancy rates and traffic volumes for each cycle.  

4.3 Simulation for the Discriminant Models 

The signal plan, the turning proportions and the standard traffic flows data were established 
based on the real field data collected from 8:32:05 to 8:47:04 a.m., with 9 signal cycles to simulate the 
performance of the target intersection. The running time of the simulation was 14,400 seconds. A total 
of 124 signal cycles were used to calibrate the discriminant models, excluding the first and the last 10 
cycles for warming up and down. The traffic volumes were in the range of 50% to 150% of the real 
traffic volumes, to provide a sufficient number of cycles, including the residual queues. The 
simulation layout is portrayed in Figure 7. 

Figure 7. Simulation layout 
 

The discriminant models for each lane were established based on the simulation data, and the 
results are specified in Table 10. To validate the effectiveness of the discriminant models based on 
VISSIM simulation, the real data were applied to the calibrated discriminant models for 18 cycles on 
both the calibration and validation sets. The discriminant models correctly identified the existence or 
absence of a residual queue in 96 out of 108 cases (6 lanes × 18 cycles).  

Table 8. The calibration results from the discriminant models for the case study 

Coefficients 
Lanes 

1 2 3 4 5 6 
α -5.334* -5.376* -7.537* -6.255* -9.755* -2.108* 
β1 8.336* 10.751* – – – – 
β2 0.673* 0.625* – – 0.467* 0.803* 
β3 – – – -0.253* – -0.496* 
β4 – – 45.225* 63.012* 32.371* – 

* 0.1% significance level   
** 1% significance level   
*** 5% significance level   

 

4.4 The Results of the Case Study 

All of the estimated coefficients were at a 1% significance level, and there were reliable 
differences detected between the exclusive lanes for turning left, going, straight ahead and turning 
right. For the left-turning exclusive lanes (Lanes 1 and 2), the average occupancy rates during 4 
seconds at the downstream detectors β1 and the total traffic volumes during red times at the upstream 
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detectors β2 were significant. However, the average occupancy rates during the previous cycle for all 
of the upstream lanes β4 were significant for the straight-moving traffic (Lanes 3, 4 and 5). Moreover, 
for the right-turning lane (Lane 6), the total traffic volumes during red and green times at the upstream 
detectors β2 and β3  were both significant.  

The above-described calibrated models were then used to estimate the lane-based queue 
lengths compared to the calibration and the validation sets of the real field data. The average RMSE 
values of each model for both sets are specified in Table 11. 

Table 9. The average RMSE values on the calibration and the validation sets 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Calibration set 85.429 10.554 10.554 5.669 5.007 5.442 4.794 
Validation set 83.966 15.019 15.019 5.683 7.459 6.235 6.427 

 

The results demonstrated that the accuracy of Model 7 was the highest on the calibration set 
(average RMSE value = 4.794), whereas Model 4 had the highest accuracy to estimate lane-based 
queue lengths on the validation set (5.683). The accuracy of these models was dramatically improved 
after applying the discriminant model and the concept of proportions, whereas the accuracy of the 
models remained nearly the same in applying either the proportion of total traffic flows or the lane-to-
lane flows. Moreover, the Kalman filter increased the accuracy for the calibration set from Model 4 
(5.669) to Model 6 (5.442) and from Model 5 (5.007) to Model 7 (4.794). However, the Kalman filter 
imposed a negative effect on the accuracy for the validation set from Model 4 (5.683) to Model 6 
(6.235), and imposed a positive effect on the accuracy for the proportion of lane-to-lane traffic 
volume from Model 5 (7.459) to Model 7 (6.427). The RMSE values of each signal cycle in the 
calibration and validation sets for Models 4 to 7 were compared. The results are described in Figures 
8 (a) and 8 (b). 

