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Abstract 17 

 18 

Starch physicochemical properties strongly influence eating and cooking quality of 19 

rice. The CAPS, dCAPS and InDel markers for 13 starch synthesis related genes 20 

(SSRGs) were developed, and together with markers developed before, there are 35 21 

markers tagged for 23 SSRGs, with each gene tagged with at least one marker. These 22 

and 108 other markers were used for association mapping for 20 starch 23 

physicochemical property parameters. A total of 64 main-effect loci or QTLs were 24 

detected. In addition, 56 and 62 loci were identified under the Wx and SSIIa 25 

background, respectively. Wx was a major main-effect QTL for AAC, pasting 26 

viscosity, gel texture, and retrogradation property (P < 0.0001). SSIIa was a major 27 

main-effect QTL for pasting temperature, thermal and retrogradation properties (P < 28 

0.0001), but it was a minor main-effect QTL for some pasting viscosity parameters, 29 

such as BD, CS, Stab and SBratio. Four other SSRGs, SSIIa, BE1, SSIIc and GBSSII 30 

were detected for AAC under Wx background. Wx was detected for Tc and Hg under 31 

the SSIIa background. PUL was detected for HD as main-effect QTL and under SSIIa 32 

background. AGPL2 and ISA1 were detected respectively for Hg and retrogradation 33 

as main-effect QTL as well as under both Wx and SSIIa backgrounds. This study 34 

suggested that retrogradation properties were mainly controlled by Wx, SSIIa and 35 

ISA1 with the relative effects in the order of SSIIa > Wx > ISA1. These results have 36 

direct applications to quality breeding programs. 37 

Keywords: Rice; eating quality; amylose; gelatinization temperature; RVA pasting 38 

viscosity; association mapping; QTL 39 

 40 

Abbreviations used: 41 

AAC, apparent amylose content; ADH, gel adhesiveness; ASV, alkali spreading value; 42 

BD, breakdown viscosity; BE, starch branching enzyme; CAPS, cleaved amplified 43 

polymorphic sequences; dCAPS, derived CAPS; COH, gel cohesiveness; CPV, cold 44 

paste viscosity; CS, consistency; DBE, debranching enzyme; DSC, differential 45 
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scanning calorimetry; GBSS, granule-bound starch synthase; GT, gelatinization 46 

temperature; HD, gel hardness; HPV, hot paste viscosity; ISA, isoamylase; PT, pasting 47 

temperature; PV, peak viscosity; PUL, pullulanase; QTL: quantitative trait locus; R%, 48 

retrogradation percentage; RVA, rapid visco analyser; SB, setback viscosity; SBratio, 49 

setback ratio. Stab: stability; SS, starch synthase; SSRG, starch synthesis related genes; 50 

To，onset temperature; Tp, peak temperature; Tc, conclusion temperature; Hg, 51 

enthalpy of gelatinization; Hr, enthalpy of retrogration; T1/2, width at half peak 52 

height. 53 
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Introduction 54 

 55 

Rice serves as a staple food for about half of the world’s people. New varieties with 56 

high yield, high quality and high resistance to biotic and abiotic stresses are bred and 57 

released continuously in order to meet the ever-increasing demand for more food as a 58 

consequence of human population growth coupled with the decrease in arable land. 59 

Improvement of rice quality is among the most important goals in current breeding 60 

programs, especially its eating and cooking quality as most rice is consumed as 61 

cooked rice. Starch is the major component of rice grain, the content and fine 62 

structure of its two constituents, amylose and amylopectin, determine rice eating and 63 

cooking quality. Biochemically, four classes of enzymes are involved in starch 64 

biosynthesis, i.e. ADP-Glucose pyrophosphorylase (AGPase), starch synthase (SS), 65 

starch branching enzymes (BEs), and starch de-branching enzymes (DBEs) 66 

(Nakamura, 2002; James et al. 2003; Hannah et al. 2008). AGPase converts 67 

ADP-glucose to glucose-1-phosphate in rice kernel, provides substrate for starch 68 

synthase. Granule bound starch synthase-I enzyme (GBSS1) is a primary enzyme 69 

responsible for amylose production in rice endosperm while other SS (soluble starch 70 

synthase), BEs and DBEs work together but with distinct roles to synthesize 71 

amylopectin. Many of these enzymes have multiple isoforms. The AGPase consists of 72 

four large (AGPL1-4) and two small (AGPS1, AGPS2) subunits (Ohdan et al. 2005; 73 

Lee et al. 2007). There are a total of 10 isoforms for starch synthase enzymes: GBSS 74 

(I, II), SSI, SSII (SSIIa, SSIIb, SSIIc), SSIII (SSIIIa and SSIIIb), and SSIV (SSIVa and 75 

SSIVb) (Hirose and Terao 2004; Tetlow et al. 2004; Ohdan et al. 2005; Zhang et al. 76 

2011). Rice BE has three isoforms: BEI, BEII (BEIIa, BEIIb) (Nakamura 2002; Ohdan 77 

et al. 2005). Two types of DBE: isoamylase and pullulanase are both found involved 78 

in amylopectin biosynthesis in rice endosperm (Nakamura et al. 1996; Kubo et al. 79 

1999; Fujita et al. 2003; Wong et al. 2003; Ohdan et al. 2005).  80 

 81 

Genetic studies indicated that the starch physicochemical properties, such as AAC, 82 

gelatinization temperature, gel consistency, RVA pasting viscosity, gel texture, DSC 83 
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thermal property, and retrogradation, might be controlled by one or a few genes with 84 

major effects (He et al. 1999; Bao et al. 2000; Bao et al. 2004a; Wan et al. 2004; Fan 85 

et al. 2005). Linkage mapping of the quantitative trait locus (QTL) for AAC and 86 

pasting viscosity (Bao et al. 1999; He et al. 1999; Bao et al. 2000, 2003; Larkin et al. 87 

2003; Septiningsih et al. 2003; Aluko et al. 2004; Wan et al. 2004; Fan et al. 2005; 88 

Wang et al. 2007; Lapitan et al. 2009; Traore et al. 2011) shows that they are largely 89 

controlled by the Wx locus on chromosome 6. Since GBSSI is responsible for amylose 90 

synthesis, GBSS1 alleles correlated with variation in AAC of rice grain is not 91 

surprising. Linkage mapping studies have identified only one major QTL, i.e. the 92 

alkali degeneration (alk) locus on chromosome 6, as having major responsibility for 93 

different gelatinization temperatures in diverse rice germplasm (He et al. 1999; Aluko 94 

et al. 2004; Bao et al. 2004b; Fan et al. 2005; Tian et al. 2005; Wang et al. 2007; 95 

