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Abstract—Access latency is a key performance metric for cloud
storage systems and has great impact on user experience, but
most papers focus on other performance metrics such as storage
overhead, repair cost and so on. Only recently do some models
argue that coding can reduce access latency. However, they are
developed for special scenarios, which may not reflect reality. To
fill the gaps between existing work and practice, in this paper, we
propose a more practical model to measure access latency. This
model can also be used to compare access latency of different
codes used by different companies. To the best of our knowledge,
this model is the first to provide a general method to compare
access latencies of different erasure codes.

Index Terms—Access latency, erasure codes, MDS property,
degraded reads, computation cost.

I. I NTRODUCTION

Access latency indicates the availability of storage systems
and it can be measured as the average time taken to read data
from storage nodes. Access latency is very important in cloud
storage systems as it greatly impacts user experience. For
example, Google found that users performed fewer searches
after 4 to 6 weeks because of a 400 millisecond additional
delay (up to 0.74% fewer searches after the delay has been
implemented for 4 to 6 weeks) [1]. In general, node availability
with the 3-replica strategy is higher than that with erasure
coding [2] due to the extra complexity of coding. Recently,
a few papers have studied the effectiveness of erasure codes
at reducing access latency. By queueing-theoretic analysis of
coded systems, [3], [4] proposed algorithms and argued that
erasure codes can reduce access latency. Based on fork-join
queues for parallel processing, [5] generalized the (n,n) fork-
join system and found bounds on its mean response time. [6]
argued that redundant requests in the context of the wide-area
Internet can help reduce latency. A theoretical analysis in[7]
shows that sending redundant requests can help reduce access
latency in a coded storage system with maximum distance
separable (MDS) property. Despite such efforts, an accurate
performance model of access latency in cloud storage systems
is still lacking.

First, almost all the above papers assume that each request to
the storage system needs to access at least k storage nodes. But
in practice, the storage code deployed is usually a systematic

code, which means that one copy of the data exists in uncoded
form [8], to facilitate applications such as keyword searching.
Besides, in some systems such as Windows Azure Storage
(WAS), not until the files reach a certain size (e.g., 3GB), will
they be a candidate for erasure coding [9]. Although MDS
codes can recover the whole data with any k out of n storage
nodes, in a storage system with erasure codes, we will not
just divide any file into k fragments no matter how small it
is. We will combine many files into a fixed size and then
divide them into k data fragments and add parity fragments to
increase fault tolerance. Considering that requests usually do
not need all the 3GB content, even in cloud storage systems
with erasure coding, most reading requests just need to read
data from one storage node in practice.

Second, in cloud storage systems, other than the usual data
retrieval, repairing failures is a frequent operation [10]. Cloud
storage systems such as Google file system (GFS), Amazon S3
and WAS, assemble massive amounts of unreliable hardware.
Facebook’s Hadoop distributed file system (HDFS) needs to
transfer around 180TB data across racks per day for recovery
operations and there are many high repair rate periods every
day [11]. As shown in Fig. 1 (we will show how to get this
figure in a later section), in cloud storage systems, for a certain
reading requests arrival rateλ1, the access latency will greatly
increase with the increase of repairing requests arrival rate λ2.
Especially whenλ2 is large, a little increase ofλ1 or λ2 may
dramatically increase the access latency of reading requests.
So, when we study access latency in cloud storage systems,
we must consider the impact of repairing failed fragments on
the access latency of reading requests for the data. However,
to the best of our knowledge, this has never been mentioned
in the previous work on access latency.

Third, while degraded reads [12], [13] are common in cloud
storage systems, they are ignored by previous work on access
latency. Degraded reads occur when one storage node is too
busy serving other requests and becomes temporarily unavail-
able to a new reading request, and we need to reconstruct
that storage node with the data from other nodes to meet the
requirement of this new reading request. Thus a new reading
request at an unavailable node generate degraded reads at other
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Fig. 1. The access latency of reading requests varies with different repairing
request arrival rates.

nodes. Degraded reads are similar to failure repair but the
former are due to transient unavailability while the latteris
permanent data loss which has to be recovered. Degraded reads
will influence the access latency as much as repairs and must
be included in the access latency analysis.

