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Abstract 29 

 30 

 TAC3 is a member of tachykinins and its gene product neurokinin B (NKB) has recently emerged 31 

as a key regulator for luteinizing hormone (LH) through modulation of kisspeptin/GnRH system within 32 

the hypothalamus.  In fish models, TAC3 not only encodes NKB but also a novel tachykinin-like 33 

peptide called NKB-related peptide (NKBRP) and the pituitary actions of these TAC3 gene products 34 

are still unknown.  Using grass carp as a model, the direct effects and post-receptor signaling for the 35 

two TAC3 products were examined at the pituitary level.  Grass carp TAC3 was cloned and confirmed 36 

to encode NKB and NKBRP similar to that of other fish species.  In carp pituitary cells, NKB and 37 

NKBRP treatment did not affect LH release and gene expression but up-regulated prolactin (PRL) and 38 

somatolactin  (SLα) secretion, protein production and transcript expression.  The stimulation by these 39 

two TAC3 gene products on PRL and SLα release and mRNA levels were mediated by pituitary NK2 40 

and NK3 receptors, respectively.  Apparently, NKB- and NKBRP-induced SLα secretion and transcript 41 

expression were caused by AC/cAMP/PKA, PLC/IP3/PKC and Ca
2+

/CaM/CaMK-II activation.  The 42 

signal transduction for the corresponding responses on PRL release and mRNA expression were also 43 

similar, except that the PKC component was not involved.  These findings suggest that the two TAC3 44 

gene products do not play a role in LH regulation at the pituitary level in carp species but may serve 45 

as novel stimulators for PRL and SLα synthesis and secretion via overlapping post-receptor signaling 46 

mechanisms coupled to NK2 and NK3 receptors, respectively. 47 

 48 

(249 words) 49 

  50 
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Introduction 51 

 52 

Tachykinins including substance P (SP), neurokinin A (NKA), neurokinin B (NKB), hemokinin-1 53 

(HK-1) and endokinins constitute the largest group of neuropeptides in mammals.  They are widely 54 

expressed at the tissue level, functionally involved in vasodilation, gut motility, nociception, immuno- 55 

modulation and neuroendocrine regulation (1), and have been implicated in clinical cases of asthma, 56 

chronic pain, inflammatory bowel syndrome, Alzheimer’s disease, anxiety attack and depression (2).  57 

Multiple genes for tachykinins, e.g., TAC1 coding for SP and NKA, TAC3 coding for NKB and TAC4 58 

coding for HK-1/endokinins, have been identified (3) and believed to be the result of gene duplication 59 

occurred during vertebrate evolution (4).  The biological actions of tachykinins are mediated by three 60 

major types of neurokinin receptors (NKR), namely NK1R, NK2R and NK3R (3), which are class I 61 

G-protein coupled receptors functionally coupled with PLC/IP3/PKC, MAPK, cAMP/PKA and Ca
2+

-62 

dependent cascades (5-10).  Individual NKR subtypes are known to exhibit differential binding for 63 

different tachykinins, with NK1R preferring SP, NK2R preferring NKA and NK3R preferring NKB 64 

respectively (3).  With potential applications in clinical treatment, structure-activity relationship for 65 

ligand/receptor interaction and development of agonists/antagonists with NKR subtype selectivity 66 

have been a major focus of tachykinin research, particularly for rational design of novel therapeutics 67 

(11). 68 

 69 

Recently, the gene product of TAC3, namely NKB, has emerged as a key regulator for reproductive 70 

functions, especially for GnRH pusatility (12), steroid feedback (13) and puberty onset (14).  The idea 71 

was first initiated by the findings that NKB and NK3R mutations can lead to hypogonadotropic hypo-72 

gonadism and infertility in humans (15, 16) and impairment of the NKB/NK3R system can postpone 73 

puberty in animal models (e.g., delaying vaginal opening in mouse) (14).  Other studies also reveal 74 

that the Kisspeptin neurons with co-expression of NKB and Dynorphin (also called “KNDy neurons”) 75 

located in the arcuate nucleus (ARC) of the hypothalamus not only represent a major target for steroid 76 

negative feedback (17) but also a critical component of GnRH pulse generator regulating luteinizing 77 

hormone (LH) secretion (e.g., sheep) (18).  Apparently, these neurons form an autosynaptic feedback 78 
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within the ARC with NKB-induced kisspeptin release via NK3R to trigger GnRH secretion in the 79 

hypothalamus (19, 20).  NKB activation of kisspeptin output to GnRH neurons, however, can be 80 

suppressed by local release of dynorphin from KNDy neurons and this inhibition is mediated via κ-81 

type opioid receptor (21) and highly dependent on steroid background of the animal (19).  Although 82 

NKB is involved in LH regulation via kisspeptin/GnRH modulation in the hypothalamus, its pituitary 83 

actions cannot be excluded as NKR expression (e.g., NK1R & NK2R) can be detected in the pituitary 84 

(22, 23) and NKB-induced prolactin (PRL) release (24) and enhancement of TRH-induced PRL gene 85 

transcription (25) have been reported in rat pituitary cells and lactotroph cell line, respectively.  Of 86 

note, NK3R has not been identified at the pituitary level in mammals and the post-receptor signaling 87 

for the pituitary actions of NKB are still unknown. 88 

 89 

NKB regulation of reproductive functions has been recently extended to fish models.  In zebrafish, 90 

NKB/NK3R system has been identified (26) and NKB treatment can also elevate plasma LH levels 91 

(27).  Interestingly, the TAC3 gene in fish species not only encodes NKB but also a novel tachykinin 92 

called NKB-related peptide (NKBRP/neurokinin F) (26, 27).  Similar to NKB, NKBRP was effective 93 

in activating NK3R (28) and inducing LH release in zebrafish (27).  However, neuroanatomical studies 94 

in zebrafish also reveal that NKB and kisspeptin are expressed in separate neuronal populations in 95 

brain areas relevant to reproduction (26), suggesting that the “KNDy” system in fish may be different 96 

from that of mammals.  In this study, the pituitary actions of NKB and the novel peptide NKBRP were 97 

examined in grass carp, a commercial fish in Asian countries with high market value.  Grass carp TAC3 98 

was cloned and its tissue expression, especially in the brain-pituitary axis, was characterized.  Using 99 

primary culture of carp pituitary cells as a model, we have demonstrated for the first time that the 100 

gene products of TAC3, namely NKB and NKBRP, did not alter LH release/gene expression at the 101 

pituitary level but rather serve as novel regulators for PRL and somatolactin α (SLα) synthesis and 102 

secretion via overlapping post-receptor signaling mechanisms coupled to pituitary NK2R and NK3R, 103 

respectively. 104 

 105 

 106 
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Materials and Methods 107 

