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Abstract—Access latency is a key performance metric for cloud code, which means that one copy of the data exists in uncoded
storage systems and has great impact on user experience, butform [8], to facilitate applications such as keyword seargh
most papers focus on other performance metrics such as stage Besides, in some systems such as Windows Azure Storage

overhead, repair cost and so on. Only recently do some models . 4 S .
argue that coding can reduce access latency. However, theyea (WAS), not until the files reach a certain size (e.g., 3GB)l wi

developed for special scenarios, which may not reflect reqi To they be a candidate for erasure coding [9]. Although MDS
fill the gaps between existing work and practice, in this papewe codes can recover the whole data with any k out of n storage
propose a more practical model to measure access latency. ih nodes, in a storage system with erasure codes, we will not
model can also be used to compare access latency of dlﬁerem]-ust divide any file into k fragments no matter how small it

codes used by different companies. To the best of our knowlgd, - Wi il bi files int fixed Si d th
this model is the first to provide a general method to compare IS. vve will combiné many Hies Into a lixed Sizé an en

access latencies of different erasure codes. divide them into k data fragments and add parity fragments to
Index Terms—Access latency, erasure codes, MDS property, increase fault tolerance. Considering that requests lysdal
degraded reads, computation cost. not need all the 3GB content, even in cloud storage systems

with erasure coding, most reading requests just need to read
data from one storage node in practice.

Access latency indicates the availability of storage syste  Second, in cloud storage systems, other than the usual data
and it can be measured as the average time taken to read detigeval, repairing failures is a frequent operationl [10oud
from storage nodes. Access latency is very important incclogtorage systems such as Google file system (GFS), Amazon S3
storage systems as it greatly impacts user experience. Bod WAS, assemble massive amounts of unreliable hardware.
example, Google found that users performed fewer searclregebook’s Hadoop distributed file system (HDFS) needs to
after 4 to 6 weeks because of a 400 millisecond additiona&nsfer around 180TB data across racks per day for recovery
delay (up to 0.74% fewer searches after the delay has bexgerations and there are many high repair rate periods every
implemented for 4 to 6 weekg)|[1]. In general, node avaitgbil day [11]. As shown in Figld1l (we will show how to get this
with the 3-replica strategy is higher than that with erasufgure in a later section), in cloud storage systems, for tirer
coding [2] due to the extra complexity of coding. Recentlyeading requests arrival radg, the access latency will greatly
a few papers have studied the effectiveness of erasure coitbesease with the increase of repairing requests arrivalxa
at reducing access latency. By queueing-theoretic asabfsi Especially when\, is large, a little increase of; or Ao may
coded systems[[3][[4] proposed algorithms and argued tlimamatically increase the access latency of reading résjues
erasure codes can reduce access latency. Based on fork-8on when we study access latency in cloud storage systems,
queues for parallel processin@l [5] generalized the (rork-f we must consider the impact of repairing failed fragments on
join system and found bounds on its mean response time. {6¢ access latency of reading requests for the data. However
argued that redundant requests in the context of the wiele-ato the best of our knowledge, this has never been mentioned
Internet can help reduce latency. A theoretical analysi§in in the previous work on access latency.
shows that sending redundant requests can help reducesacceshird, while degraded reads [12], |13] are common in cloud
latency in a coded storage system with maximum distans®rage systems, they are ignored by previous work on access
separable (MDS) property. Despite such efforts, an aceurétency. Degraded reads occur when one storage node is too
performance model of access latency in cloud storage sgstdmsy serving other requests and becomes temporarily unavai
is still lacking. able to a new reading request, and we need to reconstruct

First, almost all the above papers assume that each requeshéat storage node with the data from other nodes to meet the
the storage system needs to access at least k storage natlesidgjuirement of this new reading request. Thus a new reading
in practice, the storage code deployed is usually a systemaequest at an unavailable node generate degraded reatie@at ot
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results to compare access latencies of different codesowith
new model. Finally, in Section IV, we conclude and discuss
some open questions.

Il. SYSTEM MODEL

To study the access latency in storage systems, models in
[3l, [B], [7], [L4] try to model the data retrieval process.
Although these models are already very complicated, thiky st
suffer from many unrealistic assumptions. One key probkem i
that cloud storage systems are very complicated and contain
many storage nodes, that it is almost impossible to keef trac
of all these storage nodes’ concurrent actions on different
guests simultaneously with one queueing model. We overcome
5 : this complexity by decomposing the whole storage system int
s 02 04 06 08 1 individual storage nodes and analyzing one of them. Since

Repairing Requests Arrival Rate A, the system is assumed to be homogeneous, the access latency
performance of the whole system can be estimated from the

Fig. 1. The access latency of reading requests varies wiérelit repairing access latency performance of an arbitrary data storage. nod
request arrival rates.

