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Summary. In survival studies, current status data are frequently encountered when some

individuals in a study are not successively observed. This paper considers the problem of

simultaneous variable selection and parameter estimation in the high-dimensional continuous

generalized linear model with current status data. We apply the penalized likelihood proce-

dure with the SCAD penalty to select significant variables and estimate the corresponding

regression coefficients. With a proper choice of tuning parameters, the resulting estimator is

shown to be a root n/pn-consistent estimator under some mild conditions. In addition, we

show that the resulting estimator has the same asymptotic distribution as the estimator ob-
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tained when the true model is known. The finite sample behavior of the proposed estimator

is evaluated through simulation studies and a real example.

Key words: Current status data; Generalized linear model; Oracle property; SCAD

penalty; Variable selection.

1 Introduction

In survival studies, the random survival time of interest is often too expensive or even

impossible to observe the exact time. However, the current status at a random inspection

time is much more practical. Examples of current status data include clinical study of tumor

occurrence (Gart et al., 1986), HIV transmission among sexual partners (Jewell and Shiboski,

1990), demographic study of age at weaning (Grummer-Strawn, 1993), and so on. Such data

structure is called case I interval-censored data (which is a type of interval-censored data)

or current status data. The analysis of current status data arising frequently in medical

research has recently attracted a great amount of attention (Huang, 1996; Xue et al., 2004;

Lam and Xue, 2005; Ma, 2009; Lin and Wang, 2010; Wang and Lin, 2011).

Notice the difference between current status data and usual right censoring data. They

are quite different in terms of their structures and the information contained. In particular,

their censoring mechanisms are different. For the current status data, the survival times of

interest are only known to be either left-censored or right-censored. In other words, current

status data mean that each observed interval for the survival variable includes either zero or

infinity. Compared to right-censored data, current status data contain much less information

about the survival variable of interest. Therefore, most of the inference procedures developed

for right-censored data cannot be easily/directly applied to current status data.

Variable selection is an important topic in contemporary statistics. Much progress has

been made in exploring the variable selection and statistical properties for high dimensional
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data. Various penalized approaches have been successively proposed. Examples include

the bridge penalty (Frank and Friedman, 1993), the least absolute shrinkage and selection

operator (Lasso, Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD) penalty

(Fan and Li, 2001), the Dantzig selector (Candes and Tao, 2007), and the minimum concave

penalty (MCP, Zhang, 2010). There are a large number of researches about variable selection

for high dimensional uncensored data. The readers can refer to Fan and Peng (2004), Huang

et al. (2008), Fan and Lv (2008), Bradic et al. (2010), Wang et al. (2010), Wang et al.

(2011), and references therein. In the last decades, much work has been done on the variable

selection for right-censored data. Huang et al. (2006) considered the variable selection in

the accelerated failure time model with diverging dimensions. Huang and Ma (2010) studied

the variable selection in the accelerated failure time model via the bridge penalty. Ma and

Du (2011) studied the variable selection in the partially linear model with high-dimensional

covariates. However, all these results cannot be directly generalized to the current status data

due to the aforementioned differences between the current status data and right-censored

data.

Up to now, it seems that there is no systematic theoretical investigation of simultaneous

variable selection and coefficients estimation in the continuous generalized linear model with

current status data. The main purpose of our paper is to fill in this gap. In this paper, we

study some asymptotic properties of estimators in the high dimensional generalized linear

model with current status data when the number of covariates diverges with the sample

size. Here, we assume the response variable is continuous. In order to achieve simultaneous

variable selection and parameters estimation, we define a penalized log-likelihood function

with the SCAD penalty. With a proper choice of regularization parameters, the resulting

estimator is shown to be a root n/pn-consistent estimator under some mild conditions. Fur-

thermore, we show that the resulting estimator has the same asymptotic distribution as the

estimator obtained when the true model is known.
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The rest of the paper is organized as follows. Section 2 presents the continuous generalized

linear model with current status data and the penalized log-likelihood function. Asymptotic

properties of the penalized likelihood estimator are provided in Section 3. Section 4 discusses

the computation of the estimates and the choice of tuning parameters. In addition, two

simulation studies are conducted and a real dataset is analyzed to illustrate the finite sample

performance of the proposed method. A discussion is presented in Section 5. All technical

proofs are given in the Appendix.