 108 

Animal and test substances 109 

 110 

One-year-old grass carp (Ctenopharyngodon idellus) with body weight of 2.0-2.5 kg were acquired 111 

from local markets and maintained in 250-liter aquaria under 12D:12L photoperiod at 20 
o
C.  Since 112 

sexual dimorphism was not apparent in these fish, carps of mixed sexes were used for pituitary cell 113 

preparation according to the protocol approved by the committee for animal use at University of Hong 114 

Kong.  Carp NKB and NKBRP were synthesized by GenScript (Piscataway, NJ).  GR64349, Senktide, 115 

HK-1, L-732138, GR159897 and SB222200 were purchased from Tocris (Bristol, UK).  Forskolin, 116 

H89, MDL12330A, 8-bromo-cAMP (8Br.cAMP), IBMX, 2-APB, U73122, GF109203X, Nifedipine, 117 

A23187, KN62 and Calmidazolium were obtained from Calbiochem (San Diego, CA).  Test substances 118 

were prepared as 10 mM frozen stocks in small aliquots and diluted with pre-warmed culture medium 119 

to appropriate concentrations 15 min prior to drug treatment. 120 

 121 

Cloning, copy number and tissue expression of carp TAC3 122 

 123 

Total RNA was extracted from carp hypothalamus using Trizol (Invitrogen, Grand Island, NY) and 124 

reversely transcribed with Superscript-II (Invitrogen).  5’/3’RACE were performed to isolate the carp 125 

TAC3 cDNA using primers designed based on the conserved regions of zebrafish TAC3.  Sequence 126 

alignment and phylogenetic analysis of carp TAC3 were conducted using MacVector and MEGA 6.0 127 

(http://www.megasoftware.net/).  To determine the copy number of TAC3 gene, Southern blot was 128 

performed in genomic DNA isolated from carp whole blood (29) using a DIG-labeled cDNA probe for 129 

carp TAC3.  For tissue expression of TAC3 in grass carp, RT-PCR was conducted in RNA isolated 130 

from selected tissues and brain areas (30) using primers specific for carp TAC3 (see Fig.1 legend for 131 

primer sequences & PCR conditions).  In these experiments, RT-PCR for β-actin was also performed 132 

as an internal control. 133 

 134 
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PRL and SLα secretion, cell content and mRNA expression  135 

 136 

Grass carp pituitary cells prepared by trypsin/DNase digestion method (31) were seeded in 24-well 137 

plates at ~2.5×10
6 
cells/ml/well and incubated with test substances for the duration as indicated.  After 138 

that, culture medium was harvested for monitoring PRL and SLα release and cell lysate was prepared 139 

from pituitary cells (32) for measurement of cell content for the respective hormones.  PRL and SLα 140 

levels in these samples were quantified using RIA for PRL (33) and ELISA for SLα (34) with antisera 141 

raised against the respective hormones in carp species.  Total production of PRL and SLα in individual 142 

wells were deduced pro rata based on the protein data for cell content and secretion for the respective 143 

hormones.  In parallel experiments, total RNA was isolated from pituitary cells, reversely transcribed, 144 

and subjected to quantitative PCR for grass carp PRL and SLα mRNA using a RotorGene-Q Real-time 145 

PCR system (Qiagen, Vaoencia, CA) (see Fig.2 legend for primer sequences & PCR conditions).  In 146 

these PCR assays, serial dilutions of plasmid DNA with PRL or SLα ORF sequences were used as the 147 

standards for data calibration and parallel real-time PCR for β-actin was also conducted as the internal 148 

control.  To examine the possible coupling of NKB/NKBRP with various signaling targets, the cell 149 

lysate prepared was also subjected to Western blot using antibodies for the phosphorylated form and 150 

total protein of MEK1/2 (1:1,500), ERK1/2 (1:5,000), Akt (1:1,500) and CREB (1:2,000), respectively 151 

(32, 47). (See antibody table submitted for the details.) 152 

 153 

In situ hybridization of NK2R and NK3R in carp pituitary sections 154 

 155 

In situ hybridization was performed in consecutive carp pituitary sections (5 µm thick) prefixed in 156 

4% paraformaldehyde as described previously (29) using DIG-labeled antisense riboprobes for carp 157 

NK2R and NK3R, respectively.  Parallel hybridization with the corresponding sense-strand riboprobes 158 

was used as the negative control.  In carp pituitary sections, zonal distribution of the major cell types 159 

was revealed by in situ hybridization using double-strand DIG-labeled cDNA probes for carp PRL, 160 

GH, LHβ and SLα, respectively.  In this case, hybridization without adding cDNA probes was used as 161 

the control. 162 
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 163 

RT-PCR for NKR expression in immuno-identified pituitary cells 164 

 165 

Carp pituitary cells were spread evenly onto glass slides (~5×10
4
 cells/0.5 ml/slide), fixed in Bouin’s 166 

fixative and subjected to immunostaining with antisera for carp PRL (1:100,000), GH (1:50,000), SLα 167 

(1:100,000) and SLβ (1:100,000), respectively, using a Vectastain ABC Kit (Vector Lab, Burlingame, 168 

CA).  After that, immno-identified PRL cells, GH cells, SLα and SLβ cells were isolated separately by 169 

laser capture microdissection (LCM) using a PixCell-II Cell Isolation System (Arcturus, MountView, 170 

CA) (29).  Total RNA was extracted from individual cell types and reversely transcribed for PCR 171 

detection of grass carp NK1R (GenBank no: JQ254914), NK2R (GenBank no: JN105350) and NK3R 172 

(GenBank no: JN105350) using primers specific for the respective receptor subtypes (see Fig.3 legend 173 

for primer sequences & PCR conditions).  Parallel RT-PCR for β-actin was also performed to serve as 174 

the internal control.  175 

 176 

cAMP production and Ca
2+

 measurement in carp pituitary cells 177 

 178 

Pituitary cells were cultured at ~3×10
6
 cells/2 ml/35 mm dish and challenged with NKB/NKBRP in 179 

the presence of the phosphodiesterase inhibitor IBMX (0.1 mM).  After treatment, cAMP production 180 

was quantified using a BioTrak [
125

I]cAMP RIA Kit (Amersham, Piscataway, NJ) (30).  For single-181 

cell Ca
2+

 imaging, pituitary cells were seeded onto coverslip (~0.5×10
6
 cells/ml/coverslip), pre-loaded 182 

with the Ca
2+

-sensitive dye Fura-2/AM (5 µM, Molecular Probes, Eugene, Oregon), and tested for Ca
2+