Access Latency of Reading Requests

nodes. Degraded reads are similar to failure repair but | pegraded Reads Requests ——m —— —— —
former are due to transient unavailability while the latier Repair Requests ————()—@—@—@—>
permanent data loss which has to be recovered. Degradesl rn
will influence the access latency as much as repairs and nr
be included in the access latency analysis.

Fourth, algorithms and models in previous work like [z
only compare the access latency of MDS erasure codes v
the replication strategy and cannot compare the latendies node are divided into two types. One is just direct reading
different erasure codes. from that storage node, and the other is from degraded reads

Finally, [3] further assumes that the cost of removinmeaning the reconstruction of that node from other storage
unfinished jobs is negligible. This is usually not the caspgges because of transient unavailability of that node). As
and servers may stay idle for a time before they can remcghown in Fig.[2, for any one storage node, requests in the
the unfinished job< [7]. With redundant requests, MDS coc queue are divided into three groups, reading requestsadedr
may help decrease access latency but only in some speireads requests and repair requests. Although degraded read
circumstances under ideal conditions. Perhaps, this is V gre resulted from reading requests on other storage ndss, t
GFS, WAS and Facebook HDFS still use 3-replica strate paye the same importance with direct reading requests since
by default [9], [11]. they all influence user experience. In our model, we merge

Our assumptions. In our new model, we assume that 1degraded reads and reading requests into one generalgeadin
in line with most previous work, the storage systems arequests queue, as shown in Fify. 3. General reading requests
homogeneous and the failures of different storage nodes arrival rate is\; and repair requests arrival rate s, /i
independent; 2) most reading requests just need to accessand ., respectively are the service rate of reading requests
storage node and if some reading requests need to read fegi repair requests. Although writing is also a routine pssc
more than one node, degraded reads may be used; 3) repailoud storage systems, since we usually use append-only
requests and degraded reads are quite common. method to add new content or update some content in massive

Our Contributions. In this paper, we propose a new queuedistributed storage systems [15], writing requests do nathm
ing model which accounts for the redundancy of erasure codefiuence the latency of the system. So we just consider the
and the impact of degraded reads and repair requests to ba#eds, degraded reads and repair requests here.
measure the access latency in cloud storage systems. To thg/e model the general reading and repair requests as a
best of our knowledge, this model is the first to give a genenaéad-of-the-line (HOL) priority queueing system. Sincetwye
way to measure and compare the access latency of different best to guarantee no data loss in cloud storage systems,
erasure codes. repair requests should have higher priority than geneaaling

The remainder of this paper is organised as follows. mequests. Therefore, repair requests always queue in front
Section Il we propose a new model to measure access latentyeading requests. But in their respective groups, rdques
and explain how it works. In Section Il we show numericalollow the rule of first-come-first-served.

One
Storage
Node

Fig. 2. Different requests to one storage node in cloud geoosystem.

In cloud storage systems, reading requests to a storage



General Reading Requests with Arrival Rate /, node isz\}. Suppose that this storage node is connected with n
[ 1\ other nodes, and the probability that this storage nodetfan
_——— — —— - — One reconstruction of any of the n nodes is p. Then we can get the
]S\J‘(;’;:ge degraded reads requests for that storage no(e-isz)np\.
We can get the general reading requests arrival rate for that

Y node as\; = z\] + (1 — x)npA].
Repair Requests with Arrival Rate ﬂ? Method to calculate )\2. In cloud Storage SyStemS, the
probability of one failure is usually much higher than thét o
more than one failure. For example, in Facebook warehouse
cluster, the proportion of single block recovery is as high a

o ) 98.08% [11]. So in this model, to computg, we just assume
For the HOL priority queueing system, we can compute ”&‘?ngle failure.

H wo+pawsa . X .
access latency of general reading requestaas- T—p1—p2’ Here we give a series of steps to calculate the relative value
M E(z?) + A2 E(x3)
2

wherewg = is the average access latencyf A\, for different codes to be compared.

for both general reading requests and repair requests wtitho 1) Choose one of the codes, say Code 1. In Code 1, suppose
considering prioritiesw, = 12~ is the actual access latencyfor any storage node, original repair requests arrivalisatg.

of repair requests in HOL priority queueing systems= 2+, Then use\, as the unit value to compute the values of other

M1
Py = % z1 andz, are the service times of general readin§odes.

requests and repair requests, respectively [16]. As in mbst 2) In Code 1, ar_bitrarily choose one data storage npde, if the
the previous work, we assume Poisson arrivals and expahenfiumber of nodes in Code 1 connected to this node is n1, and

service times for both general reading and repair requssts. for another code such as Code 2, also arbitrarily choose one
we haveo? = L E(x;) =21 ando? = L, E(xy) = L. data storage node. If the number of nodes in Code 2 connected
1 wy' I 2 I