Lapitan et al. 2009). Map-based cloning of the alk locus reveals that it encodes SSIIa, 96 

which is the major gene responsible for GT (Gao et al. 2003). QTL mapping shows 97 

that the amylopectin chain length distribution is also controlled by the SSIIa locus 98 

(Umemoto et al. 2002). The function of SSIIa is to elongate the short A and B1 chains 99 

with degree of polymerization (DP) < 10 to form long B1 chains of amylopectin 100 

(Nakamura et al. 2005). Although the functions of several genes in determining the 101 

rice eating and cooking qualities have been gradually clarified, such as Wx and SSIIa, 102 

many of others still remain unknown even though their functions in starch 103 

biosynthesis have been revealed. 104 

 105 

In addition to Wx and SSIIa, the contribution of other genes to rice eating and cooking 106 

quality is derived from analysis of allele variations and their association with the 107 

quality parameters. Association analysis is a popular method to test the relationship 108 

between specific sequence polymorphisms in candidate genes and phenotypic 109 

variations (Thornsberry et al. 2001; Gupta et al. 2005). Molecular markers specific to 110 

a simple sequence repeat polymorphism with respect to (CT)n repeats and to a single 111 

nucleotide polymorphism of Wx gene have been successfully designed to distinguish 112 

rice varieties with low amylose content from varieties with intermediate or high 113 



 

6 

 

amylose content (Ayres et al. 1997). Likewise, a marker specific to a SNP of SSIIa 114 

can differentiate varieties with low gelatinization temperature from those with 115 

intermediate or high gelatinization temperature (Bao et al. 2006b). By sequencing 116 

starch biosynthesis related genes, more and more allele variations have been revealed 117 

either in coding regions or un-translated regions of genes. For association analysis, 118 

previous studies (when SNP data were not available) focused more on the allele 119 

variations occurred in un-translated regions (Bao et al. 2006a), but recent studies have 120 

focused on the SNP of coding regions (Tian et al. 2009; Kharabian-Masouleh et al. 121 

2012; Teng et al. 2013). Since starch biosynthesis is a complex network of many 122 

isoforms, both types of allele variations should be incorporated into a systematic 123 

association analysis. Furthermore, recently others genes have also been reported to 124 

affect the production of amylose or amylopectin. For instance, a SNP of 125 

glucose-6-phosphate translocator 1 gene has been reported as highly associated with 126 

amylose content and retrogradation properties (Kharabian-Masouleh et al. 2012).  127 

 128 

Previous studies often focused on three parameters affecting eating and cooking 129 

quality, apparent amylose content (AAC), gelatinization temperature (GT) and gel 130 

consistency. However, starch physicochemical properties consist of many parameters 131 

such as pasting, textural, thermal and retrogradation properties; and few genetic 132 

studies of other physicochemical properties have been conducted. Previously, we have 133 

established an association mapping panel consisting of 416 rice accessions (Jin et al. 134 

2010) and genotyped the markers tagged for Wx, SS1, BE1, BEIIb (Bao et al. 2006a), 135 

SSIIa (Bao et a. 2006b), and AGPase (Bao et al. 2012). In this study, we aim to 136 

develop more markers for tagging other starch synthesis related genes (SSRGs), and 137 

to investigate the associations between SSRG markers and starch physicochemical 138 

properties. The results from this study will enhance our understanding of the genetic 139 

control of starch physicochemical properties, and provide markers for carrying out 140 

molecular breeding to improve rice grain quality. 141 

 142 
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Materials and Methods 143 

 144 

Rice materials and physicochemical properties 145 

Of the 416 rice accessions developed for association mapping (Jin et al. 2010), 379 146 

accessions are nonwaxy rice with measured AAC, RVA pasting viscosity parameters 147 

and gel texture properties (Bao et al. 2006c), and 205 accessions with measured 148 

thermal and retrogradation properties (Bao et al. 2007). In brief, RVA pasting profile 149 

was determined using a Rapid Visco Analyser (RVA, Model 3-D, Newport Scientific, 150 

Warriewood, Australia) with the parameters including peak viscosity (PV), hot paste 151 

viscosity (HPV), cool paste viscosity (CPV) and their derivative parameters 152 

breakdown (BD, = PV-HPV), setback (SB, = CPV-PV), consistency (CS, =CPV-HPV), 153 

stability (Stab, =HPV/PV), and setback ratio (SBratio, =CPV/HPV), and pasting 154 

temperature (PT). The viscosities were measured in Rapid Visco Units (RVU). Gel 155 

texture properties including hardness (HD, g), adhesiveness (ADH, g.s) and 156 

cohesiveness (COH) were measured on a TA-XT2i Texture Analyzer (Texture 157 

Technologies Corp., Scarsdale, NY) equipped with the Texture Expert software 158 

program (Version 5.16). Thermal properties were analyzed using a DSC 2920 thermal 159 

analyser (TA Instruments, Newcastle, DE, USA) and the parameters included onset 160 

(To), peak (Tp), and conclusion (Tc) temperature, width at half peak height (T1/2) and 161 

enthalpy (Hg) of gelatinization. The retrogradation properties were measured with 162 

the same sample after measurement of the thermal properties, stored, and rescanned 163 

with DSC. The enthalpy (Hr) of the retrograded starch was used to calculate  the 164 

percentage of retrogradation (R%) as (Hr)/ (Hg) 100. 165 

  166 

DNA isolation 167 

Fresh leaf tissue was harvested at the flowering stage from plants grown in the field. 168 

DNA was extracted following a CTAB procedure (Doyle 1991). 169 

 170 

Development of CAPS, dCAPS, and InDel markers and genotyping 171 

Development of the cleaved amplified polymorphic sequences (CAPS) and derived 172 
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CAPS (dCAPS) follow the methods of Konieczny and Ausubel (1993) and Neff et al. 173 

(1998). 174 

  175 

The primers for PCR were synthesized by the Shanghai Shenggong BioTech Co. Ltd. 176 

(Table 1). The PCR was carried out in a total volume of 20 μL containing 10 mM 177 

Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X 100, 2 mM MgCl2, 0.1 mM dNTPs, 178 

200 nM primers, 1 unit of Taq polymerase, and 30 ng of genomic DNA. All 179 

amplifications were performed on a PTC-100 thermal cycler (MJ Research, Inc.) 180 

under the following conditions: 5 min at 95ºC; 35 cycles of 1 min at 95 ºC, 45 s at 55 181 