 183 

responses with drug treatment using a PTI DeltaScan Epifluorescence System (Photon Technology 184 

International, West Sussex, UK) (35).  Ca
2+

 signals were expressed as a ratio of fluorescence emission 185 

at 510 nm obtained with excitation at 340 and 380 nm, respectively (as “F340/F380 Ratio”). 186 

 187 

Data transformation and statistics 188 

 189 

For PRL and SLα measurement, standard curves with detectable range from 0.98 to 500 ng/ml and 190 
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ED50 values of 8-15 ng/ml (for PRL) and 60-80 ng/ml (for SLα) were used for data calibration with 191 

four-parameter logistic regression model of Prism 6.0 (GraphPad, San Diego, CA).  For real-time PCR 192 

of PRL and SLα mRNA, standard curves with dynamic range of 10
5
 and correlation coefficient ≥0.95 193 

were used for data calibration with RotorGene-Q software 1.7 (Qiagen).  Since no significant changes 194 

were noted for β-actin mRNA in our studies, PRL and SLα mRNA data as well as the corresponding 195 

protein data were simply transformed as a percentage of the mean value in the control group without 196 

drug treatment (as “%Ctrl”).  The data presented (as Mean ± SEM) were pooled results from 6-8 197 

experiments and analyzed with ANOVA followed by Dunnett’s test using Prism 6.0 and differences 198 

between groups were considered as significant at P<0.05. 199 

 200 

 201 

Results 202 

 203 

Cloning and sequence analysis of grass carp TAC3 204 

 205 

Using 5’/3’RACE, a full-length grass carp TAC3 cDNA (GenBank no: JN105351) was cloned and 206 

found to be 631 bp in size with a 91 bp 5’UTR, 378 bp ORF encoding a 126 a.a. TAC3 precursor, and 207 

173 bp 3’UTR with two putative polyadenylation signals (Supplemental Fig.1).  Although the deduced 208 

a.a. sequence of carp TAC3 precursor is only 20-23% homologous to that of mammalian counterparts, 209 

the regions for signal peptide and NKB mature peptide are highly conserved among vertebrate species 210 

(Fig.1A).  Similar to other fish models, the a.a. sequence of NKBRP flanked by two dibasic cleavage 211 

sites (KR & GRR) similar to that of NKB and with a tachykinin signature motif “FXGLM” in its C-212 

terminal can also be identified in the carp TAC3 precursor.  Phylogenetic analysis based on nucleotide 213 

sequences further confirms that the newly cloned cDNA can be clustered in the clade of fish TAC3 214 

and is closely related to TAC3a reported in zebrafish (Fig.1B). 215 

 216 

Copy number and tissue expression of TAC3 gene 217 

 218 
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Using Southern blot, a single band hybridized with a DIG-labeled probe for TAC3 was consistently 219 

detected in carp genomic DNA with prior digestion by Pvu II, Sty I, Hind III, Pst I, EcoR V and Hinc 220 

II respectively (Fig.1C), implying that the newly cloned TAC3 is a single copy gene in carp genome.  221 

RT-PCR also revealed that, except for the spleen, TAC3 gene was ubiquitously expressed in various 222 

tissues and brain areas (Fig.1D).  High levels of TAC3 expression were located in the brain, intestine 223 

and gonad, to a lower extent in the liver and gills, and with low levels in the heart, kidney and muscle.  224 

In the brain, high levels of TAC3 expression were noted in the hypothalamus and olfactory bulb, and 225 

with low levels of signals in the telencephalon, optic tectum, pituitary, cerebellum, medulla oblongata 226 

and spinal cord. 227 

 228 

Pituitary hormone regulation by NKB and NKBRP  229 

 230 

To examine the pituitary actions of TAC3 gene products, carp NKB and NKBRP were synthesized 231 

and tested in primary culture of carp pituitary cells.  In our initial study, 24-hr incubation with NKB or 232 

NKBRP (100 nM) were able to elevate PRL and SLα mRNA levels without altering GH, LHβ, FSHβ, 233 

GtHα, TSHβ, SLβ and POMC transcript expression (Supplemental Fig.2A).  Time-course experiments 234 

also revealed that NKB and NKBRP (1 µM) could increase SLα and PRL secretion, cell content and 235 

total production up to 24 hr (Fig.2A) with parallel rises in SLα and PRL mRNA levels (Fig.2B).  A 236 

transient drop in PRL cell content was noted during the first 1-6 hr of NKB/NKBRP treatment, which 237 

might be the result of temporary depletion of cellular PRL stores caused by the noticeable increase in 238 

PRL secretion during the same period.  In dose-dependence studies, 24-hr incubation with increasing 239 

levels of NKB or NKBRP (0.1-1000 nM) also triggered SLα and PRL release and mRNA expression 240 

in a dose-related fashion (Fig.2C).  However, the treatment had no effects on transcript levels of other 241 

pituitary hormones (Supplemental Fig.2B) or altering LH, GH and SLβ release in carp pituitary cells 242 

(Supplemental Fig.2C). 243 

 244 

Receptor specificity for SLα and PRL regulation by TAC3 gene products 245 

 246 
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As shown in Fig.3A and 3B, 24-hr treatment with NKB/NKBRP (100 nM) could up-regulate SLα 247 

and PRL release and mRNA levels in carp pituitary cells.  The stimulatory effects on SLα secretion 248 

and gene expression, however, were blocked by simultaneous incubation with the NK3R antagonist 249 

SB222200 (1 μM) but not NK1R antagonist L732138 (1 μM) or NK2R antagonist GR159897 (1 μM).  250 

For the corresponding PRL responses, the stimulation by NKB and NKBRP were abrogated only by 251 

co-treatment with the NK2R antagonist GR159897.  Consistent with these results, the dose-dependence 252 

of NKB/NKBRP-induced SLα mRNA expression, especially in the lower nanomolar range (0.1-10 253 

nM), was mimicked by increasing levels of the NK3R agonist senktide but not NK1R agonist HK-1 or 254 

