Mixed-Architecture Process Scheduling on Tightly
Coupled Reconfigurable Computers

Brandon Kyle Hamilton, = Michael Inggs
Department of Electical Engineering
University of Cape Town
Cape Town, South Africa
{brandon.hamilton, michael.inggs}@uct.ac.za

Abstract—The design and implementation of a multitasking
runtime system for mixed-architecture applications on a tightly
coupled FPGA-CPU platform is presented. The runtime environ-
ment and the user applications assume an underlying machine
that encompasses multiple computing architectures within a
unified machine model. Using this model, a unified process
scheduling mechanism was developed that enables concurrent
execution of multiple mixed-architecture processes. Scheduling
and allocation strategies, including blocking and preemption,
were implemented and evaluated with respect to performance
and fairness on a Xilinx Zynq platform using a mix of synthetic
workloads.

I. INTRODUCTION

While multitasking is routinely supported in conventional
CPU-based systems, support for resource sharing in FPGA-
accelerated systems has remained limited. With a general
lack of resource sharing facilities, existing systems tend to
dedicate FPGA accelerators to a single application, blocking
other users from accessing them concurrently. Any sharing
of accelerator resources must take place within one user
process and must rely on ad-hoc user-defined mechanisms
to coordinate concurrent access. From the OS’s perspective,
since the accelerators are treated as I/O devices instead of
computing devices, the process scheduler usually does not
take into account the computing time an application spent on
them, negatively affecting the fairness and responsiveness of
the system as a whole [1], [2].

To provide true multiuser support on an FPGA-accelerated
platform therefore requires careful coordination among the
user processes by the OS, which must treat reconfigurable
resources as first-class computing resources of the system.
The scheduler must be aware of and be able to adjust its
scheduling decision in response to the time and resources
consumed by a user process, may it be on the host CPU
or in the reconfigurable hardware fabric. This is particularly
important in tightly coupled FPGA-CPU systems in which
multiple mixed-architecture user processes are going to be
executing concurrently, each possibly spending some of their
execution time on non-CPU computing resources.

Most existing works in the area have been focusing on the
theoretical foundation of spatially scheduling tasks within an

This work was supported in part by the Research Grants Council of Hong
Kong, project ECS 720012E

Hayden Kwok-Hay So
Department of Electrical & Electronic Engineering
University of Hong Kong
Hong Kong
hso@eee.hku.hk

FPGA [3]; while others were devoted to the development of
system-specific mechanisms for task preemption [4] or task
relocation [5]. Partly due to the practical limitations of such
existing platforms, substantial portions of the FPGA program-
ming logic resources were often spent on implementing the
underlying task management platform instead of on actual
computation.

This work presents the design and implementation of an OS
process scheduler that is fully aware of the mixed-architectural
nature of the user processes. Using an implementation on a
Xilinx Zynq processor, different process scheduling strategies
under various mixes of workload were studied. The OS sched-
uler was implemented in a Linux kernel module that employs
a readback-based strategy via the Configuration Access Port
for context-switching of mixed-architecture applications.

With the practical implementation of the proposed sched-
uler, we consider the main contributions of this work are
1) The first practical implementation of mixed-architecture
process scheduler on a tightly-coupled FPGA-CPU platform,
and 2) A study on trade-off in blocking and preemptive
scheduling decisions in the presence of high-overhead FPGA
tasks.

II. RELATED WORK

Various techniques have been proposed to handle context
switching and hardware preemption on programmable logic
devices. Rupnow et. al. [2] demonstrate three execution poli-
cies for hardware multitasking: block, drop and rollback,
applied at each software thread context switch interval. A par-
tial reconfiguration-based hardware context-switching method
using a database in memory to save and restore the FPGA data
is shown in [6]. Koch et. al. [7] extend the concept of software
checkpointing to the hardware, in contrast to a readback-
based approach. These works separate the programmable logic
region into sections, with address scheduling methods carried
out by dedicated hardware to effectively managing these
regions among competing hardware kernels. In contrast, our
system rather views the full reconfigurable hardware region
as a possible execution architecture for running applications,
thereby allowing the software scheduler to manage the re-
source utilization.