Fourth, algorithms and models in previous work like [3]
only compare the access latency of MDS erasure codes with
the replication strategy and cannot compare the latencies of
different erasure codes.

Finally, [3] further assumes that the cost of removing
unfinished jobs is negligible. This is usually not the case,
and servers may stay idle for a time before they can remove
the unfinished jobs [7]. With redundant requests, MDS codes
may help decrease access latency but only in some specific
circumstances under ideal conditions. Perhaps, this is why
GFS, WAS and Facebook HDFS still use 3-replica strategy
by default [9], [11].

Our assumptions. In our new model, we assume that 1)
in line with most previous work, the storage systems are
homogeneous and the failures of different storage nodes are
independent; 2) most reading requests just need to access one
storage node and if some reading requests need to read from
more than one node, degraded reads may be used; 3) repair
requests and degraded reads are quite common.

Our Contributions. In this paper, we propose a new queue-
ing model which accounts for the redundancy of erasure codes
and the impact of degraded reads and repair requests to better
measure the access latency in cloud storage systems. To the
best of our knowledge, this model is the first to give a general
way to measure and compare the access latency of different
erasure codes.

The remainder of this paper is organised as follows. In
Section II we propose a new model to measure access latency
and explain how it works. In Section III we show numerical

results to compare access latencies of different codes withour
new model. Finally, in Section IV, we conclude and discuss
some open questions.

II. SYSTEM MODEL

To study the access latency in storage systems, models in
[3], [5], [7], [14] try to model the data retrieval process.
Although these models are already very complicated, they still
suffer from many unrealistic assumptions. One key problem is
that cloud storage systems are very complicated and contain
many storage nodes, that it is almost impossible to keep track
of all these storage nodes’ concurrent actions on differentre-
quests simultaneously with one queueing model. We overcome
this complexity by decomposing the whole storage system into
individual storage nodes and analyzing one of them. Since
the system is assumed to be homogeneous, the access latency
performance of the whole system can be estimated from the
access latency performance of an arbitrary data storage node.

One  

Storage 

Node 

Reading Requests 

Degraded Reads Requests 

Repair Requests 

Fig. 2. Different requests to one storage node in cloud storage system.

In cloud storage systems, reading requests to a storage
node are divided into two types. One is just direct reading
from that storage node, and the other is from degraded reads
(meaning the reconstruction of that node from other storage
nodes because of transient unavailability of that node). As
shown in Fig. 2, for any one storage node, requests in the
queue are divided into three groups, reading requests, degraded
reads requests and repair requests. Although degraded reads
are resulted from reading requests on other storage nodes, they
have the same importance with direct reading requests since
they all influence user experience. In our model, we merge
degraded reads and reading requests into one general reading
requests queue, as shown in Fig. 3. General reading requests
arrival rate isλ1 and repair requests arrival rate isλ2, µ1

and µ2 respectively are the service rate of reading requests
and repair requests. Although writing is also a routine process
in cloud storage systems, since we usually use append-only
method to add new content or update some content in massive
distributed storage systems [15], writing requests do not much
influence the latency of the system. So we just consider the
reads, degraded reads and repair requests here.

We model the general reading and repair requests as a
head-of-the-line (HOL) priority queueing system. Since wetry
our best to guarantee no data loss in cloud storage systems,
repair requests should have higher priority than general reading
requests. Therefore, repair requests always queue in front
of reading requests. But in their respective groups, requests
follow the rule of first-come-first-served.
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Fig. 3. General reading requests and repair requests to one storage node.