NK2R agonist GR64349 (Fig.3C).  In the same study, the corresponding PRL mRNA data revealed a 255 

similar stimulation in 0.1-10 nM range only by the NK2R agonist GR64349 but not the other NKR 256 

agonists.  Nevertheless, significant induction by high levels (up to 1 μM) of HK-1/GR64349 on SLα 257 

and HK-1/senktide on PRL mRNA expression could still be noted, presumably due to receptor cross-258 

reactivity by high doses of NKR agonists.  Similar to the gene expression responses, specific induction 259 

of SLα secretion by senktide but not GR64349 or HK-1 and PRL secretion by GR64349 but not HK-1 260 

or senktide could be detected by 24-hr incubation with NKR agonists fixed at 10 nM level (Fig.3D). 261 

 262 

Using in situ hybridization, zonal distribution of pituitary cells with PRL cells located in the rostral 263 

pars distalis (RPD), GH and LH cells located in proximal pars distalis (PPD) and SLα cells located in 264 

the neurointermediate lobe (NIL) could be demonstrated in the carp pituitary (Supplemental Fig.3A).  265 

Interestingly, hybridization signals for NK2R were found to overlap with the distribution of PRL cells 266 

within the RPD (Supplemental Fig.3B) whereas the signals for NK3R could be mapped to SLα cells 267 

within the NIL (Supplemental Fig.3C).  To further confirm the cell-type specificity of NK2R and NK3R 268 

expression, RT-PCR of the three NKR subtypes was performed in pure populations of carp GH cells, 269 

PRL cells, SLα cells and SLβ cells isolated by LCM technique (Fig.3E).  Although the PCR signals for 270 

NK1R, NK2R and NK3R were all detected in mixed populations of carp pituitary cells, NK2R signal 271 

was noted only in PRL cells while NK3R signal was found only in SLα cells.  The absence of NKR 272 

signals in other cell types could not be due to RNA degradation as the PCR signals for β-actin were 273 

consistently detected in all the samples examined. 274 
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 275 

Signal transduction for SLα and PRL regulation by TAC3 gene products  276 

 277 

As shown in Fig.4A, cAMP production in carp pituitary cells could be elevated dose-dependently by 278 

20-min treatment with NKB and NKBRP, respectively.  Besides, 24-hr incubation with the membrane-279 

permeant cAMP analog 8Br.cAMP (10-1000 μM) and adenylate cyclase (AC) activator forskolin (1 280 

μM) were both effective in up-regulating SLα and PRL mRNA levels (Fig.4B).  Consistent with these 281 

findings, co-treatment with the AC inhibitor MDL12330A (20 μM) or PKA inhibitor H89 (20 μM) 282 

could also block the stimulatory effects of NKB/NKBRP (1 μM) on SLα (Fig.4C) and PRL secretion 283 

and mRNA expression (Fig.4D).  In parallel experiments, NKB- and NKBRP-induced SLα release 284 

and transcript expression in carp pituitary cells were abrogated by simultaneous incubation with the 285 

PLC inactivator U73122 (10 μM), PKC inhibitor GF109203X (20 μΜ), and IP3 receptor blocker 2-286 

APB (100 μΜ), respectively (Fig. 5A).  Similar blockade was also observed for the PRL responses 287 

expect that PKC inactivation by GF109203X was not able to inhibit NKB- and NKBRP-induced PRL 288 

release and gene expression (Fig.5B).   289 

 290 

In pituitary cells preloaded with the Ca
2+

-sensitive dye Fura-2, NKB and NKBRP treatment (1 μM) 291 

consistently induced a rapid rise in fluorescence signals for intracellular Ca
2+ 

([Ca
2+

]i) levels (Fig.6A).  292 

These Ca
2+

 responses were composed of an initial peak occurred within the first 30 sec followed by a 293 

shoulder phase with gradual reduction of the Ca
2+

 rise with levels maintained well above the basal.  In 294 

parallel experiments, the shoulder phase but not peak phase could be abrogated by co-treatment with 295 

the voltage-sensitive Ca
2+

 channel (VSCC) blocker nifedipine (10 μM, Fig.6B) or removal of extra-296 

cellular Ca
2+ 

([Ca
2+

]e) using a Ca
2+

-free culture medium (Fig.6C).  Furthermore, the peak phase of the 297 

Ca
2+

 responses observed under the Ca
2+

-free medium were markedly suppressed by the IP3 receptor 298 

blocker 2-APB (100 μM, Fig.6D).  In carp pituitary cells, SLα and PRL release and mRNA expression 299 

could be elevated dose-dependently by increasing levels of the Ca
2+

 ionphore A23187 (0.1-100 nM, 300 

Fig.6E).  In contrast, NKB- and NKBRP-induced SLα (Fig.7A) and PRL secretion and gene expression 301 

(Fig.7B) were found to be attenuated/abolished by incubation with Ca
2+

-free medium or co-treatment 302 
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with the VSCC inhibitor nifedipine (10 μM), CaM antagonist calmidazolium (1 μM) and CaMK-II 303 

blocker KN62 (5 μM), respectively.  Parallel studies using Western blot also revealed that NKB and 304 

NKBRP were both effective in triggering rapid phosphorylation of the transcription factor CREB but 305 

with no effects on phosphorylation/total protein of other signaling kinases including MEK1/2, ERK1/2 306 

and Akt (Supplemental Fig.4A-D).  Of note, the stimulation on CREB phosphorylation could also be 307 

mimicked by parallel treatment with the AC activator forskolin (Supplemental Fig.4D). 308 

 309 

 310 

Discussion 311 

 312 

Although NKB is known to regulate LH release via modulation of kisspeptin/GnRH system in the 313 

hypothalamus (18, 19), little is known regarding its direct effects at the pituitary level.  The comparative 314 

aspects of NKB become even more interesting with the discovery of the novel gene product NKBRP 315 

in zebrafish TAC3 (26, 27), the biological function of which is still at the early phase of investigation.  316 

To shed light on the pituitary actions of NKB and NKBRP in fish models, grass carp TAC3 was cloned 317 

and confirmed to be a single copy gene in the carp genome.  Phylogenetic analysis reveals that the 318 

newly cloned TAC3 is a member of TAC3 subfamily closely related to zebrafish TAC3a.  Although 319 

the NKBRP sequence could not be found in TAC3 of the bird and mammals, presumably due to a loss 320 

of segmentally duplicated gene fragment in TAC3 during tetrapod evolution (28), the a.a. sequences of 321 