The tendencies of the RMSE values for the developed models were almost the same 
according to cycles. For the calibration set, the accuracy of Models 5 and 7 (which included the 
discriminant model and the proportion of lane-to-lane traffic flows) were generally better than those 
of Models 4 and 6. The RMSE values for all of the models were scattered from 3 to 8 vehicles, 
whereas those of Model 7 were distributed from 3 to 5 vehicles across all cycles of the calibration set. 
The accuracy of models in the validation set was less than the accuracy of those in the calibration set, 
for which the values were scattered from 4 to 10 vehicles. Furthermore, the accuracy of Models 4 and 
6 (which included the discriminant model and the proportion of total traffic flows) was slightly better 
than the accuracy of Models 5 and 7. The RMSE values of Model 4 were distributed from 4 to 8 
vehicles, and this model had the highest accuracy across all cycles on the validation set. 
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(a) RMSE values of each cycle in the calibration set 

(b) RMSE values of each cycle in the validation set 
Figure 8. The tendencies of RMSE values for the developed models 
 

To examine the performance of the most effective model for a validation set of the case study, 
a comparison was made between the observed queue lengths and the queue lengths as estimated by 
Models 4 and 7. These values are described in Figure 9, in which Model 1 (based on the traditional 
conservation equation) is not presented, because the values of RMSE for this model were far larger 
than for the other models. For Lanes 11 and 12, which were the exclusive lanes for left-turning traffic, 
the estimated queue lengths tended to be slightly underestimated compared to the observed queue 
lengths. However, for the straight-ahead traffic (Lanes 13, 14 and 15), the estimation of lane-based 
queue lengths tended to be overestimated compared to the observed queue lengths. In addition, the 
queue lengths in Lane 16 did not have a distinctive pattern, because the total number of queued 
vehicles in this lane was small. The queue lengths on the approach tended to be slightly 
underestimated compared to the observed values, but the overall the estimations were almost identical 
to the observed values on the approach. 
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Figure 9. Comparison of queue lengths as observed and as estimated by Models 4 and 7 in the 
validation set of the case study 
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According to the RMSE values and the tendency of estimated queue lengths in real time, the 
proposed models outperformed the traditional conservation equation for the estimation of lane-based 
queues. Even if the discriminant models as calibrated by the VISSIM simulation accurately estimated 
the residual queues at the start times of each phase for both the calibration and the validation sets on 
the real situations, the Kalman filter did not show any distinctive improvement on the effectiveness of 
the proposed models for the validation set. 

5. CONCLUSION 

In this study, a method for the real-time estimation of lane-based queue lengths was proposed. 
The key challenges were to identify whether there was a residual queue at the start time of each cycle, 
and to estimate the downstream arrivals for each lane. Discriminant models were estimated using time 
occupancy rates and impulse memories, based on the detector and the signal information from a set of 
upstream and downstream detectors. To determine the proportions of total traffic volume in each lane, 
the downstream arrivals in each lane for the present cycle were estimated using the Kalman filter, 
based on the upstream arrivals and the downstream discharges collected during the previous cycle.  

In the simulations, seven models were examined, including the traditional conservation 
equation and the developed models that considered the discriminant models and the downstream 
arrivals as estimated by the Kalman filter. It was found that the calibrated discriminant models and the 
Kalman system parameters were effective. The proposed method performed well for the calibration 
set and for five different validation sets with 100 m, 200 m and 300 m upstream detectors. The results 
of the computer simulations showed that the real-time estimations of lane-based queue lengths based 
on the discriminant models and downstream arrivals as estimated by the Kalman filter outperformed 
the other methods. Moreover, the distance between the stop lines and the upstream detectors was an 
important factor for estimating the lane-based queue length, and 200 m upstream detectors were 
appropriate for the proposed method. This approach provided a sufficient capacity for queued vehicles 
and maintained a high accuracy of estimates. In a case study, the proposed models proved to be more 
accurate than the traditional models. Therefore, Model 7 (which considered the discriminant models, 
the Kalman filter and the proportions of lane-to-lane traffic flows) was recommended with 200 m 
upstream detectors. In addition, Model 6 (which considered discriminant models, the Kalman filter 
and the proportions of total traffic flows) could be a good alternative to Model 7 if the traffic or 
geometric conditions were not appropriate for collecting lane-to-lane traffic flows at the target 
intersection. 

The results of the computer simulations and the case study of real-world traffic demonstrated 
that the proposed method was robust and accurate for the estimation of lane-based queue lengths in 
real time under a wide range of traffic conditions. Calibrated discriminant models played a significant 
role in the presence or absence of residual queued vehicles in each lane at the start times of each cycle. 
In addition, estimating downstream arrivals with the Kalman filter enhanced the accuracy of 
predictions by minimizing the error terms caused by lane-changing behavior. In future research, these 
models can be used to establish group-based adaptive control logic in real time, or to adjust the 
duration, start time and sequence of signal groups by a few seconds or minutes for both isolated 
signalized junctions and area traffic control. 
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