From the perspective of the operating system, not much
work has been devoted to the study of scheduling processes
that execute with a mixture of computing architectures during
runtime, such as those on a tightly-coupled CPU and FPGA
system. Pham et. al [8] propose use of a microkernel-based
hypervisor for virtualized execution and management of soft-
ware and hardware tasks running on a commercial hybrid
computing platform. ReconOS [9] provides an execution envi-
ronment and extends the multi-threaded programming model
to reconfigurable hardware using threads. This system requires
the explicit control and coordination of the hardware threads
within the user application, in contrast to our simplified single-
context model.

III. TARGET MACHINE MODEL

To facilitate compiling and executing mixed-architecture
applications, both the application development framework and
the OS scheduler assume a simple underlying machine model
with mixed computing architecture. The underlying Multiple
Runtime Architecture Computer (MURAC) is a unified ma-
chine model that views heterogeneous computing architec-
ture systems as a single idealized processor with morphable
instruction execution units. It provides an abstraction for
utilizing different compute architectures during runtime at a
level similar to the instruction set architecture (ISA) of a con-
ventional processor. The model defines the default architecture
of the machine, running the OS, as the primary architecture
(PA), and all other architectures on which a user may choose
to execute their code are termed auxiliary architectures (AA).
Applications may switch the computing architecture between
PA and AA during runtime by using the branch-auxiliary-
architecture (BAA) and return-to-primary-architecture (RPA)
machine instructions.

Implemented on a tightly-coupled FPGA-CPU system, the
CPU acts as the primary architecture, and the reconfigurable
logic is seen as dynamically adapting auxiliary architectures.
Logically, a MURAC system contains only a single unified
memory address space, regardless of the number of auxiliary
architectures defined. In addition, the MURAC model adopts
the broad definition of an instruction to represent any en-
tity that configures the machine so as to carry out proper
computation. Using this definition, an FPGA configuration
bitfile may equally be treated as an ultra-long instruction
word, similar to that proposed by DeHon [10]. With this
broad definition, the execution of a program, regardless of
the computing architecture, is controlled by a single stream of
instruction.

The simple MURAC model is useful as it enables the
design of a unified scheduler that takes a holistic view on
process scheduling in the presence of heterogeneous comput-
ing fabric. It helped to develop the notion of fairness among
user processes, and allowed simpler decision making logic
within the scheduler. Finally, unified instruction streams aid in
streamlining the OS context switch logic in the actual platform
implementation.

IV. PROCESS SCHEDULING AND RESOURCE ALLOCATION

In modern operating systems, multitasking allows simulta-
neous execution of multiple process by interleaving execution.
The Completely Fair Scheduler [11] (CFS) implemented in
the Linux kernel is modeled after a perfectly fair CPU: if two
programs are running simultaneously, they both run at 50% of
the CPU power at the same time. This scheduling algorithm
is based on the principle of Weighted fair queuing (WFQ).

A. Mixed-Architecture Process Scheduling

Wait for at least . J
CPU scheduler minimum —» Update Virtual

Schedule .
" Runtime
granularity

Y | PL Context
Switch

New PL N
Task

I

I

Wait for at least |

PL scheduler minimum }
I

I

I

I

granularity

Fig. 1. Mixed-Architecture Process Scheduler

Under normal operation, when the CFS scheduler is trig-
gered it selects the task with the lowest virtual runtime or
one that has just become runnable, and performs a CPU
context switch if necessary. The new activated task is executed
and its dynamic timeslice is calculated. The task will be
preempted once it has used it’s allocated timeslice, or a new
or existing task with a lower virtual runtime is waiting to
run. During a context switch, the scheduler updates the task’s
virtual runtime according to the actual CPU execution time
and system load. The CFS scheduler is able to divide the
computational resources fairly due to the selection process
based on the normalized virtual runtime of the tasks, resulting
in every task being executed once per epoch.