NKB and NKBRP are highly conserved (if not identical) among fish species.  Since the two dibasic 322 

cleavage sites (KR & GRR) for NKB were also found in the flanking regions of NKBRP in grass carp 323 

TAC3 and the GRR motif is well-documented as the processing site for peptidyl-glycine α-amidating 324 

monooxyenase (36), it would be expected that the mature peptide of NKBRP with α-amidation in the 325 

C-terminal can be released in a way similar to that of NKB.  This idea is consistent with the common 326 

observations that the C-terminal α-amidation is essential for the bioactivity and receptor binding for 327 

tachykinins in mammals (37). 328 

 329 

In grass carp, similar to zebrafish (27), TAC3 was found to be widely expressed at the tissue level, 330 
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with high levels in the brain, intestine and gonad, and to a lower extent in the liver, gills and muscle.  331 

Although TAC3 was not detected in the spleen, low level of TAC3 signals could still be noted in other 332 

tissues and brain areas including the pituitary.  In our study, high levels of TAC3 expression in the 333 

brain and intestine are consistent with the functional role of tachykinins as neurotransmitters/neuro-334 

modulators within the CNS (1) as well as a major component of gut/brain peptides regulating motility 335 

and secretory functions in gastrointestinal tract (38).  In mammals (e.g., rat), TAC3 is widely expressed 336 

in various components of the reproductive system, including the placenta (39), uterus (40, 41), ovary 337 

(13), prostate gland and testis (42).  In testis, TAC3 can be detected in Leydig cells and NKB together 338 

with SP and NKA are known to play a role in sperm motility (43).  Although TAC3 expression in 339 

granulosa cells has been reported in the ovary (13), its role in folliculogenesis/oocyte maturation is 340 

still unclear.  In grass carp, high level of TAC3 signal could be identified in the hypothalamus, which 341 

corroborates with the recent findings of NKB-containing neurons in the hypothalamus of zebrafish 342 

(26) and NKB modulation of hypothalamic kisspeptin/GnRH system in mammalian models (18, 19).  343 

Of note, NK1R, NK2R and NK3R expression could also be located in carp pituitary cells.  Together 344 

with the detection of TAC3 signal in the carp pituitary, these findings raise the possibility that TAC3 345 

gene products may act in an autocrine/paracrine manner to regulate pituitary functions in carp species. 346 

 347 

In mammals, except for a single report with NKB induction of PRL release in rat pituitary cells (24), 348 

the studies on the pituitary actions of NKB are rather limited.  Recently, attempt has been made using 349 

pituitary cell lines to test NKB actions.  In rat GH3 lactotrophs, NKB had no effects on basal but 350 

elevated TRH-induced PRL promoter activity, while similar treatment in LβT2 gonadotrophs did not 351 

alter basal as well as GnRH-induced LHβ and FSHβ promoter activities (25).  In carp pituitary cells, 352 

we have the novel findings that the gene products of carp TAC3, NKB and NKBRP, could increase 353 

PRL and SLα release, cell content, total production and mRNA levels in a time- and dose-dependent 354 

manner.  These effects appear to be specific for PRL and SLα, as the treatment did not affect transcript 355 

expression of other pituitary hormones or modify basal levels of LH, GH and SLβ secretion.  Similar 356 

to PRL, SL is also a member of GH gene lineage with pleiotropic functions in fish models, including 357 

background adaption, reproduction, acid-base balance, lipid metabolism and immune responses (44).  358 
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Two isoforms of SL, SLα and SLβ, have been identified in the fish pituitary, e.g., in zebrafish (45) and 359 

grass carp (29), and suspected to have overlapping and yet distinct functions (46).  In our study, lower 360 

nanomolar doses of the NK2R agonist GR64349, but not the NK1R agonist HK-1 or NK3R agonist 361 

senktide, could mimic NKB/NKBRP-induced PRL release and mRNA expression in carp pituitary 362 

cells.  Similar induction on SLα secretion and gene expression, however, were mimicked only by the 363 

NK3R agonist senktide.  Consistent with these findings, the stimulation on PRL and SLα release and 364 

transcript levels induced by the two TAC3 gene products could be abolished selectively by the NK2R 365 

antagonist GR159897 and NK3R antagonist SB222200 respectively, whereas co-treatment with other 366 

NKR antagonists were found to have no effects.  Since (i) NK2R and NK3R expression were found to 367 

overlap respectively with PRL cells within the RPD and SLα cells located in NIL of the carp pituitary, 368 

and (ii) NK2R and NK3R were the only NKR subtypes detected separately in immuno-identified PRL 369 

cells and SLα cells isolated by LCM technique, it is likely that the two TAC3 gene products can act at 370 

the pituitary level to induce PRL and SLα synthesis and secretion by differential activation of NK2R 371 

and NK3R expressed in the respective cell types.  Given that NKB and NKBRP did not modify LH 372 

release or LHβ mRNA levels in carp pituitary cells, our results do not support the pituitary action of 373 

TAC3 gene products on LH regulation in grass carp. 374 

 375 

In mammals, NKR via G protein activation (Go & Gq/11) or arrestin-dependent scaffolding following 376 

receptor internalization are known to trigger biological actions by coupling with a multitude of post-377 

receptor signaling cascades (5-10), but similar information in lower vertebrates, including amphibians 378 

and fish, is still lacking.  In carp pituitary cells, NKB and NKBRP could induce cAMP production in a 379 

dose-dependent manner while increasing the functional levels of cAMP with a membrane-permeant 380 

cAMP analog 8Br.cAMP or stimulating cAMP synthesis using the AC activator forskolin could mimic 381 

the stimulatory effects of the two TAC3 gene products on PRL and SLα release and mRNA levels.  In 382 

agreement with these findings, NKB/NKBRP-induced PRL and SLα secretion and gene expression 383 

could be negated by AC inactivation with MDL12330A or PKA blockade with H89.  Judging from the 384 

previous reports on cAMP production triggered by mammalian NK2R (9) and NK3R activation (8), it 385 

would be logical to conclude that the AC/cAMP/PKA pathway is involved in PRL and SLα synthesis 386 
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and secretion induced by the two TAC3 gene products, probably via differential activation of the two 387 

NKR subtypes expressed in the carp pituitary.  Although NKB and NKBRP treatment did not affect 388 

