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Abstract: The stability of fluid flow in a horizontal layer of Brinkman porous medium with fluid 

viscosity different from effective viscosity is investigated. A modified Orr-Sommerfeld equation 

is derived and solved numerically using Chebyshev collocation method. The critical Reynolds 

number Rec , the critical wave number c  and the critical wave speed cc are computed for 

various values of porous parameter and ratio of viscosities. Based on these parameters, the 

stability characteristics of the system are discussed in detail. Streamlines are presented for 

selected values of parameters at their critical state. 
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1. Introduction 

The stability of fluid flows in a horizontal channel has been studied extensively and the 

copious literature available on this topic has been well documented in the book by Drazin and 

Reid
[1]

. The interesting finding is that the Poiseuille flow in a horizontal channel becomes 

unstable to infinitesimal disturbances when the Reynolds number exceeds the critical value 5772. 

The corresponding problem in a porous medium has attracted limited attention of researchers 

despite its wide range of applications in geothermal operations, petroleum industries, thermal 

insulation and in the design of solid-matrix heat exchangers to mention a few. In particular, with 
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the advent of hyperporous materials there has been a substantial increase in interest in the study 

of stability of fluid flows through porous media in recent years as it throws light relating to the 

onset of macroscopic turbulence in porous media (Lage et al.
[2]

).   

The hydrodynamic stability of flow of an incompressible fluid through a plane- parallel 

channel or circular duct filled with a saturated sparsely packed porous medium has been 

discussed on the basis of an analogy with a magneto-hydrodynamic problem by Nield
[3]

. By 

employing the Brinkman model with fluid viscosity same as effective viscosity, Makinde
[4]

 

investigated the temporal development of small disturbances in a pressure-driven fluid flow 

through a channel filled with a saturated porous medium. The critical stability parameters were 

obtained for a wide range of the porous medium shape factor parameter.  

The porous materials used in many technological applications of practical importance 

possess high permeability values. For example, permeabilities of compressed foams as high as  

6 28 10 m  and for a 1 mm thick foam layer the equivalent Darcy number is equal to 8 (see Nield 

et al.
[5]

 and references therein). Moreover, for such a high porosity porous medium, Givler and 

Altobelli
[6]

 determined experimentally that 3.4

2.47.5e 

 , where e  is the effective viscosity or 

the Brinkman viscosity and   is the fluid viscosity. Therefore, it is imperative to consider the 

ratio of these two viscosities different from unity in analyzing the problem. In the present study, 

the ratio of these two viscosities has been considered as a separate parameter and its influence on 

the stability characteristics of the system is discussed. The resulting eigenvalue problem is solved 

numerically using Chebyshev collocation method.  

 

2.  Mathematical Formulation 

 We consider the flow of an incompressible viscous fluid through a layer of sparsely packed 

porous medium of thickness 2h , which is driven by an external pressure gradient. The bounding 

surfaces of the porous layer are considered to be rigid and a Cartesian coordinate system is 

chosen such that the origin is at the middle of the porous layer as shown in Fig. 1.  

The governing equations are: 

   

 

0q                                                    (1) 
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where  ( ,0, )q u w  the velocity vector,   the fluid density, p the pressure, e the effective 

viscosity,  the viscosity of the fluid, k  the permeability and   the porosity of the porous 

medium. Let us render the above equations dimensionless using the quantities 

 

* * * *

2
,  ,  ,  

/B B B

q t p
q h t p

U h U U 
                                                                   (3) 

where 
BU  is the average base velocity. Equation (3) is substituted in Eqs. (1) and (2) to obtain 

(after discarding the asterisks for simplicity)  

 0q                                                  (4) 

 

 
2

2 2 .
pq

q q p q q
t Re Re




 
       


                                                                        (5) 

Here, /BRe U d  is the Reynolds number, where  ( / )    is the kinematic viscosity, 

2 /e     is the ratio of effective viscosity to the viscosity of the fluid and /p h k   is the 

porous parameter. 

