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The two-photon transition ¢(3686) — yvJ/is is studied in a sample of 1.06 X 10® (3686) decays
collected by the BESIII detector. The branching fraction is measured to be (3.1 =+ 0.6(stat) *93 (syst)) X
10™* using J/4 — eTe™ and J/¢y — p* u”~ decays, and its upper limit is estimated to be 4.5 X 107 at
the 90% confidence level. This work represents the first measurement of a two-photon transition among
charmonium states. The orientation of the ¢/(3686) decay plane and the J/ ¢ polarization in this decay are
also studied. In addition, the product branching fractions of sequential E1 transitions ¥(3686) — ¥ x.;
and y.; — yJ/¢¥(J =0, 1,2) are reported.

DOI: 10.1103/PhysRevLett.109.172002 PACS numbers: 14.40.Pq, 13.20.Gd

The XYZ [1] particles, which do not fit potential model
expectations in QCD theory, have been a key challenge to
the QCD description of charmoniumlike states [2]. To fully
understand those states, it is necessary to consider the
coupling of a charmonium state to a DD meson pair.
These coupled-channel effects, which also play an impor-
tant role in the charmonium transitions of low-lying states
[i.e., from ¢ (3686) to J/ ], are especially relevant for
the radiative transition processes [3]. In the well-known

electric dipole transitions, the strength of coupled-channel
effects will likely be hard to establish, since the accom-
panying relativistic corrections may be more important [4].
However, the two-photon transition (3686) — yyJ/ i
is more sensitive to the coupled-channel effect and thus
provides a unique opportunity to investigate these
issues [5].

Two-photon spectroscopy has been a very powerful tool
for the study of the excitation spectra of a variety of
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systems with a wide range of sizes, such as molecules,
atomic hydrogen, and positronium [6]. Studying the analo-
gous process in quarkonium states is a natural extension of
this work, in order to gain insight into nonperturbative
QCD phenomena. But, so far, two-photon transitions in
quarkonia have eluded experimental observation [7-9]. For
example, in a study of #(3686) — yx.,(J =0,1,2) re-
ported by the CLEO Collaboration [9], the upper limit for
B((3686) — yyJ /) was estimated to be 1 X 1073,

This Letter presents the first evidence for the two-photon
transition ¢ (3686) — yyJ/ i, as well as studies of the
orientation of the #(3686) decay plane and the J/¢ po-
larization in the decay. The branching fractions of double
E1 transitions 4(3686) — y(yJ/#),  through y,, inter-
mediate states are also reported. The data analyzed were
obtained by the BESIII experiment [10] viewing electron-
positron collisions at the BEPCII collider. An integrated
luminosity of 156.4 pb~! was obtained at a center-of-mass
energy /s = M(1(3686)) = 3.686 GeV. The number
of (3686) decays in this sample is estimated to be
(1.06 = 0.04) X 10% [11]. In addition, 42.6 pb~! of con-
tinuum data were taken below the (3686), at /s =
3.65 GeV, to evaluate the potential backgrounds from non-
resonant events.

The upgraded BEPCII [12] at Beijing is a two-ring
electron-positron collider. The BESIII detector [10] is an
approximately cylindrically symmetric detector which
covers 93% of the solid angle around the collision point.
In the order of increasing distance from the interaction
point, the subdetectors include a 43-layer main wire drift
chamber (MDC), a time-of-flight system with two layers in
the barrel region and one layer for each end cap, and a 6240
cell CsI(Tl) crystal electromagnetic calorimeter (EMC)
with both barrel and end cap sections. The barrel compo-
nents reside within a superconducting solenoid magnet
providing a 1.0 T magnetic field aligned with the beam
axis. Finally, there is a muon chamber consisting of nine
layers of resistive plate chambers within the return yoke of
the magnet. The momentum resolution for charged tracks
in the MDC is 0.5% for transverse momenta of 1 GeV/c.
The energy resolution for showers in the EMC is 2.5% for
1 GeV photons.