MEK1/2, ERK1/2 and Akt phosphorylation in carp pituitary cells, rapid phosphorylation of CREB was 389 

noted and this stimulatory effect could be mimicked by increasing cAMP production with forskolin.  390 

Apparently, MAPK and PI3K/Akt pathways are not involved in the pituitary actions of the two TAC3 391 

gene products.  Our findings on CREB phosphorylation also raise the possibility that CREB activation 392 

may be working downstream of AC/cAMP/PKA cascades coupled to NK2R and NK3R to up-regulate 393 

PRL and SLα gene transcription, respectively. 394 

 395 

Since IP3 production and Ca
2+

 mobilization have been documented for mammalian NKR expressed 396 

in various cell types, e.g., NK1R in CHO cells (8), NK2R in HEK293 cells (9) and NK3R in HASM 397 

cells (10), the functional role of PLC- and Ca
2+

-dependent cascades in the pituitary actions of NKB 398 

and NKBRP were also examined.  In carp pituitary cells, PLC inhibition by U73122 and IP3 receptor 399 

inactivation by 2-APB were both effective in blocking NKB/NKBRP-induced PRL and SLα secretion 400 

and transcript expression.  Similar blockade on SLα release and gene expression were also observed 401 

with PKC inactivation by GF109203X, which is consistent with our previous demonstration of SLα 402 

mRNA expression in carp pituitary cells induced by the PKC activator TPA and diacylglyercol (DAG) 403 

analog DiC8 (47).  The corresponding PRL responses in the same experiment, however, were found to 404 

be insensitive to PKC blockade.  These results suggest that the PLC/IP3/PKC cascade was involved in 405 

SLα secretion and gene expression induced by the two TAC3 gene products.  Apparently, the same 406 

pathway was also a part of the post-receptor signaling mediating the corresponding PRL responses in 407 

the carp pituitary except that the PKC component was not involved.  A similar finding with differential 408 

involvement of PKC in PACAP-induced SLα and SLβ expression via PLC-dependent mechanisms has 409 

been recently reported in the carp pituitary (47).  Given that multiple isoforms of PKC have been 410 

identified in the fish pituitary, e.g., goldfish (48), and some of them, e.g., PKCζ and PKCη, are known 411 

to have atypical pharmacological properties (49), we do not exclude the possibility that PKC isoforms 412 

insensitive to GF109203X might be involved in the PRL responses occurred in the carp pituitary.  413 

 414 
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In our study, Ca
2+

 imaging also revealed that NKB and NKBRP were both effective in triggering a 415 

biphasic Ca
2+

 rise with an initial peak followed by a shoulder phase in carp pituitary cells.  The peak 416 

phase of the Ca
2+

 response was insensitive to removal of extracellular Ca
2+

 ([Ca
2+

]e) using a Ca
2+

-free 417 

medium but could be negated by IP3 receptor inactivation with 2-APB, indicating that it was the result 418 

of [Ca
2+

]i mobilization in IP3-sensitive Ca
2+

 stores.  The shoulder phase, in contrast, was sensitive to 419 

[Ca
2+

]e removal and blocked by VSCC inhibition using nifedipine, suggesting that this delayed Ca
2+

 420 

response was caused by [Ca
2+

]e entry via VSCC.  In carp pituitary cells, Ca
2+

 rise triggered by VSCC 421 

activation using Bay K8644 is known to elevate GH (35) and SLα mRNA levels (47), suggesting that 422 

the Ca
2+

 signals are functionally coupled with pituitary hormone expression.  Consistent with this idea, 423 

[Ca
2+

]e entry induced by the Ca
2+

 ionophore A23187 was found to up-regulate PRL and SLα secretion 424 

and transcript levels.  Furthermore, NKB- and NKBRP-induced PRL and SLα release and mRNA 425 

expression could be inhibited by removing [Ca
2+

]e using Ca
2+

-free medium, blockade of VSCC with 426 

nifedipine, antagonizing endogenous CaM by calmidazolium, or inactivating CaMK-II using KN62.  427 

These results, as a whole, suggest that the Ca
2+

 rise triggered by NKB and NKBRP via [Ca
2+

]e entry 428 

and [Ca
2+

]i mobilization could induce PRL and SLα secretion and gene expression in the respective 429 

cell types via the Ca
2+

/CaM/CaMK-II cascade.  In mammals, biphasic Ca
2+ 

responses with initial peak 430 

dependent on IP3 production and delayed shoulder phase dependent on [Ca
2+

]e entry via VSCC have 431 

been reported in rat pituitary cells after SP treatment (50).  [Ca
2+

]i mobilization during the peak phase 432 

is consistent with the role of IP3 receptors as the intracellular Ca
2+

 channels for [Ca
2+

]i release from 433 

IP3-sensitive Ca
2+

 stores (51).  In pituitary cell lines (e.g., GH3 cells), PKA and PKC activation are also 434 

known to up-regulate VSCC activity (52), which may contribute to [Ca
2+

]e entry during the shoulder 435 

phase.  To our knowledge, the biphasic Ca
2+

 response linked with NKB and the functional involvement 436 

of CaM and CaMK-II in the pituitary actions of tachykinins have not been reported in mammals. 437 

 438 

In summary, we have cloned grass carp TAC3, characterized its gene copy number, and structurally 439 

confirmed the presence of the coding sequences of two mature peptides in its preprohormone, namely 440 

the fish version of NKB and a novel tachykinin-like peptide called NKBRP.  In grass carp, TAC3 was 441 

found to be widely expressed in various tissues and brain areas, including the hypothalamo-pituitary 442 
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axis.  At the pituitary level, the two TAC3 gene products, NKB and NKBRP, could both trigger PRL 443 

and SLα secretion, protein production and transcript expression, probably via differential activation of 444 

NK2R and NK3R expressed in PRL cells and SLα cells, respectively (Fig.8).  NKB and NKBRP, 445 

however, did not have direct effects on LH regulation in the carp pituitary.  Using a pharmacological 446 

approach, the AC/cAMP/PKA, PLC/IP3/PKC and Ca
2+

/CaM/CaMK-II cascades were shown to be 447 

involved in NKB- and NKBRP-induced SLα secretion and gene expression.  The signal transduction 448 

for the corresponding PRL responses was also similar to that of SLα, except that the PKC component 449 

coupled to PLC activation was not involved.  Our findings for the first time provide evidence that the 450 