For the HOL priority queueing system, we can compute the
access latency of general reading requests asw1 = w0+ρ2w2

1−ρ1−ρ2

,

wherew0 =
λ1E(x2

1
)

2 +
λ2E(x2

2
)

2 is the average access latency
for both general reading requests and repair requests without
considering priorities,w2 = w0

1−ρ2

is the actual access latency
of repair requests in HOL priority queueing systems,ρ1 = λ1

µ1

,
ρ2 = λ2

µ2

, x1 andx2 are the service times of general reading
requests and repair requests, respectively [16]. As in mostof
the previous work, we assume Poisson arrivals and exponential
service times for both general reading and repair requests.So,
we haveσ2

x1
= 1

µ2

1

, E(x1) =
1
µ1

andσ2
x2

= 1
µ2

2

, E(x2) =
1
µ2

.

SinceE(x2) = σ2
x+E(x)2, we can compute the access latency

of general reading requestsw0 with the parametersλ1, λ2, µ1

andµ2. If we set parametersµ1 = 3 andµ2 = 3, we can get
the numerical result in Fig. 1, which shows the impact ofλ1

andλ2 on access latency.
We know that in such an HOL priority queueing system,λ1,

λ2, µ1 andµ2 can all influence the access latency of general
reading requests. For one storage node, reading requests arrival
rate usually depends on data content and is uncorrelated with
the coding technique used. While degraded reads and repair
requests are highly correlated with the codes used in the
storage system. That is, general reading requests, including
both reads and degraded reads, with arrival rateλ1 and repair
requests, with arrival rateλ2 are both correlated with codes
used in the system. Service rate of general reading requests
µ1 and repair requestsµ2 usually have negative correlation
with the complexity of the encoding and decoding processes.
However, it is very hard to provide a quantitative analysis on
how coding complexity can impactµ1 and µ2 of different
coding storage systems. Here we focus on the influence of
code types onλ1 and λ2 and show how they will influence
access latency in cloud storage systems.

To compare the access latency of different erasure codes,
we first computeλ1 andλ2 for systems with different coding
methods and then use the priority queueing model above to
get the access latency of different codes.

Method to calculate λ1. In a storage system, suppose
reading requests arrival rate for any one storage node isλ′

1.
Degraded reads requests arrival rate for one node is positively
correlated withλ′

1 and the number of other storage nodes it is
connected to, to assist in its reconstruction. Suppose a fraction
x of all reading requests are direct reads, while 1-x of them are
degraded reads. So the direct reading requests to that storage

node isxλ′

1. Suppose that this storage node is connected with n
other nodes, and the probability that this storage node jointhe
reconstruction of any of the n nodes is p. Then we can get the
degraded reads requests for that storage node is(1− x)npλ′

1.
We can get the general reading requests arrival rate for that
node asλ1 = xλ′

1 + (1 − x)npλ′

1.
Method to calculate λ2. In cloud storage systems, the

probability of one failure is usually much higher than that of
more than one failure. For example, in Facebook warehouse
cluster, the proportion of single block recovery is as high as
98.08% [11]. So in this model, to computeλ2, we just assume
single failure.

Here we give a series of steps to calculate the relative value
of λ2 for different codes to be compared.

1) Choose one of the codes, say Code 1. In Code 1, suppose
for any storage node, original repair requests arrival rateis λ′

2.
Then useλ′

2 as the unit value to compute the values of other
codes.

2) In Code 1, arbitrarily choose one data storage node, if the
number of nodes in Code 1 connected to this node is n1, and
for another code such as Code 2, also arbitrarily choose one
data storage node. If the number of nodes in Code 2 connected
to that node is n2, then we can adjustλ′

2 of Code 2 ton2

n1

λ′

2.
This is because the more the number of nodes connected to
a storage node in a system, the higher the probability of that
storage node to be accessed to help repair some failed nodes.

3) Suppose in all these codes, the probability of any storage
node to join the repair of other nodes connected to it ispi, i =
1, 2, ..., which is different for different codes. Then we can
get the repair requests arrival rate of Code 1 asλ2 = p1λ

′

2.
For Code 2,λ2 = p2

n2

n1

λ′

2. Similarly, we can get theλ2 of all
other codes.

We need to calculate the valuepi according to the specific
structure of codes to be compared. When we calculatepi,
we need to consider the redundancy of erasure codes, the
different conditions of local and global parity fragments for
Local Reconstruction Codes [9] and so on.