42 P ; no \/
SinceE(22) = o2+ E(x)?, we can compute the access latenclp that node is n2, then we can adjustof Code 2 to;2A;.
his is because the more the number of nodes connected to

of general reading requests with the parameters;, Ao, j1 . g -
and u,. If we set parameters; — 3 and s — 3, we can get a storage node in a system, the higher the probability of that

the numerical result in Figd 1, which shows the impact\of storage node to be accessed to help repair some failed nodes.
and )\, on access latency. 3) Suppose in all these codes, the probability of any storage
node to join the repair of other nodes connected tojitis =

A2, p1 and pe can all influence the access latency of gener(]il t27th Wh'c_h IS dlﬁe{ent f_or ldlfff;zrenft éozes.v\Thin Wf, can
reading requests. For one storage node, reading requegtd arlg:er Cedregi\" r_equ?us; agilr\:waill rr? evx(/) On € ttiz p1f 2”
rate usually depends on data content and is uncorrelatéd wif, ~00C <72 = P2y, A2 arly, we can ge 20ta

the coding technique used. While degraded reads and rep? ﬂer COdZS' leul h | di h i
requests are highly correlated with the codes used in the'Ve need to calculate the valyg according to the specific

storage system. That is, general reading requests, imud?tructure of codes to be compared. When we calculgie

both reads and degraded reads, with arrival patend repair we need to c_an|der the redundancy of erasure codes, the
requests, with arrival rata, are both correlated with codesd'fferent condltlon_s of local and global parity fragments f
used in the system. Service rate of general reading requéﬁgal Reconstruction Codes|[9] and so on.

11 and repair requestgs usually have negative correlation
with the complexity of the encoding and decoding processes.

However, it is very hard to provide a quantitative analysis 0 \we will start with the access latency comparison between
how coding complexity can impaqt; and p, of different the 2-replica strategy and (4,2) MDS codes (this example is
coding storage systems. Here we focus on the influence gfed in [3], [4]). As shown in FigJ4, for each method, there
code types om\; and A, and show how they will influence are four storage nodes.
access latency in cloud storage systems. Suppose reading requests arrival rate to some content in
To compare the access latency of different erasure codese storage node ig}. Since in the 2-replica strategy, two
we first compute\; and A, for systems with different coding storage nodes have the same content, reading request arriv
methods and then use the priority queueing model abovertge to each node i8.5),. It is easy to get\ o reprica =
get the access latency of different codes. 20.5\] + 1(1 — 2)0.5\] = 0.5\]. Since any 2 nodes out
Method to calculate ;. In a storage system, suppos@f MDS(4,2) codes can reconstruct the node of transient
reading requests arrival rate for any one storage nodé.is unavailability,pr;ps1,2) = 2 and n=3. Thatis\;_y/ps(4,2) =
Degraded reads requests arrival rate for one node is palgitiveA] +3(1—z)2\] = (2—2)A}, where0 < z < 1. Whatever x
correlated with\} and the number of other storage nodes it its, we always geh; 2> epiica < A\i_mps(a,2), and the smaller
connected to, to assist in its reconstruction. Supposectidra X is, the bigger the difference between the two values.
x of all reading requests are direct reads, while 1-x of theen a Similarly, with the methods in the last section, we set the
degraded reads. So the direct reading requests to thagstorzreplica strategy’s original repair requests arrivabraf as

( )

Fig. 3. General reading requests and repair requests totorags node.

We know that in such an HOL priority queueing system,

IIl. NUMERICAL RESULTS AND ANALYSIS



Next, we show how our model can help measure and
compare access latency for different erasure codes. We will
compare some popular codes, namely, Local Reconstruction
Code (LRC)(12,2,2), LRC(6,2,2), Locally Repairable Codes
(LRCs)(10,6,5), Reed-Solomon (RS) Code(6,3), RS(10,d) an
RS(12,4). In particular, LRC is used in WAS in Microsoft [9],
RS Code(6,3) is used in GFS [[]17]. ]18], RS Code(10,4) is
used in in HDFS in Facebook [19] and LRCs(10,6,5) are used
in HDFS-Xorbas.

With our model in the last section, the calculations)af
and\; for RS codes are similar to the MDS(4,2) Code above.
Suppose reading requests arrival rate to any storage node is
M, we can easily ged;_ps3) = alelOJr 8(1 — z)g\ =

i s _ (6=52)A], Mi_gsq0,4) = 2A1+13(1—2) 3 A = (10-92) N},
;gl}t\évidu;é\.Ne can gels o replica = Ay @NA Ay nrps(a,2) M_rs(ias) — x)\,f ¥ 1>5(1 T — (1123_ Y

If we set)\, = 0.1, z = 0.9, 1 = 2 and ps = 2, with The tough part is to calculate, of LRCs(10,6,5) and LRC.

