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ON CYCLE INTEGRALS OF WEAKLY HOLOMORPHIC

MODULAR FORMS

KATHRIN BRINGMANN, PAVEL GUERZHOY, AND BEN KANE

Abstract. In this paper, we investigate cycle integrals of weakly holomorphic
modular forms. We show that these integrals coincide with the cycle integrals
of classical cusp forms. We use these results to define a Shintani lift from inte-
gral weight weakly holomorphic modular forms to half-integral weight holomorphic
modular forms.

1. Introduction and statement of results

The relationship between integral and half-integral weight modular forms has been
pivotal in a number of applications. The link between these spaces was first estab-
lished in a groundbreaking paper of Shimura [17] in which he constructed lifts from
half-integral to integral weight modular forms. The level of the image of Shimura’s
lifts was then studied by a number of authors. Niwa [16] used theta lifts to find the
optimal level of the lifts in general, while Kohnen [12] found a distinguished subspace
of half-integral weight modular forms (known as Kohnen’s plus space) which map
to a lower level. A number of general results have a much more explicit form when
restricted to Kohnen’s plus space. For example, Waldspurger [21] used Shimura’s
lifts to establish connections between central values of L-functions of integral weight
modular forms and coefficients of corresponding half-integral weight modular forms.
By restricting to Kohnen’s plus space, Kohnen and Zagier [13] refined Waldspurger’s
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formula [21] to determine an explicit constant which proved non-negativity of the cen-
tral values of these L-functions. Waldspurger’s formula [21] (and Kohnen and Zagier’s
variant [13]) also yields a link between the vanishing of central L-values of integral
weight modular forms and coefficients of half-integral weight modular forms. Specif-
ically, for each fundamental discriminant D and integral weight Hecke eigenform f ,
the central value of the Dth twist of the L-function of f vanishes if and only if the
|D|th coefficient of a half-integral weight modular form related to f by the Shimura
correspondence is zero.

More recently, Bruinier and Ono [5] proved that the central values of derivatives
of L-functions vanish precisely when certain coefficients of a newer modular object,
known as harmonic weak Maass forms, are algebraic.

Central to the theory built around integral and half-integral weight modular forms
is a two-sided interplay between the Shimura lifts and lifts of Shintani [18] which map
integral weight to half-integral weight modular forms. The Shintani lifts are defined
in terms of certain cycle integrals, which are, roughly speaking, integrals of modular
objects along geodesics defined by certain integral binary quadratic forms of positive
discriminant. In particular, for a continuous function F satisfying weight 2κ ∈ 2Z
modularity, the coefficients of the Shintani lifts are given as traces of cycle integrals
of the type

C (F ;Q) :=

∫

CQ

F (z)Q(z, 1)κ−1dz, (1.1)

where Q is an integral binary quadratic form of positive discriminant and CQ is ex-
plicitly defined in Section 2. In [2], the authors related two families of cycle integrals
coming from weight 2 − 2k (k ∈ N fixed throughout) harmonic weak Maass forms
M. One family is formed with the traces of cycle integrals defining the δth Shintani

lift of the weight 2k cusp form ξ2−2k(M) (where ξ2−2k := 2iy2−2k ∂
∂z

and δ is a funda-

mental discriminant for which (−1)kδ > 0). These cycle integrals were shown to be
fundamentally equal to the traces of cycle integrals of a (non-holomorphic) weight 0
Maass form which is essentially built out of the (k − 1)th (holomorphic) derivative
of M. However, if one instead takes 2k − 1 derivatives of M, then the resulting
function is a weight 2k weakly holomorphic modular form (i.e., a meromorphic mod-
ular form whose only possible poles occur at the cusps). Cycle integrals of weakly
holomorphic modular forms are well-defined and were first considered in [9], where
an exciting connection between such cycle integrals and rational period functions was
established. Since ξ2−2k(M) and D2k−1(M) (where D := 1

2πi
∂
∂z

) are both weight 2k
weakly holomorphic modular forms, it is natural to compare their cycle integrals.
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Defining a regularization, which is necessary to guarantee covergence of (1.1) in the
case that the discriminant of Q is a square, our first result is that these integrals in
essence coincide for every element M in the space Hcusp

2−2k of harmonic weak Maass
forms for which ξ2−2k(M) is a cusp form.