 

2.1 Base flow 

The base flow is steady, laminar and fully developed, that is, it is a function of z  only.  With 

these assumptions, Eq. (5) reduces to 

2
2 2

2

b B
p B

dp d U
Re U

dx dz
                                        (6) 

The associated boundary conditions are 

 
0 at 1BU z                                     (7) 

Solving Eq. (6) using the above boundary conditions, we get 

cosh cosh

.

cosh 1

p p
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                                                                                    (8) 

The above basic velocity profile coincides with the Hartmann flow if /p  is identified with 

the Hartmann number (Lock
[7]

, Takashima
[8]

). 
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2.2 Linear Stability Analysis 

To study the linear stability analysis, we superimpose an infinitesimal disturbance on the 

base flow in the form  

ˆ( ) ,Bq U z i q   ( )bp p z p  .                                                                                     (9) 

Substituting Eq. (9) into Eqs. (4) and (5), linearizing and restricting our attention to two-

dimensional disturbances, we obtain (after discarding the asterisks for simplicity) 

0
u w

x z

 
 

 
                                                                                                                    (10) 

2
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t x x Re Re

   
      
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2

2 p

B

w w p
U w w

t x z Re Re

   
     

  
                                                                             (12) 

To discuss the stability of the system, we use the normal mode solution of the form  

     
, ( , , ) , ( )

i x ct
u w x z t u w z e

 
                                                                 (13) 

where 
r ic c ic   is the wave speed, rc is the phase velocity and ic  is the growth rate and   is 

the horizontal wave number which is real and positive. If 0,ic  then the system is unstable and if 

0,ic 
 
then the system is stable. Equations (10) to (12), using Eq. (13) and after simplification, 

respectively become 

 

0i u Dw                                                                                    (14) 

     2 2 2

B B pD i Re U c u i Re p ReDU w u          
 

                                 (15) 

   2 2 2

B pD i Re U c w Re Dp w        
 

                                                (16) 

where /D d dz is the differential operator. First, the pressure p is eliminated from the 

momentum equations by operating D  on Eq. (15), multiplying Eq. (16) by i  and subtracting 

the resulting equations and then a stream function ( , , )x z t  is introduced through    

,u w
z x

  
  
 

                  (17)  

to obtain an equation for ( , , )x z t in the form   

          

2 2 2 2 2 2 2 2 2( ) ( ) ( )( )p B BD D i Re U c D D U                  .                      (18) 
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Equation (18) is the required stability equation which is the modified form of Orr-Sommerfeld 

equation and reduces to the one obtained for an ordinary viscous fluid if 0p   and 1  . 

The boundaries are rigid and the appropriate boundary conditions are: 
 

0 at 1D z     .                                          (19) 

 

3. Method of Solution 

Equation (18) together with the boundary conditions (19) constitutes an eigenvalue problem 

which has to be solved numerically. The resulting eigenvalue problem is solved using Chebyshev 

collocation method.  

The k
th 

order Chebyshev polynomial is given by 

              1cos , coskT z k z    .                                                                                            (20) 

The Chebyshev collocation points are given by 

 cos , 0 1j

j
z j N

N

 
  

 
.                        (21) 

Here, the lower and upper wall boundaries correspond to 0j  and N , respectively. The field 

variable   can be approximated in terms of Chebyshev variable as follows 

   
0

.
N

n j j

j

z T z 


                                                                               (22)  

The governing equations (18) and (19) are discretized in terms of Chebyshev variable z  to get  
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0 0N                                                             (24) 
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jk jm mkB A A   & 

jk jm mkC B B  .                                                                                 (27) 

with 

  
2 0,

1 1 1.
j

j N
c

j N


 

  
  . 

 

 The above equations form the following system of linear algebraic equations  

AX cBX                                                                                                                        (28) 

where A  and B are the complex matrices, c is the eigenvalue and X  is the eigenvector. To 

solve the above generalized eigenvalue problem, the DGVLCG of IMSL library
[9]

 is employed. 

The routine is based on the QZ algorithm due to Molar and Stewart
[10]

. The first step of this 

algorithm is to simultaneously reduce A to upper Heisenberg form and B to upper triangular 

form. Then, orthogonal transformations are used to reduce A to quasi-upper-triangular form 

while keeping B upper triangular. The eigenvalues for the reduced problem are then computed as 

follows.  