III. N UMERICAL RESULTS AND ANALYSIS

We will start with the access latency comparison between
the 2-replica strategy and (4,2) MDS codes (this example is
used in [3], [4]). As shown in Fig. 4, for each method, there
are four storage nodes.

Suppose reading requests arrival rate to some content in
one storage node isλ′

1. Since in the 2-replica strategy, two
storage nodes have the same content, reading requests arrival
rate to each node is0.5λ′

1. It is easy to getλ1 2−replica =
x0.5λ′

1 + 1(1 − x)0.5λ′

1 = 0.5λ′

1. Since any 2 nodes out
of MDS(4,2) codes can reconstruct the node of transient
unavailability,pMDS(4,2) =

2
3 and n=3. That isλ1 MDS(4,2) =

xλ′

1+3(1−x)23λ
′

1 = (2−x)λ′

1, where0 ≤ x ≤ 1. Whatever x
is, we always getλ1 2−replica < λ1 MDS(4,2), and the smaller
x is, the bigger the difference between the two values.

Similarly, with the methods in the last section, we set the
2-replica strategy’s original repair requests arrival rate λ′

2 as



Replication : MDS  Code : 

A 

B 

A 

B A+2B 

A+B 

B 

A 

Fig. 4. 2-replica strategy storage and (4,2) MDS code storage.

unit value. We can getλ2 2−replica = λ′

2 andλ2 MDS(4,2) =
3 2
3λ

′

2 = 2λ′

2.
If we set λ′

2 = 0.1, x = 0.9, µ1 = 2 and µ2 = 2, with
HOL priority queueing we can get the access latency of 2-
replica and MDS(4,2) as shown in Fig. 5.

Obviously, the access latency of the 2-replica strategy is
much lower than the MDS(4,2) Code. Actually, we have
not considered the encoding and decoding complexity of
MDS(4,2) Code compared with the 2-replica strategy yet. If
we do, the difference of access latency between the 2-replica
strategy and the MDS(4,2) Code will be even bigger.
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Fig. 5. Access latency comparison between 2-replica and MDS(4,2).

The result here is different from that in [3], [4]. They assume
each request from users needs to read the whole coded data
and to access at least k storage nodes. But as discussed in the
introduction section, their models just consider some special
cases under some ideal conditions, while our model considers
more practical cases. Till now, GFS, WAS and Facebook
HDFS still use 3-replica strategy by default [9], [11] to reduce
access latency, especially for data requiring frequent retrievals.
Our conclusion here is in line with industrial preference. We
believe our model can better measure the access latency in
practice for different storage strategies.

Next, we show how our model can help measure and
compare access latency for different erasure codes. We will
compare some popular codes, namely, Local Reconstruction
Code (LRC)(12,2,2), LRC(6,2,2), Locally Repairable Codes
(LRCs)(10,6,5), Reed-Solomon (RS) Code(6,3), RS(10,4) and
RS(12,4). In particular, LRC is used in WAS in Microsoft [9],
RS Code(6,3) is used in GFS II [17], [18], RS Code(10,4) is
used in in HDFS in Facebook [19] and LRCs(10,6,5) are used
in HDFS-Xorbas.