Theorem 1.1. For every harmonic weak Maass form M ∈ Hcusp

2−2k, every discriminant
D > 0, and every Q ∈ QD, the cycle integrals satisfy

C (ξ2−2k(M);Q) = − (4π)2k−1

(2k − 2)!
C (D2k−1(M);Q). (1.2)

Note that the kernel of ξ2−2k (namely, the space M !
2−2k of weakly holomorphic

modular forms) is non-trivial. In the special case that M ∈ M !
2−2k, Theorem 1.1

therefore immediately yields the following corollary.

Corollary 1.2. If G ∈ M !
2−2k, then

C
(

D2k−1(G);Q
)

= 0.

By taking a trace of the cycle integrals, we next define a Shintani lift for f ∈ S !
2k,

the space of weakly holomorphic cusp forms (i.e., those f ∈ M !
2k whose constant terms

vanish). For δ given before Theorem 1.1 and f ∈ S !
2k, this Shintani lift is given by

S
∗
δ (f)(z) :=

∑

m>0
(−1)km≡0,1 (mod 4)

∑

Q∈Q|δ|m/SL2(Z)

χδ(Q)C (f ;Q) qm, (1.3)

where the genus character χδ is defined in (2.3) and q := e2πiz. We obtain a relation
between (1.3) and the classical δth Shintani lift. If f ∈ S2k, then a theorem of Shintani
[18] implies that S ∗

δ (f) is an element of Kohnen’s plus space [12] Sk+ 1

2

of weight k+ 1
2

cusp forms.
We prove that this extends to S !

2k and include the relation between the weight
2k Eisenstein series G2k (see (4.1)) and Cohen’s weight k + 1

2
Eisenstein series Hk

(defined in (4.3)) for completeness.

Theorem 1.3. Suppose that δ is a fundamental discriminant satisfying (−1)kδ > 0.

(1) If f ∈ S !
2k, then S ∗

δ (f) ∈ Sk+ 1

2

.

(2) If M ∈ Hcusp

2−2k, then

S
∗
δ (ξ2−2k(M)) = − (4π)2k−1

(2k − 2)!

(

S
∗
δ

(

D2k−1(M)
))c

, (1.4)
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where for g ∈ Sk+ 1

2

we use gc(z) := g(−z) for any function g on the upper

half-plane.
(3) If δ = 1, then we have

S
∗
1 (G2k(z)) =

1

2
ζ (1− k)Hk(z).

Remarks.

(1) If δ = 1, then (1.4) holds for all harmonic weak Maass forms.
(2) We expect that a twisted version of Theorem 1.3 (3) holds for general funda-

mental discriminants δ satisfying (−1)kδ > 0.
(3) One can prove that for δ 6= 1 and f ∈ S !

2k, the Shintani lift S ∗
δ (f) is not

influenced by the even periods of f . That is to say, if f1, f2 ∈ S !
2k have the

same odd periods, then S ∗
δ (f1) = S ∗

δ (f2). Computational evidence further
indicates that in this case C (f1;Q) = C (f2;Q) for every Q ∈ QD and every
D > 0. Since we do not need this for our purposes, we omit the proof here.

(4) In [10] another geometric extension of the Shintani lift was given, which for
Eisenstein series coincides with our definition (1.3). Theorem 1.3 (3) can also
directly be concluded from Section 9 of [10].

(5) The restriction that δ is fundamental may be omitted by using the action of the
Hecke operators to define the Shintani lift for non-fundamental discriminants,
but we do not work out the details here.

The paper is organized as follows. In Section 2, we introduce the regularization
necessary to define the cycle integrals for square discriminants and relate the cycle
integrals for non-square discriminants to the periods of weakly holomorphic modular
forms. In Section 3 we prove Theorem 1.1. Finally, we prove Theorem 1.3 in Section
4.

Acknowledgements

The authors thank Jens Funke for helpful discussion.