HOL priority queueing we can get the access latency of 2- !N LRCS(10,6,5), when any global parity node fails, other
replica and MDS(4,2) as shown in Fg. 5. parity nodes will help repaif [13]. For any data storage node
Obviously, the access latency of the 2-replica strategy {d1€N one of the other nodes is temporarily unavailable or
much lower than the MDS(4,2) Code. Actually, we havidils, the probakimty gf that node joining the reconstiantis
1 . L _ 1 _ _
not considered the encoding and decoding complexity BfRCs(10.6.5) = 53t5l= 0-?- We can genl_Lﬁcs(lo,G,S) =
MDS(4,2) Code compared with the 2-replica strategy yet. M1 +5(1 — 2)pLres(10,65)AM = (4.5 — 3.52)A7.
we do, the difference of access latency between the 2-geplic !N LRC. for any data storage node, when any global

strategy and the MDS(4,2) Code will be even bigger. parity node is temporarily unavailable or fails, there isngo
probability for that data storage node to help reconstoucti

07 : : : : : : : When one of the other nodes in the same local group is
temporarily unavailable or fails, that storage node willphe
reconstruction[[9]. Specifically, for LRC(6,2,2), we cant ge

Replication : MDS Code :

Fig. 4. 2-replica strategy storage and (4,2) MDS code seorag

0.6
PLrC@G22) = 51+ 2(32 + 2(32 + 33)) = 0.486 and

st AM_Lro@6,2,2) = TN+ 91 — T)pLrRoG22)AN = (4~3675 -
3.375x)\|. For LRC(12,2,2), similarlyp, rc(12,2,2) = 151 +

0.4k \ %(%g + %(%% —|— %g)) = 051 and )‘I_LRC(12,2,2) = ]})\Il +
15(1 — $)pLRc(12’272))\11 = (765 - 665.%))\/1

0l | Following the steps of the last section, we set the orig-

inal repair request arrival rate), of RS(6,3) Code as unit
. | value, then we can geX;_gs(s,3) = 0.75)\3, Ao_rs(10.4) =
1.25X5, Ao rsqiz,a) = 1.5\, Ao pres(oes = 0.56X5,
A2_LRC(6,2,2) = 0.5505, and\o_pro(12,2,2) = 0.96A5.
If we set\, = 0.1, 2 = 0.9, uyu = 2and ua = 2,
with HOL priority queueing we can get the access latency
0 o1 02 03 o2 o5 o6 o7 og oOfdifferent erasure codes as shown in Fiy. 6 and Hig. 7. Fig.
Reading Requests Arrival Rate A, [7 is the expanded part of Figl 6, corresponding to smuall
From Fig[6 and Fid.]7 we can see that among the compared
Fig. 5. Access latency comparison between 2-replica and (MR25 codes, LRC(6,2,2) used in WAS can achieve the lowest access
latency while the access latency of RS(10,4) used in Fad¢eboo
The result here is different from that in/[3]] [4]. They assumand RS(6,3) used in Google are both relatively high. Althoug
each request from users needs to read the whole coded d®R&(12,2,2) is a variation of RS(12,4) and they have the
and to access at least k storage nodes. But as discussed irst#imee storage overhead, LRC(12,2,2) achieves much lower
introduction section, their models just consider some igpecaccess latency by transfering two global parity nodes to
cases under some ideal conditions, while our model corssidircal parity nodes[]9]. LRCs(10,6,5) has much lower access
more practical cases. Till now, GFS, WAS and Facebod&tency compared with RS(10,4), and is a variation of RS(L0,
HDFS still use 3-replica strategy by defalllt [9], [11] touee by adding two local parity nodes and using a deterministic
access latency, especially for data requiring frequeneretls. algorithm with exponential complexity in the constructioh
Our conclusion here is in line with industrial preferencee Weode coefficients [13]. LRC(6,2,2) has almost the same acces
believe our model can better measure the access latencyaiency compared with LRCs(10,6,5). However, the former ha
practice for different storage strategies. lower repair cost and higher storage overhead, while therlat

0.2

0.1

Access Latency of General Reading Requests




has relatively higher fault tolerance capability. for more than 98% storage repairs in cloud storage systems
[11]. In the future, we may further generalize the model to
6 1 consider conditions of more than one node recovery. Besides
since computational costs of different codes also impaztss
latency, it will be interesting to study such impact in theufe.
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There are still some interesting open questions. First, we
just consider the impact of one node’s unavailability olufia

on the access latency model since single recovery accounts
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