2 Model and penalized likelihood

2.1 Continuous generalized linear model with current status data

Consider the continuous generalized linear regression model

Y = g(β⊤
nX) + ε, (2.1)

where Y is a continuous response variable, the inverse of g(·) is a known smooth link function,

βn is an unknown pn × 1 vector of regression coefficients, X is a pn × 1 random vector of

predictors, and ε is a random error with mean 0. Here the subscript n is indicated that

variables are allowed to diverge with n. Suppose that ε has a cumulative distribution function

F (·) and a corresponding density function f(·), where f(·) is assumed to have a finite second

derivative. In addition, we assume that g(·) has a finite third derivative.

In this paper, we consider the model (2.1) to fit case I interval-censored data (i.e., current

status data). In other words, the response variable of interest Y cannot be observed directly,

but δ = I(Y 6 Z) can be observed, where I(·) denotes the indicator function, Z is a censoring

random variable with density h(z), and Z is independent of X. We further assume that the

density φ(x) of the covariate vector X is known. In addition, assume that ε is independent

of (X, Z). Let the observable random vector be W = (δ,X, Z). The density of W is given

by

[F (z − g(β⊤
nx))]

δ[1− F (z − g(β⊤
nx))]

1−δφ(x)h(z).
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Since φ(x) and h(z) do not involve the unknown parameter vector βn, we can treat them as

constants in the estimation of βn. So the log-likelihood function is proportional to

δ log[F (Z − g(β⊤
nX))] + (1− δ) log[1− F (Z − g(β⊤

nX))].

Let W1, . . . ,Wn be an independent and identically distributed (i.i.d.) sample distributed

as W, where Wi = (δi,Xi, Zi). The log-likelihood function for the observed sample is

ℓn(βn) =
∑n

i=1 ℓni(βn), where

ℓni(βn) = δi log[F (Zi − g(β⊤
nXi))] + (1− δi) log[1− F (Zi − g(β⊤

nXi))].

2.2 Variable selection methods

In recent literature, there are several versions about the penalty function. The bridge penalty

was originally proposed by Frank and Friedman (1993) corresponding to the Lq-penalty

pλ(|θ|) = λ|θ|q. Tibshirani (1996) studied the Lasso penalty for more details. Knight and

Fu (2000) investigated the Lq-penalty with q < 1. Fan and Li (2001) advocated the SCAD

penalty, which is defined by

pλ(|θ|) =



λ|θ|, if 0 6 |θ| < λ,

(a2 − 1)λ2 − (|θ| − aλ)2

2(a− 1)
, if λ 6 |θ| < aλ,

(a+ 1)λ2

2
, if |θ| > aλ,

where a > 2 and λ > 0 are the tuning parameters. The SCAD penalty is continuous and

differentiable on (−∞, 0)∪ (0,∞), but not differentiable at 0. Its derivative vanishes outside

[−aλ, aλ]. Hence, the SCAD penalty can produce continuity, sparsity and unbiasedness

estimator for large coefficients. More details can be found in Fan and Li (2001). Zou (2006)

proposed the adaptive Lasso with form pλ(|θ|) = λw|θ|, where w is a weight. Zhang (2010)

gave the minimax concave penalty (MCP) which performs as well as the SCAD penalty and

the adaptive Lasso. The MCP is defined as

p(θ;λ, γ) = λ

∫ |θ|

0

(1− x/(γλ))+ dx.
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In this paper, to emphasize the dependency of λ on n, we denote λ by λn. In addition, as

suggested by Fan and Li (2001), we fix a = 3.7.

2.3 Penalized likelihood function

Consider the penalized likelihood function for estimating βn as follows

Qn(βn) = ℓn(βn)− n

pn∑
j=1

pλn(|βnj|), (2.2)

where the function pλn(·) is the SCAD penalty.

Let the true parameter value be βn0, but for simplicity, we will write it as β0. In the

sparse model, some components of covariates are trivial and the corresponding coefficients

are zero. For convenience of notation, let β0 = (β⊤
10,β

⊤
20)

⊤, where β⊤
10 = (β01, . . . , β0kn)

is a kn × 1 vector and β⊤
20 = (0, . . . , 0) is an mn × 1 vector. Here kn is the number of

nonzero coefficients and mn = pn − kn is the number of trivial covariates. Similarly, we can

partition the population vector of covariates X = (X⊤
1,X

⊤
2)

⊤ and the corresponding sample

Xi = (X⊤
1i,X

⊤
2i)

⊤, where X1i = (Xi1, . . . , Xikn)
⊤ and X2i = (Xi(kn+1), . . . , Xipn)

⊤.