2. Cycle integrals and periods

In this section, we recall known facts on cycle integrals and periods of weakly
holomorphic modular forms and additionally prove a relation between them. The
generalization of these definitions to weakly holomorphic modular forms requires a
regularized integral defined by the first author, Fricke, and Kent [1]. Assume that
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f : H → C is a continuous function and that there exists c ∈ R+ such that f satisfies
the growth condition

f(z) = O
(

ec Im(z)
)

(2.1)

uniformly in Re(z) as Im(z) → ∞. Then, for each z0 ∈ H, the integral
∫ i∞

z0

euiwf(w) dw

(where the path of integration lies within a vertical strip) is convergent for u ∈ C

with Re(u) ≫ 0. If this integral has an analytic continuation to u = 0, then the
regularized integral of f is given by

R.

∫ i∞

z0

f(w) dw :=

[
∫ i∞

z0

euiwf(w) dw

]

u=0

,

where the right-hand side means that we take the value at u = 0 of the analytic con-
tinuation of the integral. We similarly define integrals at other cusps a. Specifically,
suppose that a = σa(i∞) for a scaling matrix σa ∈ SL2(Z). If f(σaz) satisfies (2.1),
then we use the regularization

R.

∫

a

z0

f(w) dw := R.

∫ i∞

σ−1

a
z0

f
∣

∣

2
σa(w) dw.

For cusps a, b, we set

R.

∫

b

a

f(w) dw := R.

∫

b

z0

f(w) dw +R.

∫ z0

a

f(w) dw (2.2)

for any z0 ∈ H. It is not hard to see that this integral is independent of z0 ∈ H.
This regularization can be used to generalize the classical definition of periods of

cusp forms. To be more precise, the nth periods (n ∈ N0) for weakly holomorphic
cusp forms f ∈ S !

2k (those weakly holomorphic modular forms whose constant terms
vanish) are given by

rn(f) := R.

∫ ∞

0

f(it)tndt,

which may be packaged into period polynomials

r(f ; z) :=

2k−2
∑

n=0

i−n+1

(

2k − 2

n

)

rn(f)z
k−2−n.
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The first two authors, Kent, and Ono (see (1.7) and (1.9) of [3]) proved that the
period polynomials of f(z) =

∑

n∈Z anq
n ∈ S !

2k are constant multiples of the error to
modularity under S := ( 0 −1

1 0 ) of the (holomorphic) Eichler integrals

Ef(z) :=
∑

n∈Z\{0}

an
n2k−1

qn.

For t0 > 0, c ∈ Z, and d ∈ N, we also require the twisted L-series

L∗
f

(

ζdc , s
)

:=
∑

m≥m0

af (m)ζdmc Γ(s, 2πmt0)

(2πm)s
+ ikck−2s

∑

m≥m0

af(m)ζ−am
c Γ

(

k − s, 2πm
c2t0

)

(2πm)k−s
.

Here for y > 0, Γ (s, y) :=
∫∞
y

ts−1e−tdt is the incomplete Γ-function, and the defini-

tion can be shown to be independent of the choice of t0.
Before clarifying the role played by the above regularization if the discriminant is

a square, we formally define the cycle integrals given in (1.1). For each non-square
discriminant D > 0, denote the set of integral binary quadratic forms of discriminant
D by QD. If D is not a square, then the (infinite cyclic) group of automorphs of an
indefinite binary quadratic form Q = [a, b, c] ∈ QD is defined by

gQ :=

(

t+bu
2

cu
−au t−bu

2

)

,

where (t, u) is the smallest positive solution to the Pell equation t2 − Du2 = 4 (the
automorphs are trivial if D is a square, and we let gQ be the identity in this case).
For a 6= 0 (resp. a = 0), let SQ be the oriented semicircle (resp. vertical line) given
by

a |z|2 + bx+ c = 0

directed counterclockwise if a > 0, clockwise if a < 0, and up from the real axis
if a = 0. Note that dz

Q(z,1)
is an invariant measure on SQ. Since every Q ∈ QD is

modular of weight −2 for ΓQ := 〈gQ〉, for κ ∈ Z it is natural to integrate the product
of Q(z, 1)κ−1 times functions F satisfying weight 2κ ∈ 2Z modularity on ΓQ along
ΓQ\SQ. Hence, for z ∈ SQ, we define CQ to be the directed arc from z to gQz along
SQ if D is non-square and CQ := SQ if D is a square. As in Lemma 6 of [8], one
concludes that the cycle integral in (1.1) is well-defined for any continuous function
F satisfying weight 2k ∈ Z modularity on ΓQ for which the integral converges.
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More generally, in the case of convergence, we extend the definition of the cycle
integrals in (1.1) by

C (F ;Q) := R.