ºC and 1 min at 72 ºC; and a final extension step at 72 ºC for 10 min.  182 

 183 

Amplified PCR products were digested using suitable restriction endonucleases in a 184 

total volume of 20 μL according to the manufacturer’s instructions (Table 1). The 185 

digests were resolved by electrophoresis in 1.5–2.0% agarose gel and visualized using 186 

a VersaDoc imaging system (Bio-Rad) after staining with ethidium bromide.  187 

 188 

Statistical analysis 189 

The polymorphism information content (PIC) values were determined using 190 

PowerMarker version 3.25 (Liu and Muse 2005). Nei’s genetic distance (Nei et al. 191 

1983) was calculated and used for unweighted pair-group method with arithmetic 192 

means (UPGMA) analysis as implemented in PowerMarker, with the UPGMA tree 193 

viewed using MEGA 4.0 (Tamura et al. 2007). 194 

  195 

Analysis of variance (ANOVA) and principal component analysis were performed 196 

using the SAS System for Windows version 8 (SAS Institute Inc., Cary, NC, USA). 197 

Duncan's multiple range test was conducted for comparison of means at P < 0.05. 198 

Cluster analysis of the starch properties parameters were performed in SPSS Statistics 199 
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20 (Windows) using Ward’s method based on squared Euclidean distance. 200 

 201 

Association mapping  202 

The population structure (Q) was determined using the STRUCTURE program 203 

(Pritchard et al. 2000),
 
with 100 simple sequence repeat (SSR) markers (Jin et al. 204 

2010), and the kinship coefficients (K) between accessions were estimated using the 205 

SPAGeDi program (v. 1.2g) (Hardy and Vekemans, 2002) with the same set of SSR 206 

markers (Shao et al. 2011). Association analysis between marker alleles and different 207 

starch physicochemical properties was performed with TASSEL Version 2.1 software, 208 

taking the gross level population structure (Q) and kinship (K) into account (Yu et al. 209 

2006; Bradbury et al. 2007). The P-value determining whether a marker is associated 210 

with a trait was set at P<0.01. 211 

 212 

Results 213 

 214 

Marker development for starch biosynthesizing genes and their genotypes 215 

In addition to available SNP, InDel, and SSR markers tagged for Wx, SSI, BEI, SSIIa, 216 

and all AGP genes (two small subunits and four large subunits) by Bao et al. (2002, 217 

2006a, 2006b, 2012), we further developed CAPS, dCAPS and InDel markers for 218 

tagging other starch biosynthesis related genes, i.e. GBSSII, SSIIc, SSIIb, SSIIIa, 219 

SSIIIb, SSIVa, SSIVb, BEIIa, BEIIb, ISA1-3 and PUL (Table 1) in this study. Most of 220 

SNPs tagged were derived from the study of Tian et al. (2009) who reported many 221 

functional SNPs for starch genes. All 13 new gene-specific markers (Table 1) 222 

produced two or more alleles each, with the polymorphic information content (PIC) 223 

ranging from 0.005 (InDel marker SSIVb) to 0.500 (marker ISA2). A deletion of 23bp 224 

in SSIVb was reported by Tian et al. (2009) in rice Suyunuo; we developed the 225 

primers to genotype this InDel in our rice accessions, and also found only Suyunuo 226 

had this deletion. Due to its low PIC, we adapted another CAPS marker from Tian et 227 

al. (2010) and Yan et al. (2011) to genotype this gene and found this marker had the 228 

PIC value of 0.381 among all rice accessions.  229 
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 230 

In total, there are 35 markers tagged for 23 starch synthesis related genes (SSRGs), 231 

with each gene tagged with at least one marker. The UPGMA tree made with these 35 232 

SSRG markers showed that all the 416 rice could be assigned into two large groups, 233 

representing indica and japonica subspecies, respectively (Supplementary Fig. 1), 234 

with rice BP459, BP464, BP465, BP470, BP474, BP476, BP487 and BP532 loosely 235 

affiliated with the japonica group. These same accessions were also assigned to the 236 

japonica group based on 100 SSRs, but with a much smaller membership probability 237 

(Jin et al. 2010). The waxy rice could also be classified into indica and japonica 238 

groups using the SSRGs markers (Xu et al. 2013). These results clearly indicated that 239 

SSRGs have diverged between the two subspecies during domestication and/or 240 

improvement. 241 

 242 

The association mapping panel has been genotyped with 100 SSRs before with a few 243 

additional SSRs and other gene markers, such as Gnla, fgr, Ra, and Rc (Shao et al. 244 

2011). In total, there are 143 markers that can be used for association mapping. Fig. 1 245 

shows the position of each marker in the chromosome of rice genome in physical 246 

distance. 247 

 248 

Phenotypes of starch properties of nonwaxy rice  249 

The starch physicochemical properties of each nonwaxy rice used in the present 250 

analysis were based on Bao et al. (2006c, 2007). It is not surprising that this set of 251 

association panel harbors wide genetic diversity in all starch physicochemical 252 

properties. AAC had significant correlation with pasting viscosity and gel texture 253 

traits except for PV, but had no relationship with thermal properties such as To, Tp, Tc 254 

and Hg. Tp had no correlation with HPV, SB and ADH, but had significant 255 

correlation with PV (P<0.05), CPV (P<0.05), CS (P<0.01), Stab (P<0.01), and 256 

SBratio (P<0.01) (Supplementary Table 1). From the correlation analysis, all the traits 257 

could be divided into two groups, AAC related traits (pasting viscosity and gel texture) 258 

and gelatinization temperature (GT) related traits (thermal property). Retrogradation 259 
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trait could be related with both groups. As a result, after normalization of all the trait 260 

value to between 0 and 1, a cluster analysis based on Ward’s method showed that all 261 

the traits could be classified into three groups (Fig. 2). Group 1 includes To, Tp, Tc 262 

and PT, Group 2 includes BD, Hg, COH, T1/2, and ADH, while Group 3 includes 263 

HPV, CPV, PV, AAC, Stab, SB, CS, SBratio, Hr, R% and HD. Thus, Group 1 264 

represents the GT-related traits, Group 3 represents AAC-related traits, while Group 2 265 

is a mixture of AAC and GT related traits (Fig. 2). 266 

 267 

Since the AAC and GT were the most important factors affecting other traits, the 268 

AAC-GT combination for each rice accession could be clearly visualized in the plot 269 

for both AAC and GT (Fig. 3). For the low AAC rice accessions (AAC<20%), the GT 270 

could be divided into high GT and low GT classes. The high GT rice had the peak 271 

temperature (Tp) ranging from 77.6 to 79.8 
o
C, while the low GT rice ranging from 272 