For fixed values of ,  p  and Re , the values of c which ensure a non-trivial solution of Eq. 

(28) are obtained as the eigenvalues of the matrix 1 .B A  From 2N eigenvalues 

(1),  (2),  ,  (2 )c c c N , the one having the largest imaginary part of ( ( )c p , say) is selected. In 

order to obtain the neutral stability curve, the value of Re for which the imaginary part of 

( )c p vanishes is sought. Let this value of Re  be qRe . The lowest point of qRe
 
as a function of 

 gives the critical Reynolds number cRe  and the critical wave number .c  The real part of 

( )c p  corresponding to cRe  and c  gives the critical wave speed .cc  This procedure is repeated 

for various values of   and .p  
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4. Results and Discussion 

The stability of fluid flow in a horizontal layer of Brinkman porous medium with fluid 

viscosity different from effective viscosity is investigated using Chebyshev collocation method.  

To know the accuracy of the method employed, it is instructive to look at the wave speed as a 

function of order of Chebyshev polynomials. Table 1 illustrates this aspect for different orders of 

Chebyshev polynomials ranging from 1 to 100. It is observed that four digit point accuracy was 

achieved by retaining 50 terms in Eq. (22). As the number of terms increases in Eq. (22), the 

results found to remain consistent and the accuracy improved up to 7 digits and 10 digits for N = 

80 and N = 100, respectively.  In the present study, the results are presented by taking N = 80. 

The critical stability parameters computed for various values of porous parameter 
p  are 

tabulated in Tables 2 and 3 for two values of ratio of viscosities 1   and 2, respectively. The 

results for 
p = 0 in Table 1 correspond to the stability of classical plane-Poiseuille flow. For this 

case, it is seen that cRe = 5772.955239, c =1.02 and cc = 0.264872176035885 which are in 

excellent agreement with those reported in the literature
[1]

. 

The neutral stability curves are displayed in Fig. 2 for different values of 
p
 
and for two 

values of 1   and 2. The portion below each neutral curve corresponds to stable region and the 

region above corresponds to instability. It may be noted that, increase in 
p  and   leads to an 

increase in the critical Reynolds number and thus they have stabilizing effect on the fluid flow. 

The lowest curve in the figure corresponds to the classical plane-Poiseuille flow case.   

Figures 3(a), (b) and (c) respectively show the variation of critical Reynolds number cRe , 

critical wave number c and the critical wave speed cc  as a function of porous parameter 
p  for 

two values of ratio of viscosities 1   and 2.  It is observed that increase in the porous 

parameter is to increase cRe  and thus it has stabilizing effect on the fluid flow due to decrease in 

the permeability of the porous medium. Besides, increase in the ratio of viscosities has a 

stabilizing effect on the fluid flow due to increase in the viscous diffusion. The critical wave 

number exhibits a decreasing trend initially with 
p  but increases with further increase in the 

value of the same.  Although initially the critical wave number for 2   are higher than those 

of 1  , the trend gets reversed with increasing values of
p . 

 
The critical wave speed decreases 
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with increasing porous parameter and remains constant as 
p increases. Moreover, the critical 

wave speed decreases with increasing   and becomes independent of ratio of viscosities with 

increasing porous parameter.    

The variation in the growth rate of the most unstable mode against the wave number for 

different values of porous parameter with 1    and for different values of ratio of viscosities 

with 3p   is illustrated in Figs. 4(a) and (b), respectively. It is observed that increasing the 

value of porous parameter is to suppress the disturbances and thus its effect is to eliminate the 

growth of small disturbances in the flow.  Although similar is the effect with increasing the value 

of ratio of viscosities at lower and higher wave number regions, an opposite kind of behavior 

could be seen at intermediate values of wave number.    