As the user application in the MURAC model may execute
on multiple system architectures within a single process con-
text, the hw/sw boundary is captured within a single process.
This leads to a simplified scheduling model from the OS
perspective, as the scheduler does not need to be aware of
the underlying execution architecture, but rather just view the
whole application as single context task. The programmable
logic portion of application can then be modeled as a compu-
tationally bound region of the application. In such a mixed-
architecture system the main CPU kernel scheduler is used to
control overall system scheduling, aided by a programmable
logic specific scheduler extension handling mixed-architecture
processes that contain programmable logic. Fig 1 illustrates
the high level operation of this mixed-architecture scheduler
during a scheduler tick.

B. Programmable Logic resource allocation

The allocation of programmable logic to actively executing
tasks may consider:

a) Blocking: a process until the PL becomes available.
While waiting, the process yields it’s timeslice, making it more
likely to be scheduled subsequently and receive a comparable
share of the processor and programmable logic when it even-
tually needs it (so called sleeper fairness).

b) Preemption: of an exiting running programmable
logic (PL) task, forcing a programmable logic context switch
to take place. Due to the considerably higher latency of a
programmable logic context switch, the concept of a minimum
PL schedule granularity is used in combination with the
minimum CPU scheduler granularity. This is needed to avoid
thrashing as it ensures that a running PL task will receive
a minimum runtime before being preempted, and will also
affect the subsequent scheduling of the task as this time will
be accounted for in the task’s virtual runtime. This strategy
effectively models PL execution as a CPU-bound process from
the perspective of the OS. In contrast to the blocking strategy,
preemption requires the ability to suspend the execution of
an ongoing task and to restore a previously interrupted task.
The save and restore operations are performed at the software
(process/thread) context switch in the OS, carried out by the
programmable logic specific scheduler extension.

V. SYSTEM IMPLEMENTATION

Our system has been implemented and tested on the Xilinx
Zynq XC7Z020 based Zedboard platform: a dual Cortex-A9
Processing System (PS) tightly integrated with programmable
logic (PL).

A. Mixed-Architecture Applications

The mixed-architecture application compilation toolflow is
demonstrated in Fig 2. The reconfigurable logic portions of
the application are synthesized using standard FPGA tools.
The resulting configuration bitfiles are then embedded directly
into the software application source code at the desired point
of execution within the program flow. This is implemented at
the ISA level as an architectural branch instruction followed
by the configuration data (demonstrated in Listing 1). This
mechanism enables the entire mixed-architecture application
to be compiled by the unmodified CPU toolchain, producing
a single executable binary application file.

Mixed
Architecture
Application

Application PL
Source Code
(VHDL)
T Bitstream
Converter

FPGA Synthesis

Software
Compiler (ARM
Toolchain)

Software Header Application PS
File (C) Source Code (C)

Fig. 2. Mixed-Architecture Application Compilation

In this way, user applications are able to take advantage
of implementation-independent access to multiple alternative
compute architectures available at runtime. The configuration,
co-ordination of control of a slave accelerator device that
would normally be required is eliminated, leaving a simple
explicit application control flow path when running code on
the programmable logic.

#define BAA_CONFIG_IMPL_PARTIAL (PERIPHERAL_BASE) \
asm volatile("mov rl,%[valuel" : :
[value]"r" (PERIPHERAL_BASE) : "rl"); \
asm volatile("mrc 1,0,R15,cl,c2"); // BAA instruction \
asm volatile(// Embedded FPGA configuration \
".word 0x52554dff\n\t" \
.word 0x1004341\n\t" \
.word 0x30600300\n\t" \

"

"

int main(int argc, char =xargv[]) {
unsigned int reg; reg = atoi(argv[l]);
printf ("Branching to FPGA\n");
BAA_CONFIG_IMPL_PARTIAL (0x60A00000)
printf ("Output: 0x%$x\n", reg);
return 0;

Listing 1. Example mixed-architecture application source listing

A synthetic workload application demonstrates the usage of
the MURAC abstraction in Listing 1, which is used to simulate
a variable length runtime mixed-architecture process in our
system. This illustrates the simplified programming model for
switching execution between alternate compute architectures
with the use of a single instruction, as well as the explicit
control flow of accelerator utilization from the point of view
of the application.