65.8 to 71.0 
o
C. For the high AAC rice accessions, the GT could also be divided into 273 

two groups. One is intermediate GT group with GT ranging from 72.8 to 76.6 
o
C, and 274 

the other is the low GT group with GT ranging from 63.2 to 67.7 
o
C. It should be 275 

noted that the two low GT groups with contrasting AAC differed in the range of 276 

temperature, with the high-AAC rice having much lower GT than the low-AAC rice 277 

(Fig. 3). 278 

All the rice accessions have been divided into seven groups or subpopulations (Jin et 279 

al. 2010). The difference in each starch property parameter among these seven 280 

subpopulations is listed in Table 2. For apparent amylose content and pasting viscosity 281 

parameters, POP3 and POP6 had higher AAC as well as higher PV, HPV, and CPV 282 

than other subpopulations. POP7 had the lowest AAC and SB, but had the highest PV 283 

and BD among the seven subpopulations. For gel texture parameters, POP3 had the 284 

highest HD and the lowest ADH and COH, and by contrast, POP5 and POP7 had the 285 

lowest HD but the highest ADH and COH. For pasting temperature (PT) and thermal 286 

property parameters, POP1 and POP2 had similarly lower PT than the other five 287 
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subpopulations. Similar results were also found for the thermal property parameters, 288 

i.e. POP 1 and POP2 had lower To, Tp, Tc and Hg than the others. POP5 had the 289 

highest mean T1/2 and POP3 had the lowest mean T1/2. For retrogradation property 290 

parameters, POP3 had the highest mean Hr and R%, whereas POP5 and POP7 had 291 

the lowest Hr and R% (Table 2). 292 

 293 

QTLs for starch physicochemical properties 294 

Association mapping of starch physicochemical property parameters were performed 295 

using the 35 SSRG markers and 108 other markers (mostly SSRs) based on the Q+K 296 

model. The identified QTLs are hereafter called main-effect QTLs. To uncover more 297 

QTLs concealed by the Wx and SSIIa loci for the starch physicochemical traits, 298 

further association mapping were conducted with Wx (G/A) and SSIIa (GC/TT) SNPs 299 

as covariate based on the same Q+K model. The QTLs identified are called QTLs in 300 

the Wx or SSIIa background. The results are summarized in Table 3 and Fig. 4. 301 

AAC 302 

A total of five main-effect QTLs were detected for AAC. Wx gene locus was detected 303 

as a major QTL (P=1.4510
-95). SSI locus, RM122, RM346 and RM222 were also 304 

detected. Using Wx SNP (A/G) as a covariate, six QTLs were detected including four 305 

SBRGs, GBSSII, BE1, SSIIc, and SSIIa. Using SSIIa SNP (GC/TT) as a covariate, the 306 

same five main-effect QTLs were detected. 307 

 308 

Pasting viscosity 309 

As expected, the Wx locus was detected as a main-effect QTL for all the pasting 310 

viscosity parameters. SS1 was detected for SB and CS; SSIIa was detected for BD, CS, 311 
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Stability and SBratio. In addition, RM346 was detected for CPV, SB, CS, and 312 

SBratio. 313 

Under the Wx locus background, no main-effect QTL was detected for PV, HPV and 314 

CPV. SSIIa was still detected with much smaller P value for BD (P=3.7210
-8

), 315 

SBratio (P=0.0062) and Stability (P=8.2410
-8

). No other SSRGs were detected for 316 

pasting viscosities. More SSRs were detected for BD (RM237, RM276, RM340, 317 

RM48 and RM507) and Stability (RM209, RM237, RM276, and RM507). 318 

Under the SSIIa locus background, the QTLs identified for each trait were similar to 319 

those of main-effect QTLs; the only difference was that one less QTL (SS1) for CS 320 

and one more QTL (GS3) for SBratio were detected. 321 

 322 

Gel texture 323 

Wx was the common main-effect QTL for HD, ADH and COH, while SSI was 324 

detected as the main-effect QTL for HD and COH. PUL was detected for HD. 325 

Under the Wx locus background, GBSSII, RM252 and RM3 were detected for HD, 326 

and only RM252 was detected for COH, while no QTL was detected for ADH.  327 

Under the SSIIa locus background, the QTLs identified for each trait were the same as 328 

those of main-effect QTLs. 329 

Thermal property and pasting temperature (PT) 330 

For the thermal property and PT, SSIIa was a common main-effect QTL. Other 331 

SSRGs, SSIIIb (PT), AGPL2 (Hg), and Wx (T1/2) were also detected. In addition, 332 

some SSRs were detected for PT (RM276, RM253 and RM346), To (RM346), Tc 333 

(RM484), Hg (RM1 and RM48) and T1/2 (RM161 and RM346). 334 
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Under the Wx locus background, all the QTLs identified for each trait were the same 335 

as those of main-effect QTLs except that one more QTL for Tc (RM484) and Hg 336 

(RM152), and one less (RM346) for T1/2.  337 

Under the SSIIa locus background, it was interesting to find that Wx locus was 338 

detected for Tc (P=0.0018) and Hg (P=0.0016). However, Wx was not detected for 339 

T1/2, and instead, other SSRGs, such as SSIIb and AGPL3 were detected for T1/2. 340 

AGPL2 was also detected for Hg. RM346 was still detected for PT, To and Tp, and 341 

RM1 and RM161 were still detected for Hg and T1/2, respectively. More additional 342 

SSRs were identified for PT, To, Tp, Tc and T1/2. 343 

Retrogradation property 344 

For the retrogradation property, five common SSRGs, Wx, SSIIa, ISA1, AGPL3 and 345 

BEIIa, were identified as main-effect QTLs for both Hr and R%. RM346 and 346 

RM161 for Hr and RM346 for R% were also detected. 347 

Under the Wx locus background, ISA1 and SSIIa were still identified as QTLs for both 348 

Hr and R%. By contrast, BEIIa was only significant for R%. Another SSRG 349 

(AGPL2) and RM87 were detected for both traits. 350 

Under the SSIIa locus background, the QTLs identified were similar to those of 351 

main-effect QTLs: Wx, ISA1, AGPL3 and RM346 were significant for both traits, but 352 

BEIIa was only detected for R%. 353 

 354 

Discussion 355 

Association mapping has become a robust technology for quickly identifying the 356 

genotype-phenotype relationships among diverse germplasms. The success of 357 

association mapping depends on the diversity of the germplasms being investigated, 358 

the marker coverage of the target genome, and the appropriate methodologies used. 359 
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New advances in association mapping has been made in plants recently, with some 360 

great achievements coming from rice, such as mapping genes for cooking quality 361 