This work studies #(3686) — yyJ/¢ followed by
J/y — €1€~ (€ denotes e or w), which is referred to as
the signal process. Events selected contain exactly two
oppositely charged good tracks in the MDC tracking sys-
tem, corresponding to the dilepton from J/¢ decay. The
requirements to judge a track as good include | cosf| <
0.93 (0 is the polar angle with respect to the beam direc-
tion) and the minimum distance of approach between the
track and the production vertex less than 10 cm along the
beam axis and less than 1 cm projected in the perpendicular
plane. The lepton is identified with the ratio of EMC
shower energy to MDC track momentum, E/p, which
must be larger than 0.7 for an electron or smaller than 0.6

for a muon. To suppress non-J/¢ decay leptons, we re-
quire the momentum of each lepton to be larger than
0.8 GeV/c. A vertex fit (VF) constrains the production
vertex, which is updated run-by-run, and the tracks of the
dilepton candidates to a common vertex; only events with
X3g/d.o.f. < 20 are accepted.

Reconstructed EMC showers unmatched to either
charged track and with an energy larger than 25 MeV in
the barrel region (| cosf| < 0.80) or larger than 50 MeV in
the end caps (0.86 < |cosf| < 0.92) are used as photon
candidates. To reject bremsstrahlung photons, showers
matching the initial momentum of either lepton within
10° are also discarded. Showers from noise, not originating
from the beam collision, are suppressed by requiring the
EMC cluster time to lie within a 700 ns window near the
event start time.

Events are required to have only two photon candidates.
A kinematic fit (KF) constrains the vertexed dilepton to the
nominal mass of the intermediate J/¢ and the resulting
J/¥ and photon candidates to the known initial four-
momentum of the ¢(3686). The KF fit quality yZp is
required to be yxp/d.o.f. < 12. For convenience, we use
Y1g (Ysm) to denote the larger (smaller) energy photon. As
indicated in Fig. 1(a), J/ i candidates are identified with
the requirement that the recoil mass of the two photons,
M.y -recoir> 18 within (3.08,3.14) GeV/c?.

Scatter plots of recoiling mass M, _...ii from the lower
energy photon vy, versus the invariant mass of two pho-
tons M., are shown in Fig. 1, where clear resonance bands
are seen from the decays (3686) — yx.,(J =0,1,2)
(three horizontal bands) and (3686) — 7°(n)J/¢ (two
vertical bands). As indicated in Fig. 1(c), the continuum
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FIG. 1. Top: (a) distributions of M, ... in data (points) and

in the combined data set (solid line) of MC simulation of
1/ (3686) decays (shaded histogram) and continuum backgrounds
(dashed line), before the KF is applied. The arrows indicate the
window to select a J/¢ candidate. Bottom: scatter plots of
M, -recoil vVersus M., for the vyeTe~ channel, in (b) data,
(c) continuum data, and (d) MC simulated signal, after applying
the KF constraint and the M, ccoii Window. The corresponding
plots for the yyu™ u~ channel are very similar.
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backgrounds are most dominant at the tops of the plots, of
which the primary sources include the Bhabha scattering,
the dimuon process, and the initial-state radiation produc-
tion of J/ . These backgrounds are excluded by discard-
ing events with M, _...; > 3.6 GeV/ c?. To suppress
backgrounds from (3686) — 7°(n)J/ ¢, the diphoton
invariant mass M,, is required to be larger than
0.15 GeV/c? and the recoil momentum of the diphoton
must be larger than 0.25 GeV/c.