Figures 5 and 6 show the streamlines for different values of 
p  for 1   and 2, respectively 

at their critical state. It is observed that there is a significant variation in the streamlines pattern 

with varying 
p  and .  As the value of 

p  increases from 0 to 5, the strength of secondary 

flow decreases but flow profile remains same. In this regime, convective cells are unicellular and 

cells are spread throughout the domain.  Figure 5(d) indicates that for 
p  = 20 the secondary 

flow becomes double-cellular but flow is only near to walls of the channel. As value of 
p  

increases further the flow strength again increases and convective cells becomes unicellular. The 

streamlines pattern illustrated in Fig. 6 for 2   exhibits a similar behavior.   

 

5. Conclusions 

The temporal development of infinitesimal disturbances in a horizontal layer of Brinkman 

porous medium with fluid viscosity different from effective viscosity is studied numerically 

using Chebyshev collocation method. It is found that the ratio of viscosities has a profound effect 

on the stability of the system and increase in its value is to stabilize the fluid flow. Besides 

increase in the value of porous parameter has stabilizing effect on the fluid flow. The secondary 

flow for 1  and 2 is spread throughout the domain at lower values of 
p  but confined in the 

middle of the domain at higher values. Secondary flow pattern remains same for both values of 

viscosity ratios considered here. 
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Fig. 1 Physical configuration 
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N  c  

5 0.693518107893652 - 0.000083844138659i 

10 0.402924970355927 +0.000003543182553i 

15 0.252788317613093 +0.001402916654061i 

20 0.182901607284347 +0.002557008891944i 

25 0.910087603387166 - 0.003680141263285i 

30 0.936838760905464 - 0.004555530852476i 

35 0.953239931934621 - 0.005421331881951i 

40 0.964045306550104 - 0.006571837595488i 

45 0.961511990916474 - 0.007811518881257i 

50 0.961907403228478 - 0.007838410021033i 

55 0.961160636215249 - 0.007837875616178i 

60 0.991127232587008 - 0.007812092027005i 

65 0.991126785122664 - 0.007812091212242i 

70 0.991124064507403 - 0.007812085576797i 

75 0.991124619603898 - 0.007812085369762i 

80 0.991124645294663 - 0.007812085220502i 

85 0.991124632576554 - 0.007812085278582i 

90 0.991124632014134 - 0.007812085210679i 

95 0.991124632233021 - 0.007812085246101i 

100 0.991124632209442 - 0.007812085253386i 

 

Table 1: Order of polynomial independence  for 0.5p  , 20000Re  , 1  and 1   

 

p  cRe  c  cc  

0.0 5772.955239 1.02 0.264872176035885 

0.1 5823.724407 1.02 0.264608547359021 

 0.5 6729.754766 1.01 0.257302683215492 

1.0 10058.784500 0.97 0.236348982126750 

2.0 28760.892790 0.93 0.193657950030372 

3.0 65679.747074 0.96 0.170892426624650 

5.0 167022.968293 1.13 0.158919307085916 

10.0 443074.155792 1.74 0.156348745969234 

15.0 719431.119028 2.45 0.157129203516859 

20.0 983227.239208 3.21 0.157675732484102 

30.0 1481009.215883 4.81 0.157720964450717 

50.0 2500140.143218 8.03 0.157720974641616 

100.0 4969163.123916 
 

16.10 0.157720987503782 

 

Table 2:  Values of cRe , c and cc  for different values of  p  when 1   
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p  cRe  c  cc  

0.1 11611.630425 1.02 0.264740362734358 

0.5 12496.046066 1.01 0.260452559673983 

1.0 15513.694555 0.99 0.249116441034995 

2.0 31057.685083 0.95 0.217397368338407 

3.0 64702.301025 0.93 0.189782908769432 

5.0 181131.896972 0.99 0.164717429222772 

10.0 555919.589576 1.37 0.155972156146598 

15.0 954466.394318 1.82 0.156442820186782 

20.0 1345948.408540 2.32 0.157000299420360 

30.0 2069885.987405 3.42 0.157078870409787 

50.0 3474185.249230 5.63 0.157079351092361 

100.0 6999130.237221 11.94 0.157079448297211 

 

Table 3: Values of cRe , c and cc  for different values of  p  when 2   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