(Tian et al. 2009) and agronomic traits (Huang et al. 2010; Zhao et al. 2011). 362 

 363 

Due to the diverse origins of the rice accessions used in different studies, a wide range 364 

of variations has always been found in different populations, for example, from the 365 

African and USA germplasm (Asante et al. 2013), Italian germplasm (Caffagni et al. 366 

2013) and Korean germplasm (Lu et al. 2012a, 2012b; Zhao et al. 2013). The present 367 

study covers more than 20 starch physicochemical property traits that have been 368 

measured for 379 rice accessions. Compared with other studies on eating and cooking 369 

quality of rice, our research ranks the highest in both number of traits and accessions 370 

analyzed. In addition to the wide genetic diversity revealed for each trait, we found 371 

that all the traits could be classified into three groups: AAC-related traits, GT-related 372 

traits, and the mixture (Fig. 2). In another linkage mapping study, Wang et al. (2007) 373 

also found that eating and cooking traits of rice could be divided into two groups: the 374 

first class consists of AC, GC, and most of the paste viscosity parameters that form a 375 

major determinant of eating quality, the second class includes alkali spreading value, 376 

pasting temperature and pasting time, which characterize the cooking process. 377 

Furthermore, with plotting AAC and GT (measured as the Tp), we have another 378 

important finding that both AAC and GT could be divided into two classes, and in 379 

combination, there are four classes among nonwaxy rice (Fig. 3). For the low AAC 380 

rice accessions (AAC<20%), the GT could be divided into high GT, and low GT class. 381 

For the high AAC rice accessions, the GT could also be divided into two groups. The 382 

GT of low-AAC- low-GT group are much higher than the high-AAC-low-GT group 383 

(Fig. 3). The GT of waxy rice is similar to that of low-AAC rice that have high and 384 

low GT classes (Xu et al. 2013). Juliano and Villareal (1993), Juliano (1998) have 385 

long before indicated that high-AAC rice usually has intermediate or low-GT; 386 

low-AAC rice or waxy rice usually has high or low-GT among rice accessions. By 387 

contrast, it is difficult to find the combinations of high-AAC and high-GT rice, and 388 

low-AAC and intermediate-GT rice (Juliano and Villareal 1993; Juliano, 1998). No 389 

other genetic analyses have indicated this fact. The tight link between AAC and GT 390 

suggests that there might be interaction between AAC and GT. However, in depth 391 

screening of rice germplasm may find other rare combinations of AAC and GT. For 392 

example, Juliano et al. (2009) found the combination of high-AAC and high-GT rice. 393 
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These diverse materials provide precious resources for further genetic studies and 394 

molecular analysis of the related genes. 395 

 396 

Many studies have focused on the genetic basis of the starch physicochemical 397 

properties in relation to the cooking and eating quality of rice. AAC is mainly 398 

controlled by the Wx region on chromosome 6 (He et al. 1999; Tan et al. 1999; Bao et 399 

al. 2000; Lanceras et al. 2000; Septiningsih et al. 2003; Aluko et al. 2004). GT and 400 

thermal properties are genetically determined by a major QTL, i.e. the alkali 401 

degeneration (alk) locus on chromosome 6, also known as SSIIa (He et al. 1999; 402 

Aluko et al. 2004; Bao et al. 2004c; Fan et al. 2005; Tian et al. 2005; Wang et al. 403 

2007). Genetic analysis with QTL mapping approach showed that the RVA 404 

parameters are mainly controlled by the Wx gene (Bao et al. 1999, 2000, 2003; Larkin 405 

and Park 2003; Wang et al. 2007; Traore et al. 2011). Gel texture parameters were 406 

also mainly controlled by the Wx locus (Bao et al. 2000; 2004a). The aforementioned 407 

results mostly came from linkage analyses. Association mapping for these traits have 408 

been conducted recently (Chen et al. 2008a, 2008b; Tian et al. 2009; Lu et al. 2012a, 409 

2012b; Zhao et al. 2013). Similar results of main-effect QTLs have been reported, i.e. 410 

Wx and SSIIa controlled AAC-related traits and GT-related traits, respectively (Chen 411 

et al. 2008a, 2008b; Tian et al. 2009; Caffagni et al. 2013). However, due to different 412 

germplasms used, some of the studies have not identified the Wx for AAC (Lu et al. 413 

2012a, 2012b; Zhao et al. 2013). Lu et al. (2012a, 2012b) detected AGPS1, AGPL4 414 

and SSIIb for AAC and pasting viscosity in their rice materials. Kharabian-Masouleh 415 

et al. (2012) reported that a SNP of glucose-6-phosphate translocator gene was highly 416 

associated with amylose content and retrogradation property. This study also found 417 

some new loci for starch physicochemical properties, such as SSIIIb for PT, PUL for 418 

HD, AGPL2 for Hg; BEIIa and AGPL3 for retrogradation properties (Table 3). The 419 

retrogradation property traits were comprehensively studied for the first time, and we 420 

identified five common SSRGs, Wx, SSIIa, ISA1, AGPL3 and BEIIa, as main-effect 421 

QTLs for both Hr and R%. Either under the Wx locus or SSIIa backgournd, ISA1 422 
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could also be identified for both Hr and R%. Thus, it can be concluded that 423 

retrogradation properties are mainly controlled by Wx, SSIIa and ISA1. Their relative 424 

effects are in the order of SSIIa > Wx > ISA1. However, the effects of other SSRGs 425 

such as BEIIa, AGPL2 and AGPL3 could not be neglected. 426 

 427 

Genetic linkage mapping studies showed that Wx not only controls AAC, gel 428 

consistency and pasting viscosity, but also affects GT (Wang et al. 2007; Lapitan et al. 429 

2009), and the QTL cluster at SSIIa locus also contains individual QTL for gel 430 

consistency and some paste viscosity parameters (Wang et al. 2007). Tian et al. (2009) 431 

reported by association mapping that Wx not only affects AAC and gel consistency as 432 

a major gene but also regulates GT as a minor one; SSIIa plays an essential role not 433 

only in controlling GT, but also AC and gel consistency (Tian et al. 2009). In this 434 

study, we analyzed the effects of Wx and SSIIa background QTLs using the two 435 

functional SNPs for Wx (G/A) and SSIIa (GC/TT) as an additional covariate on the 436 

physicochemical property traits by association mapping. We found that more QTLs 437 

that were concealed by the Wx and SSIIa could be discovered. In the SSIIa 438 

background, the AAC-related traits were found to be controlled by similar QTLs as 439 

the main-effect QTLs, but it is possible to detect more other QTLs for the GT-related 440 

traits. Specifically, the Tc and Hg were found to be controlled by Wx. RM447 on 441 

chromosome 8 and RM17 on chromosome 12 were found to control PT, To, Tp and 442 

Tc. SSIIb and AGPL3 were identified for T1/2. Similarly, under the background of 443 