Monte Carlo (MC) simulations of ¥(3686) decays are
used to understand the backgrounds and also to estimate
the detection efficiency. At BESIII, the simulation includes
the beam energy spread and treats the initial-state radiation
with KKMC [13]. Specific decay modes from the Particle
Data Group (PDG) [14] are modeled with EVTGEN [15],
and the unknown decay modes with Lundcharm [16]. The
detector response is described using GEANT4 [17]. For the
1 (3686) — yyJ /i channel, the momenta of decay parti-
cles are simulated according to the measured polarization
structure in this work. Generic (3686) decay samples
serve for understanding the background channels; domi-
nant backgrounds were generated with high statistics.
Angular distributions of the cascade E1 transitions
¥ (3686) — yx.; — yyJ/ ¢ are assumed to follow the
formulas in Ref. [18]. Note that the y.; line shapes were
simulated with the Breit-Wigner distributions weighted
with Ef/TEi; to account for the double E1 transitions and

extended out to +200 MeV/c? away from the nominal
masses, using masses and widths in the PDG [14]. Here,
E,:(E,:) is the energy of the radiative photon y{(y3) in the
rest frame of the mother particle ¢(3686)(x.,).

The yield of the signal process ¢(3686) — yyJ/ i,
together with those of the cascade E1 transition processes,
is estimated by a global fit to the spectrum of M., _rccoi-
The fit results are shown in Fig. 2. The shape and magni-
tude of ¢(3686) decay backgrounds were fixed based on
MC simulation. Non-(3686) decay backgrounds are esti-
mated in continuum data, scaling by luminosity, and the
1/s dependence of the cross sections. This scaling is
verified by the good description of the J/ i backgrounds
in the M, o distribution shown in Fig. 1(a). The

TABLE 1.
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FIG. 2 (color online). (a) Unbinned maximum likelihood fit to
the distribution of M., _ ;... in data with combination of the two
J/ i decay modes. Thick lines are the sum of the fitting models, and
long-dashed lines are the y,; shapes. Short-dashed lines represent
the two-photon signal processes. The light shaded histogram is
1/ (3686) decay backgrounds (yellow), and the dark shaded histo-
gram is non-(3686) backgrounds (green), with the fixed ampli-
tude and shape taken from MC simulation and continuum data.
(b) The number of standard deviations, n,, of data points from the
fitted curvesin (a). The rates of the signal process and sequential y .,
processes are derived from these fits. (c) Distributions of M., recoil
in data (signals and known backgrounds) with the kinematic
requirement 3.44 GeV/c? <M, _ocon < 3.48 GeV/c? and with
the removal of y%y and M, recoil TeStricCtiONs. (d) Stacked histo-
grams of the three y.; components in (c).

distributions of the signal process and the cascade E1
process are taken from the reconstructed shapes in MC
simulation of the modes and smeared with an asymmetric
Gaussian with free parameters, which is used to compen-
sate for the difference in line shape between MC simula-
tions and data. By taking the MC shape, detector resolution
and wrong assignment of the E1 photon are taken into
account. The quality of goodness-of-fit test y?/d.o.f. =
108.0/94 = 1.15 in the yye" e~ mode and 124.8/94 =
1.33 in the yyu ™ ™ mode. The observed signal yields are
given in Table 1. The (3686) — yvyJ/¢ transition is
observed with a statistical significance of 6.60, as deter-
mined by the ratio of the maximum likelihood value and
the likelihood value for a fit with null-signal hypothesis.
When the systematic uncertainties are taken into account

For different channels: the number of observed signals n, (n,) and detection

efficiency €, (€,) in the yye™e™ (yyu™t u™) mode; the absolute branching fractions. On the

bottom, the relative branching fractions Ryy = B, /B

where B, = B((3686) —

XceN?

y(yJ/ ), ) are listed. Here, the first errors are statistical and the second are systematic.