B. Programmable Logic Resource Allocator

A linux kernel module implements the programmable logic
specific scheduler extension and enables runtime support
for the execution of mixed-architecture binary applications.
This module is responsible for the configuration of the pro-
grammable logic region as well as co-ordination and man-
agement of task scheduling, transparent to the user process.
Upon being loaded into the operating system kernel, the
module hooks into the kernel instruction handler to enable
device configuration and scheduling upon execution of an
architectural branch (BAA) instruction in a user process, as
well as loading a base FPGA configuration with an AXI
connected Internal Configuration Access Port (ICAP) module.
In addition, the user design must support a mechanism to
signal completion of the hardware task, indicating the RPA
instruction to the waiting kernel module in order to continue
the task execution on the primary architecture.

The running programmable logic design does not need to
be controlled by software as is typical in the master-slave
accelerator model. Application data is accessible directly from
the programmable logic region through the unified virtual
address space, allowing the software to fully suspend on
the primary architecture while the auxiliary architecture is
employed. In our implementation, the information about the
current process memory address space (stack) is passed to
the programmable logic via a register exposed over the AXI
bus. This mechanism thus enables the explicit single-context
control flow visible to the application.

The context-switch operation is implemented through a
readback-based strategy by writing commands to the configu-
ration access port, namely capture (IOBs and CLB contents)
and readback. Although reading from the FIFO of the ICAP

via the AXI bus is achieved through the processor subsystem
rather than DMA, this does not affect our implementation as
the processor would not be used concurrently for any other
processing in the MURAC model.

VI. IMPLEMENTATION RESULTS

Workloads consisting of 10 concurrently executing mixed-
architecture processes were run under the blocking and pre-
emption scheduler strategies. In our implementation, the par-
tial bitstream (219776 bytes) leads to context switch latency of
45ms. The processes are all run with the SCHED_NORMAL
process priority class. Under the preemption strategies tested,
the minimum CPU scheduler granularity and minimum PL
scheduler granularity are varied to illustrate the effect on
scheduler performance based on workload (as described
in Section IV). These parameters are indicated as P(minimum
CPU scheduler granularity in ms, minimum PL scheduler
granularity in ms) in the figures below. The standard CFS
scheduler in most common linux distributions has a default
minimum CPU scheduler granularity of 1.5ms.

The workload profiles evaluated were: a) equal granularity
long-running PL task processes, b) equal granularity very
short-running PL task processes, ¢) mixed granularity (uni-
formly distributed long- and short-running PL task) processes.

The results of these experiments, as illustrated in Fig 3,
show the total runtime to complete all processes in the
workload combined, normalized per workload. Fig 4 illustrates
the overall scheduler overhead experienced for each of these
workloads.

Total Runtime

NORMALISED TIME
ocoo
onv® o
|
|
|
]
Blocking N
,2) —
]
I
I
|

Blocking Il
2,2
P(50, 120,
P(50, 120,
Blocking
P(50, 120,

Long Running PL Short Running PL Mixed Runtime PL

WORKLOAD AND POLICY

Fig. 3. Normalised total runtime

Scheduler Latency (Overhead)

NORMALISED TIME
ocooo
o] oL
|
]