TAC3 gene products in fish model, NKB and NKBRP, could stimulate PRL and SLα synthesis and 451 

secretion via direct actions at the pituitary level through activation of different NKR subtypes coupled 452 

to overlapping and yet distinct post-receptor signaling mechanisms. 453 

 454 
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Legends 620 

 621 

Fig.1.  Sequence analysis, genomic Southern and tissue distribution of grass carp TAC3.  (A) Protein 622 

sequence alignment of grass carp TAC3 with that of other vertebrates using Clustal-W algorithm with 623 

MacVector program.  The conserved a.a. residues are boxed in grey and the dibasic protein cleavage 624 

sites (KR & GRR) are marked with inverted triangles.  (B) Phylogenetic analysis of TAC3 nucleotide 625 

sequences using the neighbor-joining method with MEGA 6.0.  The numbers presented in the guide-626 

tree are the percentage of bootstrap values based on 1000 bootstraps.  Ciona TAC3, a representative of 627 

the invertebrate sequence, was used as an out-group.  (C) Southern blot of carp TAC3.  Genomic DNA 628 

was isolated from whole blood of grass carp, digested with restriction enzymes as indicated, resolved 629 

by agarose gel electrophoresis, and subjected to Southern blot by hybridization with a DIG-labeled 630 

cDNA probe for carp TAC3.  (D) Tissue expression profile of carp TAC3.  Total RNA was isolated 631 

from selected tissues and brain areas in grass carp and subjected to RT-PCR using primers specific for 632 

TAC3 (TGTCAGCAGTCAGAGTCTCAAAG & AACCCACGACGAAACCTCAGT).  PCR reaction 633 

was fixed at 40 cycles with 30 sec at 94℃ for denaturing, 30 sec at 56 ℃ for annealing and 30 sec at 634 

72 ℃ for extension.  Authenticity of PCR products was confirmed by Southern blot using the DIG-635 

labeled TAC3 probe and parallel RT-PCR for β-actin was used as the internal control. 636 

 637 

Fig.2.   Effects of TAC3 gene products on SLα and PRL synthesis and secretion in carp pituitary cells.  638 

Time course of grass carp NKB (1 µM) and NKBRP treatment (1 µM) on (A) SLα and PRL secretion, 639 

cell content and total production, and (B) SLα and PRL mRNA expression in carp pituitary cells.  (C) 640 

Dose-dependence of 24-hr treatment with increasing levels of NKB and NKBRP (0.1-1000 nM) on 641 

SLα and PRL secretion and mRNA expression.  After drug treatment, culture medium was harvested 642 

for measurement of hormone release and cell lysate was prepared for monitoring hormone content in 643 

pituitary cells.  In parallel experiments, total RNA was isolated for real-time PCR of SLα and PRL 644 

mRNA using primers specific for the respective gene targets (ACCCACTGTACTTCAATCTCC & 645 

CGTCGTAACGATCAAGAGTAG for SLα and CTCAGCACCTCTCTCACCAATGACC & GCGG 646 

AAGCAGGACAACAGAAAATG for PRL).  Real-time PCR was routinely performed for 35 cycles 647 
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with denaturation at 94 ℃ for 30 sec, annealing at 52 ℃ for SLα or 59 ℃ for PRL for 30 sec, and 648 

extension at 72 ℃ for 30 sec.  In the data presented (Mean ± SEM), the groups denoted by different 649 

letters represent a significant difference at P < 0.05 (ANOVA followed by Dunnett’s test). 650 

 651 

Fig.3.   Receptor specificity for SLα and PRL regulation by TAC3 gene products in carp pituitary cells.  652 

Effects of NKR antagonists on NKB- and NKBRP-induced (A) SLα and (B) PRL release and 653 

transcript expression.  Pituitary cells were treated for 24 hr with NKB (100 nM) or NKBRP (100 nM) 654 

in the presence or absence of the NK1R antagonist L732138 (1 µM), NK2R antagonist GR159897 (1 655 

µM) and NK3R antagonist SB222200 (1 µM), respectively.  Effects of NKR agonists on SLα and PRL 656 

transcript expression (C) and hormone secretion (D).  For SLα and PRL mRNA expression, pituitary 657 

cells were treated for 24 hr with increasing levels (01-1000 nM) of the NK1R agonist HK-1, NK2R 658 

agonist GR64349 and NK3R agonist senktide, respectively.  For the experiments on hormone release, 659 

only a single dose at 10 nM was tested for 24 hr treatment for the three NKR agonists.  (E) Cell-type 660 

specific expression of NK1R, NK2R and NK3R in carp pituitary cells.  Pure populations of immuno- 661 

identified GH cells, PRL cells, SLα cells and SLβ cells (~250 cells/PCR sample) were isolated from 662 

grass carp pituitary cells using LCM technique and subjected to RT-PCR using primers specific for 663 

NK1R, NK2R and NK3R respectively (NK1R: GGAATGGATTCGCTCATCACTT & TAACGGTGT 664 

TGAATGCGGAC; NK2R: AGATGATGATAGTGGTGGTGAC & GCAGTAGAGATGGGGTTGTA; 665 

NK3R: GCCAAGAGAAAGGTTGTGAAGA & GTGTACATGCTGCTCTGGCG).  PCR reactions 666 

were conducted for 50 cycles with 30 sec at 94 ℃ for denaturing, 30 sec at 54 ℃ for annealing and 30 667 

sec at 72 ℃ for extension.  In this study, RT-PCR of the three NKR subtypes in mixed populations of 668 

carp pituitary cells was used as a positive control while RT-PCR for β-actin was used as the internal 669 

control. 670 

 671 

Fig.4.   Functional role of cAMP-dependent pathway in pituitary regulation of SLα and PRL by TAC3 672 

gene products.  (A) Effects of 20-min incubation with increasing levels (0.1-1000 nM) of NKB and 673 

NKBRP on cAMP production in carp pituitary cells.  (B) Effects of 24-hr treatment with the membrane-674 

permeant cAMP analog 8Br.cAMP (10-1000 µM) or AC activator forskolin (1 μM, FSK) on SLα and 675 
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PRL mRNA expression.  Effects of 24-hr co-treatment with the AC inhibitor MDL12330A (20 μM) or 676 

PKA inhibitor H89 (20 μM) on NKB (1 μM)- and NKBRP (1 μM)-induced (C) SLα and (D) PRL 677 

release and mRNA expression.  After drug treatment, culture medium was harvested for measurement 678 

of hormone release.  The remaining cells were either extracted for cAMP production or used for total 679 