∫

CQ

F (z)Q(z, 1)k−1dz.

In particular, this is necessary for square D whenever F does not decay towards the
cusps. Hence this regularization allows one to take cycle integrals of harmonic weak
Maass forms. Denoting the weight 2− 2k hyperbolic Laplacian by

∆2−2k := −y2
(

∂2

∂x2
+

∂2

∂y2

)

+ i(2− 2k)y

(

∂

∂x
+ i

∂

∂y

)

,

these are functions M : H → C satisfying:

(i) M
∣

∣

2−2k
γ = M for all γ ∈ SL2(Z),

(ii) ∆2−2k (M) = 0,
(iii) M has at most linear exponential growth at i∞.

The subspace of harmonic weak Maass forms M for which ξ2−2k(M) is a cusp form is
denoted by Hcusp

2−2k. We aim to compare the cycle integrals of the weakly holomorphic

modular forms C (ξ2−2k (M) ;Q) and C (D2k−1 (M) ;Q) for M ∈ Hcusp

2−2k.
Having established the definition of cycle integrals for weakly holomorphic modular

forms, we have almost all of the notation required for the definition of the Shintani
lift (1.3). To complete the definition, recall that for every pair of discriminants D1

and D2, the corresponding genus character (for example, see pp. 59–62 of [19]) of a
binary quadratic form Q (X, Y ) = [a, b, c] (X, Y ) := aX2 + bXY + cY 2 ∈ QD1D2

is
given by

χD1
(Q) :=

{

(

D1

r

)

if (a, b, c,D1) = 1 and Q represents r with (r,D1) = 1,

0 if (a, b, c,D1) > 1.
(2.3)

Here
(

D1

·
)

denotes the Kronecker character.
We make frequent use of a generalization of Theorem 7 of [14] to include weakly

holomorphic modular forms. To state the theorem, we require some notation. A
binary quadratic form Q = [a, b, c] ∈ QD (D > 0) is called reduced if a > 0, c > 0,
and b > a+c. Let A be an SL2(Z)-equivalence class of integral binary quadratic forms
of discriminant D > 0. We enumerate the reduced forms in A by Q0, . . . , Qr = Q0,
where

Qj = Qj−1 ◦Mj := Qj−1

∣

∣

−2
Mj , (2.4)
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with

Mj :=

(

mj 1
−1 0

)

(2.5)

for some integers mj ≥ 2. Here |−2 is the usual weight −2 slash operator and we
use Qj−1|−2 to abbreviate the action on the function Qj−1(z, 1). We use the reduced
forms to define the polynomial

Qk,D,A(X) :=
∑

Q∈A
Q reduced

Q(X,−1)k−1 =

r
∑

j=1

Qj (X,−1)k−1

and denote the coefficient of Xn by q
(n)
k,D,A. We are now ready to give the relation

between cycle integrals and periods, which was shown for cusp forms in [14].

Theorem 2.1. For each equivalence class A of binary quadratic forms of non-square
discriminant containing Q ∈ A and f ∈ S !

2k, one has

C (f ;Q) =

2k−2
∑

n=0

i−n+1q
(n)
k,D,Arn(f). (2.6)

Proof. We rewrite the right-hand side of (2.6), using the definition of rn

2k−2
∑

n=0

i−n+1q
(n)
k,D,Arn(f) =

2k−2
∑

n=0

(−1)nq
(n)
k,D,AR.

∫ i∞

0

f(z)zndz

= R.

∫ i∞

0

f(z)Qk,D,A(−z)dz = R.
r

∑

j=1

∫ i∞

0

f(z)Qj−1(z, 1)
k−1dz. (2.7)

On the left-hand side of (2.6), we follow the formal argument at the beginning of
the proof in [14] mutatis mutandis to obtain

C (f ;Q) =
r

∑

j=1

∫ Mjz0

z0

f(z)Qj−1(z, 1)
k−1dz.