Channels n, €,(%) n, €,(%) B(X107%)
yvJ/ o 564 + 116 224 536 + 128 30.0 3.1 +£0.6%98
Y/ ¥y, 1801 = 60 193 2491 * 69 26.0 15103+ 1.0
y(yI /)y, 59953 + 253 285 81922 + 295 38.2 3377+ 0.9 = 18.3
y(yJ/ )y, 32171 %187 275 44136 * 219 37.1 187.4 = 0.7 + 10.2
- B B
Ry = 7% (%) Ry = 7“*(%) Ry, = ﬁ(%)

55.47 £ 0.26 = 0.11

Xel

4.45*+0.09 = 0.18

8.03 £0.17 = 0.33
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FIG. 3. (a) The corrected distribution of the normal angle 8 of

the (3686) decay plane, and (b) the helicity angle 6, of J/
decays. The curves in (a) and (b) present the fits of functions
Py(1 + acos?B) and Py(1 + acos?d,), respectively.

with the assumption of Gaussian distributions, the signifi-
cance is evaluated to be 3.80, which corresponds to a
probability of a background fluctuation to the observed
signal yield of 7.2X 107°. The upper limit for
B((3686) — yyJ/ ) is estimated to be 4.5 X 107* at
the 90% confidence level, including systematic
uncertainties.

In calculating B(yyJ/), a correction factor is in-
cluded due to the interferences among x.; states. This
effect was checked by the variations of the observed
signals in the global fit with inclusion of a floating inter-
ference component, which is modeled by the detector-
smeared shape of a theoretical calculation [5]. It is found
that relative changes on the signal yields are negative with
lower bound of —10%. Hence, a correction factor 0.95 is
assigned and 5% is taken as systematic uncertainty.

A cross-check on our procedures is performed with
the M, o spectrum for the events in the region

3.44 GeV/c? <M, _reco < 3.48 GeV/c?  without re-
strictions on y%p and M., recoit> @s shown in Fig. 2(c).
An excess of data above known backgrounds can be seen
around the J/ nominal mass, which is expected from the
sought-after two-photon process. With the inclusion of the
estimated yields of the signal process, the excess is well
understood. The high-mass peak above the J/i peak
comes from the backgrounds of (3686) — 7'70J/ys
decays. This satellite peak can be well described in MC
simulation. In Fig. 2(d), the three y., tails show distin-
guishable distributions; the small left bump is from the y .,
tail, while the y.q tail is dominant at the right side. The
distribution in data in Fig. 2(c) can only be well described
by the simulated y.; shapes.

The angle of the normal axis of the (3686) decay plane
with respect to the ¥ (3686) polarization vector (aligned to
the beam axis), 8, can be determined in our data. The

: dN
event rate may be expressed, to leading order, as £ 5~

1 + acos’B. The measurement was carried out in the rest
frame of the #(3686), and the decay plane of the ¥ (3686)
was determined with the momenta of the two decay parti-
cles J/4 and y,. The signal yields in each angular bin
were extracted by the global fit to the corresponding data
set following the aforementioned procedure. After correc-
tion of the extracted signal yields with the detection
efficiency, Fig. 3(a) shows the fit to the distribution of
| cosB| for the sum of the two dilepton modes; we obtain
a = 0.53 = 0.68.

The polarization of J/¢ should be helpful in under-
standing the mechanism of the transition process [19].
The polarization parameter a can be evaluated from
the angular distribution of the decay rate, expressed as

TABLE II. Summary of the systematic uncertainties on the measurement of By, of the yyJ /¥ signal process, B, , for x.;
intermediate processes, and the relative branching fractions Ry, following the notation convention in Table I. The total systematic
uncertainty is the square root of the sum. Centered dots ( - - - ) mean that the uncertainty is negligible. Values inside the parentheses are
for the yyu™ u~ mode, while values outside are for the yye™ e~ mode. Numbers without brackets represent uncertainties that are

common to both modes.