Blocking
P(50, 120
Blocking
(2,
P(2,50
Blocking 1
P(2,50
P(50, 120

Long Running PL Short Running PL Mixed Runtime PL

WORKLOAD AND POLICY

Fig. 4. Normalised scheduler overhead

Based on the results, it can be seen that blocking provided
better overall performance for equal granularity tasks, as
it minimizes turnaround time. This indicates that blocking
allocation is preferable for batch processing that is CPU

bound. Blocking minimizes expensive scheduler latency, pro-
viding better throughput. However, when running a uniformly
distributed mixed workload, the preemption strategy performs
better, as it ensures more fairness for the shorter running tasks.
It can be observed that the scheduler performs best when the
minimum PL scheduler granularity is higher than the scheduler
latency for these workloads.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we have presented the design and implemen-
tation of a runtime process management system for mixed-
architecture processes in a tightly-coupled FPGA-CPU system.
By using the MURAC model, the scheduler takes a holistic
view on process scheduling regardless of the exact compute
fabric a process utilizes. This allows a simple scheduler design
in the Linux kernel and improves fairness among users. Block-
ing and preemptive scheduler strategies were investigated.
Based on our current implementation on a Xilinx Zynq system,
the blocking scheduling policy is best when the input processes
are batch type processes with similar processing time using the
FPGA fabric. On the other hand, preemptive scheduling policy
is best when there is a mix of long and short applications
running on the programmable fabric.

With a working basic scheduling framework, we will further
explore trade-offs between fairness, interactivity and perfor-
mance on mixed-architecture process in the future and improve
on context-switch efficiency on existing platform.

REFERENCES

[1] W. Fu and K. Compton, “Balanced allocation of compute time in
hardware-accelerated systems,” in ICECE Technology, 2008. FPT 2008.
International Conference on, 2008, pp. 241-248.

[2] K. Rupnow, W. Fu, and K. Compton, “Block, Drop or Roll(back):
Alternative Preemption Methods for RH Multi-Tasking,” in Field Pro-
grammable Custom Computing Machines, 2009. FCCM ’09. 17th IEEE
Symposium on, 2009, pp. 63-70.

[3] W. Fu and K. Compton, “Scheduling intervals for reconfigurable com-
puting,” in Field-Programmable Custom Computing Machines, 2008.
FCCM °08. 16th International Symposium on, 2008, pp. 87-96.

[4] L. Levinson, R. Minner, M. Sessler, and H. Simmler, “Preemptive
multitasking on FPGAs,” in Proceedings of the 2000 IEEE Symposium
on Field-Programmable Custom Computing Machines, ser. FCCM ’00.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 301-.

[5] H. Kalte and M. Porrmann, “Context saving and restoring for multi-
tasking in reconfigurable systems,” in Field Programmable Logic and
Applications, 2005. International Conference on, 2005, pp. 223-228.

[6] T.-Y. Lee, C.-C. Hu, L.-W. Lai, and C.-C. Tsai, “Hardware context-
switch methodology for dynamically partially reconfigurable systems,”
Journal of Information Science and Engineering, vol. 26, no. 4, pp.
1289-1305, 2010.

[71 D. Koch, C. Haubelt, and J. Teich, “Efficient hardware checkpointing:
concepts, overhead analysis, and implementation,” in Proceedings of
the 15" international symposium on field programmable gate arraysn
(FPGA ’07). New York, NY, USA: ACM, 2007, pp. 188-196.

[8] K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell,
“Microkernel hypervisor for a hybrid ARM-FPGA platform.”

[9] E. Liibbers and M. Platzner, “ReconOS: Multithreaded programming for

reconfigurable computers,” ACM Trans. Embed. Comput. Syst., vol. 9,

no. 1, pp. 8:1-8:33, Oct. 2009.

A. DeHon, “DPGA utilization and application,” in Proceedings of the

1996 ACM fourth international symposium on Field-programmable gate

arrays, ser. FPGA ’96. New York, NY, USA: ACM, 1996, pp. 115-121.

C. S. Wong, I. Tan, R. D. Kumari, and F. Wey, “Towards achieving

fairness in the Linux scheduler,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5,

pp. 34-43, Jul. 2008.

[10]

(11]