Wx, the GT-related traits were found to be controlled by similar main-effect QTLs, 444 

while it is possible to detect more QTLs for the AAC-related traits. Specifically, AAC 445 

was found to be controlled by more SSRGs, such as SSIIa, BE1, SSIIc and GBSSII. 446 

The Stab was found to be controlled by more SSRs. Zhao et al. (2013) also detected a 447 

locus near SSIIa (RM276) for AAC. All these findings confirm the importance of Wx 448 

and SSIIa in determining the eating and cooking quality of rice, and suggest that there 449 

might be epistatic interaction between Wx and SSIIa. Tian et al. (2009) introduced an 450 

antisense and sense Wx RNA to a high AAC rice and waxy rice respectively, and they 451 

found that GT changed simultaneously with significant decrease or increase in AAC. 452 

Tian et al. (2009) and Gao et al. (2011) introduced SSIIa gene to low-GT rice by 453 

transgenic engineering and found that it also affected the AAC, gel consistency and 454 
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pasting properties, suggesting that SSIIa is a modifier gene for AAC, gel consistency, 455 

and pasting properties in rice. These genetic transformation studies provide 456 

supporting evidence for the hypothesized interaction between Wx and SSIIa. However, 457 

it is also possible that the complex effects of Wx and SSIIa are derived from their 458 

close physical position in the chromosome 6, as suggested by strong linkage 459 

disequilibrium for these starch related traits. Thus, the exact roles played by Wx and 460 

SSIIa remain to be untangled. 461 

 462 

Biochemically, starch biosynthesis in the cereal endosperm involves complex 463 

interactions among multiple isoforms of starch synthase, branching and debranching 464 

enzymes, leading to a fine amylopectin structure (Jeon et al. 2010; Tetlow et al. 2011). 465 

Multi-enzyme complexes (protein-protein interactions) have been indentified in wheat 466 

and maize endosperms during the period of grain filling (Tetlow et al. 2004, 2008; 467 

Hennen-Bierwagen et al. 2008, 2009). The multi-enzyme complex components in the 468 

normal maize endosperm include SSI, SSIIa, BEI, BEIIa, BEIIb, and SP (starach 469 

phosphorylase) (Liu et al. 2009). Based on the facts that Wx and SSIIa exert joint 470 

control over both AAC and GT, and the complex AAC and GT combinations exist in 471 

rice germplasm, Bao (2012) proposed a multi-enzyme complex model to explain the 472 

interaction between GBSSI (Wx protein) and SSIIa, and how they contribute to 473 

diverse combination of AAC and GT in rice germplasm. The model hypothesizes that 474 

BEIIb, SSI and SSIIa are the major multi-enzyme complex components in the 475 

intermediate-GT (SSIIa active) rice, the high activity of GBSSI in the stroma 476 

negatively regulates the function of the multi-enzyme complex, resulting in the 477 

synthesis of high-AAC intermediate-GT starch. In low-AAC high-GT rice, the lower 478 

GBSSI activity and hence the higher activity of the multi-enzyme complex, allows the 479 

synthesis of more chains with DP>12, thus producing high-GT starch. Low-GT rice 480 

can have high, intermediate, low or zero (waxy rice) AAC. Due to the loss of function 481 

of SSIIa, the components that comprise the multi-enzyme complex are unknown and 482 

thus need to be further studied. However, the multi-enzyme complex in SSIIa-active 483 

rice grains should be clarified first before a more realistic hypothesis can be put 484 

forward. 485 

 486 

Undoubtedly, our results have direct applications to rice quality breeding programs. 487 

The well-known markers of Wx and SSIIa genes have been used in rice breeding in 488 



 

19 

 

which they greatly facilitate the precise picking of the desirable alleles from the good 489 

quality parent using marker-assisted selection (Wang et al. 2007; Jin et al. 2010). This 490 

study also points to a new direction in rice grain quality research, that is, to identify 491 

the protein-protein interactions among the related enzymes during grain filling. The 492 

knowledge gained from these new researches will enhance our understanding of 493 

starch biosynthesis, and ultimately contribute to the improvement of rice cooking and 494 

eating quality. 495 
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1. Legends for Figures 746 

 747 

Fig. 1  The position of markers in physical distance on 12 chromosomes of rice 748 

genome 749 

 750 

Fig. 2  Dendrogram generated with the starch properties parameters using Ward’s 751 

method based on squared Euclidean distance 752 

 753 

Fig. 3  Plot of AAC-GT combination for nonwaxy rice accessions 754 

 755 

Fig. 4  Plots of main-effect QTLs (A), QTLs identified in the Wx background (B) 756 

and SSIIa background (C) for 20 starch physicochemical properties. The SSRGs with 757 

the largest –log(P) values were highlighted with red (Wx), blue (SSIIa), green (ISA1) 758 

and pink (SSIIb) colors 759 

 760 
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Table 1 Summary of CAPS, dCAPS and InDel markers for starch synthesizing genes used in this study 

Genes 
Chrom

osome 
Forward primer Reverse primer R.E.