Systematic uncertainty (%) Biie B, B,. B, ., Ro: Ry Ry,

Lepton track 2(2) 2(2) 2(2) 2(2)

Photon shower 2 2 2 2

Number of photons 10(3) 1(1) 1(D) 1(1) 2(--+) 2(- 1) ()

KF, )&F requirement 2(2) 2(2) 2(2) 2(2)

Xy Widths fég 3 s s 4 4 0.2

1‘/[%"‘_recoil resolution 4(5) cee(e0) ce(ee ) cee(he) cee(ee0) cee(he ) cee(ee0)

Other background 4(2) 1(1) () D) D) D) D)

Xy interference 5 1 K . 1 1 ce

Fitting 8(5) 1(1) ce(ee ) cei(he ) 1(1) (1) cee(e0)

Spin structure 20 1 s : 1 1 s

Number of (3686) 4 4 4 4

B/ — €F€7) 1 1 1 1

Total Correlated 14(8) 3(3) 3(3) 3(3) 2(1) 2(1) RN CERD)
Uncorrelated 2 6 5 5 4 4 0.2
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dN 2 _ Ie—or o s
Teoss; & 1 T acos”0. Here, o = 5 (with I't and I

being the transversely and longitudinally polarized decay
widths, respectively) and the helicity angle 6, is defined as
the angle of the lepton in the J/ i rest frame with respect
to the J/¢ boost direction in the laboratory frame. For
fully transverse (longitudinal) polarization, & = +1(—1).
Figure 3(b) shows the distribution of | cosé| for the sum of
the two dilepton modes, after correcting the signal yields
for the detection efficiency and the lepton final state radia-
tion effect. Our fit result is & = 0.08 = 0.42.

Sources of systematic errors on the measurement of
branching fractions are listed in Table II. Uncertainties
associated with the efficiency of the lepton tracking and
identification were studied with a selected control sample
of (3686) — "~ ({*£7),,,. The potential bias due to
limiting the maximum number of photon candidates was
studied by varying the limit. Throughout the photon energy
region in this work, the detection and energy resolution of
the photons are well-modeled within a 1% uncertainty
[11,20]. Detector resolution of the y,; tails is taken into
account up to the accuracy of the MC simulation. The
corresponding systematic uncertainty is evaluated by scan-
ning the sizes of smearing parameters within their errors.
For the signal process, the dominant uncertainties are from
the description of y.; line shapes, e.g., x.; widths. The
sensitivity to the y.; widths is studied by a comparison of
the signal yields based on different settings of the y.,
widths in modeling the y.; resonances within the current
world-average uncertainties. Relative changes of the signal
detection efficiencies are assigned as 20% by varying the
input spin structure within the measurement uncertainties
and weighting the efficiencies in the Dalitz-like plot of
Fig. 1(d).

Many sources of systematic uncertainties in Table II
cancel out when extracting the ¥(3686) decay plane pa-
rameter a and the J/¢ polarization parameter «. The
quadrature sums of the remaining systematic uncertainties
are *068 and *{07 for a and a, respectively.

To summarize, the first measurement of the two-photon
transition ¥ (3686) — yvyJ/ 4 was carried out at the BESIIT
experiment. The branching fraction is given in Table I, as
well as those of the cascade E1 transitions. The measure-
ment of the two-photon process is consistent with the upper
limit obtained in Ref. [9]. The results for the signal process
are presented without considering the possible interferences
between the direct transition and the y . states, due to a lack
of theoretical guidance. The distribution of the normal
angle of the #(3686) decay plane is characterized by the
parameter a = 0.53 = 0.68(stat) *3-53(syst), indicating a
preference for a positive value. The J/ ¢ polarization pa-
rameter a was evaluated as 0.08 = 0.42(stat) * 397 (syst),
demonstrating a competitive mixing of the longitudinal
and transverse components. These results will help con-
strain the strength of the coupled-channel effect in future
theoretical calculation. The reported branching fractions

B((3686) — y(yJ/¢),.,) are consistent with the
world-average results [14]. The reported relative branching
fractions of B, are obtained with the world’s best precision.
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