However, for every z0 ∈ H, continuity in u implies that
[

r
∑

j=1

∫ Mjz0

z0

f(z)euiwQj−1(z, 1)
k−1dz

]

u=0

=

r
∑

j=1

∫ Mjz0

z0

f(z)Qj−1(z, 1)
k−1dz. (2.8)
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Since C (f ;Q) is independent of z0, the left-hand side of (2.8) is hence also indepen-
dent. We then take z0 → 0, precisely yielding the right-hand side of (2.7). �

3. Proof of Theorem 1.1

The argument to prove Theorem 1.1 naturally separates for D square and non-
square. We begin with the case that D is not a square and first prove the existence
of M ∈ Hcusp

2−2k for which (1.2) holds.

Proposition 3.1. For every g ∈ S2k, there exists M ∈ Hcusp

2−2k for which ξ2−2k(M) = g
such that for every non-square discriminant D and every Q ∈ QD, (1.2) holds.

Proof. We may choose M as in the second statement of Theorem 3.1 of [1], namely
satisfying

r (ξ2−2k (M) ; z) = − (4π)2k−1

(2k − 2)!
r (D2k−1 (M) ; z).

By comparing coefficients of zn, one obtains

rn (ξ2−2k (M)) = (−1)n
(4π)2k−1

(2k − 2)!
rn (D2k−1 (M)).

For every Q ∈ A, we then use Theorem 2.1 to yield

C (ξ2−2k (M) ;Q) =

2k−2
∑

n=0

i−n+1q
(n)
k,D,Arn (ξ2−2k (M))

=
(4π)2k−1

(2k − 2)!

2k−2
∑

n=0

in+1q
(n)
k,D,Arn (D2k−1 (M))

= − (4π)2k−1

(2k − 2)!

2k−2
∑

n=0

i−n+1q
(n)
k,D,Arn (D2k−1 (M)) = − (4π)2k−1

(2k − 2)!
C (D2k−1 (M) ;Q).

This gives the claim. �

Proposition 3.1 shows that (1.2) holds for at least one M ∈ Hcusp

2−2k which maps to
g ∈ S2k under ξ2−2k and the difference of any two such elements of Hcusp

2−2k is weakly
holomorphic. To show the non-square case it hence remains to prove Corollary 1.2
for D non-square, which we now state as a separate proposition.



10 KATHRIN BRINGMANN, PAVEL GUERZHOY, AND BEN KANE

Proposition 3.2. If G ∈ M !
2−2k and Q ∈ QD with D non-square, then

C
(

D2k−1(G);Q
)

= 0.

Before proving Proposition 3.2, we show a useful lemma.

Lemma 3.3. For every k ≥ 2 and discriminant D > 0 we have

q
(0)
k,D,A = q

(2k−2)
k,D,A . (3.1)

Proof. Denote the reduced forms Qj = [aj , bj, cj ] as in (2.4). The leading term of

Qk,D

∣

∣

∣

2−2k

(

0 1
1 0

)

(X) =
r

∑

j=1

Qj(1,−X)k−1

is then
r

∑

j=1

ck−1
j = q

(2k−2)
k,D,A . (3.2)

However, since Qj = Qj−1

∣

∣

∣

−2
Mj = Qj−1 ◦Mj by (2.4) (where Mj is defined in (2.5)),

we have

Qk,D

∣

∣

∣

2−2k

(

0 1
1 0

)

(X) =

r
∑

j=1

Qj−1 ◦
(

mj 1
−1 0

)(

1 0
0 −1

)(

0 1
1 0

)

(X, 1)k−1

=
r

∑

j=1

Qj−1 ◦
(

−1 mj

0 −1

)

(X, 1)k−1 =
r

∑

j=1

Qj−1 (mj −X,−1)k−1

=

r
∑

j=1

Qj (X −mj+1, 1)
k−1 .

Since translation does not change the leading coefficient, we conclude that the leading
coefficient is

r
∑

j=1

ak−1
j = q

(0)
k,D,A.

Comparing with (3.2) completes the proof of the lemma. �



ON CYCLE INTEGRALS OF WEAKLY HOLOMORPHIC MODULAR FORMS 11

Proof of Proposition 3.2. For weakly holomorphic forms f ∈ D2k−1
(

M !
2−2k

)

, one may
greatly simplify (2.6). In this case, rn(f) = 0 for 0 < n < 2k − 2. Moreover, it is
known [3, 14] that for every f ∈ S !