With our model in the last section, the calculations ofλ1

andλ2 for RS codes are similar to the MDS(4,2) Code above.
Suppose reading requests arrival rate to any storage node is
λ′

1, we can easily getλ1 RS(6,3) = xλ′

1 + 8(1 − x)68λ
′

1 =
(6−5x)λ′

1, λ1 RS(10,4) = xλ′

1+13(1−x)1013λ
′

1 = (10−9x)λ′

1,
λ1 RS(12,4) = xλ′

1 + 15(1− x)1215λ
′

1 = (12− 11x)λ′

1.
The tough part is to calculateλ1 of LRCs(10,6,5) and LRC.
In LRCs(10,6,5), when any global parity node fails, other

parity nodes will help repair [13]. For any data storage node,
when one of the other nodes is temporarily unavailable or
fails, the probability of that node joining the reconstruction is
pLRCs(10,6,5) =

1
5
1
2+

4
51 = 0.9. We can getλ1 LRCs(10,6,5) =

xλ′

1 + 5(1− x)pLRCs(10,6,5)λ
′

1 = (4.5− 3.5x)λ′

1.
In LRC, for any data storage node, when any global

parity node is temporarily unavailable or fails, there is some
probability for that data storage node to help reconstruction.
When one of the other nodes in the same local group is
temporarily unavailable or fails, that storage node will help
reconstruction [9]. Specifically, for LRC(6,2,2), we can get
pLRC(6,2,2) = 3

91 + 2
9 (

1
2
3
4 + 1

2 (
1
2
2
4 + 1

2
3
4 )) = 0.486 and

λ1 LRC(6,2,2) = xλ′

1 + 9(1 − x)pLRC(6,2,2)λ
′

1 = (4.375 −

3.375x)λ′

1. For LRC(12,2,2), similarly,pLRC(12,2,2) =
6
151+

2
15 (

1
2
6
7 + 1

2 (
1
2
5
7 + 1

2
6
7 )) = 0.51 andλ1 LRC(12,2,2) = xλ′

1 +
15(1− x)pLRC(12,2,2)λ

′

1 = (7.65− 6.65x)λ′

1.
Following the steps of the last section, we set the orig-

inal repair request arrival rateλ′

2 of RS(6,3) Code as unit
value, then we can getλ2 RS(6,3) = 0.75λ′

2, λ2 RS(10,4) =
1.25λ′

2, λ2 RS(12,4) = 1.5λ′

2, λ2 LRCs(10,6,5) = 0.56λ′

2,
λ2 LRC(6,2,2) = 0.55λ′

2, andλ2 LRC(12,2,2) = 0.96λ′

2.
If we set λ′

2 = 0.1, x = 0.9, µ1 = 2 and µ2 = 2,
with HOL priority queueing we can get the access latency
of different erasure codes as shown in Fig. 6 and Fig. 7. Fig.
7 is the expanded part of Fig. 6, corresponding to smallλ′

1.
From Fig. 6 and Fig. 7 we can see that among the compared

codes, LRC(6,2,2) used in WAS can achieve the lowest access
latency while the access latency of RS(10,4) used in Facebook
and RS(6,3) used in Google are both relatively high. Although
LRC(12,2,2) is a variation of RS(12,4) and they have the
same storage overhead, LRC(12,2,2) achieves much lower
access latency by transfering two global parity nodes to
local parity nodes [9]. LRCs(10,6,5) has much lower access
latency compared with RS(10,4), and is a variation of RS(10,4)
by adding two local parity nodes and using a deterministic
algorithm with exponential complexity in the constructionof
code coefficients [13]. LRC(6,2,2) has almost the same access
latency compared with LRCs(10,6,5). However, the former has
lower repair cost and higher storage overhead, while the latter



has relatively higher fault tolerance capability.
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Fig. 6. Access latency comparison of different erasure codes.
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IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a more realistic model to measure
access latency and to the best of our knowledge, we are the
first to provide a general model to measure and compare
access latency between different erasure codes. Combining
access latency with other performance metrics, we can better
understand the advantages and disadvantages of different era-
sure codes and choose the code that matches our performance
requirements best.

There are still some interesting open questions. First, we
just consider the impact of one node’s unavailability or failure
on the access latency model since single recovery accounts

for more than 98% storage repairs in cloud storage systems
[11]. In the future, we may further generalize the model to
consider conditions of more than one node recovery. Besides,
since computational costs of different codes also impact access
latency, it will be interesting to study such impact in the future.
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