RNA preparation for subsequent real-time PCR of the respective gene targets. 680 

 681 

Fig.5.   Functional role of PLC-dependent pathway in pituitary regulation of SLα and PRL by TAC3 682 

gene products.  Effects of 24-hr co-treatment with the PLC inhibitor U073122 (10 μM), PKC inhibitor 683 

GF109203X (20 μΜ) or IP3 receptor blocker 2-APB (100 μΜ) on NKB (1 μM)- and NKBRP (1 μM)- 684 

induced (A) SLα and (B) PRL secretion and mRNA expression in carp pituitary cells.  After drug 685 

treatment, culture medium was harvested for hormone release and total RNA was extracted from the 686 

remaining cells for real-time PCR of the respective gene targets. 687 

 688 

Fig.6.   Functional coupling of TAC3 gene products with Ca
2+

 signaling in carp pituitary cells.  (A) 689 

Effects of NKB (1 μM) and NKBRP (1 μM) on intracellular Ca
2+

 levels in carp pituitary cells.  Parallel 690 

treatment with the vehicle (Veh) used for dissolving the TAC3 gene products was used as the solvent 691 

control.  Effects of (B) co-treatment with the VSCC blocker Nifedipine (10μM, Nifed) or (C) removal 692 

of extracellular Ca
2+

 using a Ca
2+

-free medium on Ca
2+

 signals triggered by NKB (1 μM) and NKBRP 693 

(1 μM) in carp pituitary cells.  (D) Effects of co-treatment with the IP3 receptor blocker 2-APB (100 μM) 694 

on NKB (1 μM) and NKBRP (1 μM)-induced Ca
2+

 responses in pituitary cells incubated with the 695 

Ca
2+

-free medium.  (E) Effects of increasing doses of the Ca
2+

 ionophore A23187 (0.1 - 100 nM, 24 hr) 696 

on SLα and PRL release and mRNA expression in carp pituitary cells.  In the experiments for Ca
2+

 697 

measurement, pituitary cells were pre-loaded with the Ca
2+

-sensitive dye Fura-2 and Ca
2+

 data were 698 

presented as a ratio of the fluorescence emission obtained with excitation at 340 nm and 380 nm, 699 

respectively (as “F340/F380 Ratio”).  For the studies on SLα and PRL secretion and gene expression, 700 

culture medium was harvested after drug treatment for hormone release and total RNA was extracted 701 

from pituitary cells for real-time PCR of the respective gene targets. 702 

 703 
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Fig.7.   Functional role of Ca
2+

-dependent pathway in pituitary regulation of SLα and PRL by TAC3 704 

gene products.  Effects of 24-hr incubation with Ca
2+

-free medium or co-treatment with the VSCC 705 

blocker Nifedipine (10 μM), CaM antagonist calmidazolium (1 μM) or CaMK-II inactivator KN62 (5 706 

μM), respectively, on NKB (1 μM)- and NKBRP (1 μM)-induced (A) SLα and (B) PRL secretion and 707 

transcript expression in carp pituitary cells.  After drug treatment, culture medium was harvested for 708 

hormone release and total RNA was extracted from the remaining cells for real-time PCR of the 709 

respective gene targets. 710 

 711 

Fig.8.   Working model of NKB and NKBRP induction of SLα and PRL synthesis and secretion in 712 

carp pituitary cells.  In grass carp, two mature peptides, NKB and NKBRP, can be produced from TAC3 713 

preprohormone, presumably by protein processing via the two dibasic cleavage sites (KR & GRR) 714 

flanking the respective gene products.  These two TAC3 gene products through differential activation 715 

of NK2R expressed in PRL cells and NK3R expressed in SLα cells can up-regulate PRL and SLα 716 

transcript expression, protein production and hormone secretion in the respective cell types within the 717 

carp pituitary.  These stimulatory effects, except for a lack of PKC involvement in the PRL responses, 718 

appear to be mediated by the AC/cAMP/PKA, PLC/IP3/PKC and Ca
2+

/CaM/CMK-II cascades. 719 
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Peptide/protein target Antigen sequence (if known) Name of Antibody
Manufacturer, catalog #, and/or name of individual 

providing the antibody

Species raised in; monoclonal or 

polyclonal
Dilution used

Phospho-MEK1/2 (Ser217/221)
a synthetic phosphopeptide (KLP-coupled) corresponding to residues around 

Ser217/221 of human MEK1/2.
Phospho-MEK1/2 (Ser217/221) mAb Cell Signaling Technology, Inc., catalog #9154 monoclonal IgG in Rabbit 1:1,500 for WB

MEK1/2
a synthetic peptide (KLH coupled) covering the conserved region of human, rat 

and mouse MEK1/2.
MEK1/2 Antibody (for total MEK1/2) Cell Signaling Technology, Inc., catalog #9122 polyclonal in Rabbit 1:1,500 for WB

Activated (Diphosphorylated) ERK1/2
a synthetic peptide (KLH coupled) with HTGFLTpEYpVAT sequence 

corresponding to the phosphorylated form of ERK-activation loop 
Diphosphorylated ERK1/2 mAb Sigma-Aldrich Co. , catalog #M8159 monoclonal IgG1 in Mouse 1:5,000 for WB

ERK-1/2
a synthetic peptide (KLH coupled) with  RRITVEEALAHPYLEQ YYDPTDE 

sequence derived from subdomain-XI of human ERK1/2.
ERK1/2 Antibody (for total ERK1/2) Sigma-Aldrich Co. , catalog #M5670 polyclonal in Rabbit 1:5,000 for WB

Phospho-Akt (Ser473) 
a synthetic phosphopeptide (KLH-coupled) corresponding to residues 

surrounding Ser473 of mouse Akt.
Phospho-Akt (Ser473) Antibody Cell Signaling Technology, Inc., catalog #9271 polyclonal in Rabbit 1:1,500 for WB

Akt
a synthetic peptide (KLH-coupled) derived from the carboxy-terminal sequence 

of mouse Akt.
Akt Antibody (for total Akt) Cell Signaling Technology, Inc., catalog #9272 polyclonal in Rabbit 1:1,500 for WB

Phospho-CREB (Ser133)
a synthetic peptide (KLP-coupled) derived from the conserved region covering 

phosphorylated Ser133 of CREB.
Phospho-CREB (Ser133) Antibody EMD Millipore，catalog #06-519 polyclonal in Rabbit 1:2,000 for WB
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