 1
 Allele size (bp) PIC

1
 

GBSSII 7 TGACCTGAAAATCATATTATTAC CACTTTCGTTTGGTGCATCTG SpeI 180 (A), 158 (T ) 0.473 

SSIIc (SSII-1) 10 CGGTGGCAAGGAGAGCCGGGGT GCGGCACGGATCTGGAGAAG MboII 210 (G); 181 (T) 0.109 

SSIIb (SSII-2) 2 TTCGCAAAGCATGAGACAATAAG GAGGCCCAAGTCATTCAACAA - InDel (155; 172) 0.280 

SSIIIb (SSIII-1) 
4 

AGCAGAATGAATCTGACAATCTAG CGTGATTTCCACCATAAGAGCAA XbaI 
182 (AG), 

164+20(AGAG) 
0.302 

SSIIIa (SSIII-2) 
8 

TGTTAAAATTTCCCCCCAAGTAC 
GCATAATGTTCAACTGTAGATAAAGAA

G 
MobII 203(C); 166+37(T) 0.471 

SSIVa (SSIV-1) 1 GTCGCTTCCTAGGAGGGCAACGT GATAACTGCTAAGATATTGAGAG Acl 198 (C); 176 (T) 0.260 

SSIVb (SSIV-2) 5 CCAAGTGGGGATCATCAACCTC CCCGCAAAAATGAAGCTAAGC - InDel (252; 230) 0.005 

 5 CTTCTGATTGATGGTTGGTTGC
2
 GGAAGAATAATCTCTACTAGGTGGC SphI 728 (G); 523+205 (A) 0.381 

BEIIb (SBE3) 2 GCATCCTCAACCTAAAAGACCA GAATCAACCATCCAGCAAAGG Scal 301 (G); 140+160 (A) 0.462 

BEIIa (SBE4) 4 CTGGGTGCTCCTGTTTGTTTCT CGTGCTTATTCGCTGTATTCCT MnlI 192 (C); 163 (G) 0.358 

ISA1 8 CGCACTGGATTTCAAGATGAGC TCCATAGATGCTTTCGGCTGT AluI 213 (C); 191 (T) 0.305 

ISA2 5 CAGGCGTGTAGCAAGATCACTCAT TGACCCGGTTCTTTCCATGAC Nla III 181 (A); 157(G) 0.500 

ISA3 9 TGACTGATTGGATGCTGCTAAAC GCCGCTCTTGTTTGGAAATG HinfI 246 (A); 174+72 (G) 0.336 

PUL 4 AGAGAAGGAGAAAGAAGTGGAGAC
2
 GTCCAAACTGAATCACTCAATCG - InDel (128; 115) 0.334 

1. R.E: restriction enzyme; PIC: polymorphism information content. 

2. The CAPS (SSIV-2) and InDel (PUL) markers were adapted from Tian et al. (2010) and Yan et al. (2011). 
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Table 2 Comparison of the mean values of the phenotypic traits among seven subpopulations 

Subpop AAC PV HPV CPV BD SB CS Stab SBratio PT HD ADH COH To Tp Tc T1/2 Hg Hr R% 

POP1 24.5 b 241.1 b 180.8 ab 319.6 ab 60.3 c 78.5 a 138.8 b 0.7 ab 1.8 bcd 73.7 b 29.2 cd -30.0 bc 0.6 b 63.0 c 69.2 c 75.9 c 7.2 b 7.0 d 1.1 de 14.8 de 

POP2 21.2 c 224.1 c 158.3 d 309.5 b 65.8 bc 85.3 a 151.2 a 0.7 cd 2.0 a 73.9 b 25.0 d -6.2 ab 0.6 b 67.0 b 72.2 ab 78.7 ab 6.4 cd 7.8 c 1.8 cd 21.7 cd 

POP3 28.4 a 257.4 a 189.8 a 336.9 a 67.7 bc 79.4 a 147.1 ab 0.7 abc 1.8 bcd 76.2 a 41.6 a -36.1 d 0.5 c 69.4 c 74.1 a 80.1 a 5.9 d 9.1 a 3.6 a 38.9 a 

POP4 24.9 b  245.3 b 176.4 bc 323.9 ab 68.9 bc 78.6 a 147.6 ab 0.7 bcd 1.8 b 75.9 a 32.2 c -36.3 d 0.6 b 68.5 ab 73.8 a 80.0 a 6.4 cd 8.4 b 2.5 bc 28.7 bc 

POP5 18.0 d 235.5 bc 163.9 d 280.5 c 71.6 b 45.0 b 116.6 c 0.7 d 1.7 d 76.3 a 17.1 e -21.6 a 0.7 a 64.1 c 70.7 bc 77.9 b 8.0 a 7.8 c 0.9 e 10.5 e 

POP6 27.6 a 244.4 b 184.3 ab 329.7 a 60.1 c 85.3 a 145.4 ab 0.8 a 1.8 bc 76.3 a 37.0 b -33.3 cd 0.5 c 68.5 ab 73.6 a 79.8 a 6.3 cd 8.5 ab 2.9 ab 34.0 ab 

POP7 17.7 d 258.4 a 166.3 cd 288.8 c 92.1 a 30.3 c 122.4 c 0.6 e 1.8 cd 75.1 a 18.6 e -21.4 a 0.7 a 66.6 b 72.3 ab 78.6 ab 6.7 bc 8.2 bc 1.0 e 11.5 e 

Different letters in the same column were significant at P < 0.05.  
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Table 3 The marker loci associated with starch physicochemical property traits detected with Q+K model and with Wx or SSIIa as additional 

covariate. 

 
 

Main effect loci 
 

Wx covariate 
 

SSIIa covariate 

 Trait Locus chro.
1
 p_Marker 

 
Locus Chro. p_Marker 

 
Locus Chro. p_Marker 

AAC 
            

 AAC RM122 5 3.810
-3

 
 

RM507 5 1.310
-3

 
 

RM122 5 5.110
-3

 

 
 

Wx 6 1.4510
-95

 
 

SSIIa 6 5.310
-3

 
 

Wx 6 2.1410
-94

 

 
 

SS1 6 1.5710
-5

 
 

RM276 6 2.110
-4

 
 

SS1 6 4.6710
-5

 

 
 

RM346 7 4.610
-3

 
 

BE1 6 3.210
-3

 
 

RM346 7 9.010
-3

 

 
 

RM222 10 5.210
-3

 
 

GBSSII 7 5.510
-3

 
 

RM222 10 5.610
-3

 

 
     

SSIIc 10 4.110
-3

 
    

Pasting viscosity 

 PV Wx 6 1.1810
-5

 
     

Wx 6 1.5210
-5

 

 HPV Wx 6 6.4610
-5

 
     

Wx 6 4.9210
-5

 

 CPV Wx 6 1.5210
-9

 
     

Wx 6 4.8810
-9

 

 
 

RM346 7 7.910
-3

 
        

 BD Wx 6 3.9210
-22

 
 

RM237 1 4.910
-3

 
 

Wx 6 3.9510
-25

 

 
 

SSIIa 6 1.210
-3

 
 

RM48 2 7.510
-3

 
    

 
     

RM507 5 9.310
-3

 
    

 
     

RM276 6 6.310
-4

 
    

 
     

SSIIa 6 3.7210
-8

 
    

 
     

RM340 6 8.210
-3

 
    

 SB Wx 6 2.8710
-25

 
 

RM317 4 6.210
-3

 
 

Wx 6 2.8310
-25

 

 
 

SS1 6 1.210
-3

 
     

SS1 6 1.610
-3

 

 
 

RM346 7 1.510
-3

 
     

RM346 7 2.610
-3
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 CS RM161 5 4.510
-3

 
 

RM346 7 1.810
-3

 
 

RM161 5 5.910
-3

 

 
 

Wx 6 2.2910
-8

 
     

Wx 6 1.2610
-7

 