2k one has the relations

i−n+1rn(f) = (−1)n+1i−(2k−2−n)+1r2k−2−n(f). (3.3)

Hence in particular

i1r0(f) = −i−(2k−2)+1r2k−2(f).

Plugging this in, (2.6) becomes

C (f ;Q) = ir0(f)
(

q
(0)
k,D,A − q

(2k−2)
k,D,A

)

.

We finally use Lemma 3.3 to obtain C (f ;Q) = 0.
�

We next consider the square case.

Proposition 3.4. If D is a square, then (1.2) holds for every M ∈ Hcusp

2−2k and
Q ∈ QD.

Proof. For the equivalence classes of quadratic forms of discriminant D, we may take
as a set of representatives (cf. Lemma 3.31 and Lemma 3.32 of [15] for a modern
version of Gauss’s theory [11])

{[

0,
√
D, c

]
∣

∣

∣
0 ≤ c <

√
D
}

.

We hence have

C (ξ2−2k (M) ;Q) = R.

∫ i∞

− c√
D

ξ2−2k (M) (z)
(√

Dz + c
)k−1

dz. (3.4)

The right-hand side of (3.4) was evaluated in Theorems 4.2 and 4.3 of [1] as

i−kD
k−1

2 L∗
ξ2−2k(M)

(

ζ
√
D

−c , k
)

= − (4π)2k−1

(2k − 2)!
ikD

k−1

2 L∗
D2k−1(M)

(

ζ
√
D

−c , k
)

= − (4π)2k−1

(2k − 2)!
C (D2k−1(M);Q),

where in the last equality we again use Theorem 4.2 of [1] and then reverse the
argument in (3.4). �
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4. Proof of Theorem 1.3

In this section, we concentrate on the Shintani lifts defined in (1.3). Using Theorem
1.1 to relate the Shintani lift on S !

2k to the classical Shintani lift on S2k, in order to
compute the Shintani lifts of all weakly holomorphic modular forms, it remains to
determine the cycle integrals of the weight 2k Eisenstein series

G2k(z) := −B2k

4k
+

∞
∑

n=1

σ2k−1(n)q
n, (4.1)

where Bℓ is the ℓth Bernoulli number and σs(n) :=
∑

d|n d
s. Kohnen and Zagier

(see pages 240–241 of [14]) related the cycle integrals of Eisenstein series to the zeta
functions

ζ[Q](s) :=
∑

(m,n)∈ΓQ\Z2

Q(m,n)>0

Q(m,n)−s.

Note that these series converge for Re(s) sufficiently large and are independent of
the representatives Q of QD/SL2(Z). The relation between the cycle integrals of
Eisenstein series and ζ[Q](s) is given in the following lemma.

Lemma 4.1. For every Q ∈ QD, one has

C (G2k;Q) =
1

2
(−1)kζ[Q] (1− k) . (4.2)

The image of G2k under S ∗
1 is well-known to be a constant multiple of Cohen’s [7]

weight k + 1
2

Eisenstein series (this statement is essentially contained in [14], but we
add the details below for the convenience of the reader)

Hk(z) := ζ(1− 2k) +
∑

m∈N
(−1)km≡0,1 (mod 4)

H
(

k, (−1)km
)

qm, (4.3)

where for D = D0f
2 with a fundamental discriminant D0 and f ∈ N we define (µ is

the usual Möbius function)

H(k,D) := L

(

1− k,

(

D0

·

))

∑

d|f
µ(d)

(

D0

d

)

dk−1σ2k−1

(

f

d

)

.

Combining the fact that G2k maps to a modular form under S
∗
1 with Theorem 2.1,

we are able to prove that the Shintani lift (1.3) maps weakly holomorphic modular
forms to modular forms.
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Proof of Theorem 1.3. Using Theorem 1.1 termwise immediately implies that (1.4)
holds for every M ∈ Hcusp

2−2k, yielding (2).
Since ξ2−2k is surjective [4] and gc is a cusp form if g is a cusp form, (1) then follows

from (2) and the classical results of Shintani [18] for cusp forms.
In order to prove (3), we use the following identity of Siegel [20]:

∑

Q∈QD/SL2(Z)

ζ[Q](1− k) = ζ(1− k)H(k,D).

Combining this with Lemma 4.1 and noting that χ1(Q) = 1 for every Q yields the
third statement of the theorem. �
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