 
 

SS1 6 9.910
-3

 
     

RM346 7 2.6510
-4

 

 
 

SSIIa 6 5.310
-3

 
        

 
 

RM346 7 8.7710
-5

 
        

 PT SSIIIb 4 9.110
-3

 
 

SSIIIb 4 9.910
-3

 
 

RM346 7 1.910
-3

 

 
 

RM253 6 9.3910
-4

 
 

RM253 6 1.110
-3

 
 

RM447 8 1.410
-3

 

 
 

RM276 6 8.5910
-4

 
 

RM276 6 8.0210
-4

 
 

RM17 12 3.210
-3

 

 
 

SSIIa 6 8.2810
-35

 
 

SSIIa 6 2.0610
-35

 
    

 
 

RM346 7 4.310
-3

 
 

RM346 7 3.110
-3

 
    

 Stability Wx 6 2.4510
-22

 
 

RM237 1 3.510
-3

 
 

Wx 6 6.6710
-25

 

 
 

SSIIa 6 1.310
-3

 
 

RM507 5 7.510
-3

 
    

 
     

RM276 6 2.410
-3

 
    

 
     

SSIIa 6 8.2410
-8

 
    

 
     

RM209 11 8.410
-3

 
    

 SBratio RM161 5 3.7410
-4

 
 

RM161 5 7.3710
-4

 
 

GS3 3 6.610
-3

 

 
 

Wx 6 3.010
-3

 
 

SSIIa 6 6.210
-3

 
 

RM161 5 5.7710
-4

 

 
 

SSIIa 6 2.510
-3

 
 

RM346 7 1.010
-2

 
 

Wx 6 4.410
-3

 

 
 

RM346 7 7.510
-3

 
     

RM346 7 7.710
-3

 

Gel texture 

 HD PUL 4 4.610
-3

 
 

RM252 4 9.810
-3

 
 

PUL 4 3.010
-3

 

 
 

Wx 6 5.6810
-14

 
 

RM3 6 9.310
-3

 
 

Wx 6 2.4810
-39

 

 
 

SS1 6 3.3210
-4

 
 

GBSSII 7 4.210
-3

 
 

SS1 6 1.410
-3

 

 ADH Wx 6 3.5810
-12

 
     

Wx 6 4.910
-12

 

 COH Wx 6 4.9610
-59

 
 

RM252 4 5.610
-3

 
 

Wx 6 2.8310
-58

 

 
 

SS1 6 2.910
-3

 
     

SS1 6 4.710
-3
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RM346 7 6.410
-3

 
     

RM346 7 7.610
-3

 

Thermal property 

 To SSIIa 6 2.010
-24

 
 

SSIIa 6 7.3710
-25

 
 

RM346 7 5.510
-3

 

 
 

RM346 7 9.110
-3

 
 

RM346 7 6.410
-3

 
 

RM447 8 8.710
-3

 

 
         

RM215 9 6.510
-3

 

 
         

RM17 12 4.410
-3

 

 Tp SSIIa 6 1.9110
-25

 
 

SSIIa 6 2.6710
-26

 
 

RM346 7 7.910
-3

 

 
     

RM346 7 7.310
-3

 
 

RM447 8 4.110
-3

 

 
         

RM17 12 4.710
-3

 

 Tc SSIIa 6 9.8710
-24

 
 

SSIIa 6 5.6410
-25

 
 

Wx 6 1.810
-3

 

 
 

RM484 10 8.510
-3

 
 

RM346 7 9.910
-3

 
 

RM125 7 7.610
-3

 

 
     

RM484 10 9.110
-3

 
 

RM17 12 3.410
-3

 

 Hg RM1 1 9.9010
-4

 
 

RM1 1 1.010
-3

 
 

RM1 1 1.510
-3

 

 
 

AGPL2 1 1.410
-3

 
 

AGPL2 1 1.110
-3

 
 

AGPL2 1 4.610
-3

 

 
 

RM48 2 5.110
-3

 
 

RM48 2 5.510
-3

 
 

Wx 6 1.610
-3

 

 
 

SSIIa 6 1.2410
-5

 
 

SSIIa 6 2.3810
-6

 
 

RM224 11 3.910
-3

 

 
     

RM152 8 6.210
-3

 
    

 T1/2 Gn1a 1 8.110
-3

 
 

Gn1a 1 9.310
-3

 
 

Gn1a 1 8.110
-3

 

 
 

RM161 5 1.110
-3

 
 

RM161 5 2.510
-3

 
 

SSIIb 2 5.1310
-4

 

 
 

Wx 6 4.510
-3

 
 

SSIIa 6 3.4710
-15

 
 

AGPL3 3 3.310
-3

 

 
 

SSIIa 6 1.4610
-15

 
     

RM161 5 2.310
-3

 

 
 

RM346 7 5.510
-3

 
     

RM278 9 9.110
-3

 

 
         

RM215 9 1.310
-3

 

 
         

RM286 11 6.610
-3

 

 
         

RM202 11 6.010
-3

 

 
         

RM224 11 5.310
-3
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Retrogradation 

 Hr AGPL3 3 5.010
-3

 
 

AGPL2 1 8.810
-3

 
 

AGPL3 3 2.6910
-4

 

 
 

BEIIa 4 5.210
-3

 
 

RM87 5 1.0210
-2

 
 

Wx 6 2.3010
-10

 

 
 

RM161 5 5.410
-3

 
 

SSIIa 6 2.2210
-16

 
 

RM346 7 4.910
-3

 

 
 

Wx 6 3.1810
-10

 
 

ISA1 8 1.1810
-4

 
 

ISA1 8 4.6710
-5

 

 
 

SSIIa 6 1.0610
-15

 
        

 
 

RM346 7 4.3310
-4

 
        

 
 

ISA1 8 2.0310
-4

 
        

 R% AGPL3 3 4.210
-3

 
 

AGPL2 1 3.410
-3

 
 

AGPL3 3 2.3110
-4

 

 
 

BEIIa 4 2.510
-3

 
 

BEIIa 4 5.510
-3

 
 

BEIIa 4 5.110
-3

 

 
 

Wx 6 7.2810
-12

 
 

RM87 5 2.910
-3

 
 

Wx 6 2.2510
-12

 

 
 

SSIIa 6 1.3210
-15

 
 

SSIIa 6 1.0810
-16

 
 

RM346 7 3.210
-3

 

 
 

RM346 7 2.2510
-4

 
 

ISA1 8 7.1810
-5

 
 

ISA1 8 3.5910
-5

 

 
 

ISA1 8 1.6210
-4

 
        

Chro.: chromosome. 
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