3 Asymptotic properties of penalized likelihood

estimator

In this section, we establish several theoretical properties of the penalized likelihood esti-

mator when the number of predictors increases with the sample size. First, we define some

notations.

Let ξ(βn,Wi) = Zi − g(β⊤
nXi),

D(ξ(βn,Wi)) =
∂ℓni(βn)

∂ξ(βn,Wi)

=
δif(ξ(βn,Wi))

F (ξ(βn,Wi))
− (1− δi)f(ξ(βn,Wi))

1− F (ξ(βn,Wi))
, i = 1, . . . , n.
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So

∂ℓni(βn)

∂βn

=
∂ℓni(βn)

∂ξ(βn,Wi)

∂ξ(βn,Wi)

∂βn

= D(ξ(βn,Wi))[−g′(β⊤
nXi)Xi],

∂2ℓni(βn)

∂βn∂β⊤
n

= D′(ξ(βn,Wi))[g
′(β⊤

nXi)]
2XiX

⊤
i −D(ξ(βn,Wi))g

′′(β⊤
nXi)XiX

⊤
i

△
= dn1(βn,Wi)XiX

⊤
i ,

∂3ℓni(βn)

∂βnj∂βnk∂βnl

=
{
−D′′(ξ(βn,Wi))[g

′(β⊤
nXi)]

3 + 3D′(ξ(βn,Wi))g
′′(β⊤

nXi)g
′(β⊤

nXi)

−D(ξ(βn,Wi))g
(3)(β⊤

nXi)
}
XijXikXil

△
= dn2(βn,Wi)XijXikXil.

Let Pβn be the distribution function of W and E0 be the expectation with respect to Pβ0 .

For simplicity, the main assumptions required for our results are presented as follows.

(A1) E0[D(ξ(β0,W1))g
′(β⊤

0X1)X1] = 0.

(A2) For j, k = 1, . . . , pn,

E0{D2(ξ(β0,W1))[g
′(β⊤

0X1)]
2X1jX1k} = −E0[dn1(β0,W1)X1jX1k].

(A3) The Fisher information matrix

In(β0) = E0

{
[−D(ξ(β0,W1))g

′(β⊤
0X1)X1][−D(ξ(β0,W1))g

′(β⊤
0X1)X1]

⊤
}

= E0

{
D2(ξ(β0,W1))[g

′(β⊤
0X1)]

2X1X
⊤
1

}
.

Let the smallest and largest eigenvalues of In(β0) be λmin{In(β0)} and λmax{In(β0)},

which satisfy

0 < M1 6 λmin{In(β0)} 6 λmax{In(β0)} 6 M2 < ∞,

where M1 and M2 are given constants.
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(A4) There exist constants 0 < M3,M4,M5 < ∞ such that

max
16j6pn

|X1j| 6 M3, E0[dn1(β0,W1)]
2 6 M4

and

E0[D(ξ(β0,W1))g
′(β⊤

0X1)]
4 6 M5.

(A5) There is a large enough open subset Sn that contains the true parameter β0 ∈ Rpn and

a function H(Wi) such that, for all βn ∈ Sn, |dn2(βn,Wi)| 6 H(Wi), i = 1, . . . , n. In

addition, there exists a constant M6 such that E0[H
2(W1)] 6 M6.

(A6) ρn1 and ρn2 are bounded away from zero, where ρn1 and ρn2 are the smallest and largest

eigenvalue of E0(H(W1)X1X
⊤
1), respectively.

These conditions are needed to obtain the asymptotic results in the theorems below. Con-

dition (A1) is easy to check. Conditions (A2)–(A5) are similar to regularity conditions that

guarantee asymptotic properties of the maximum likelihood estimators without censoring

(Fan and Peng, 2004). Here we impose them to facilitate the technical proof. For example,

we could impose some more detailed restrictions on the parameter space and functions f

and g instead of condition (A4). The form of In(β0) in condition (A3) is similar to that in

Xue et al. (2004).

Theorem 3.1 (Consistency). Suppose nλ2
n = O(1) and p3n/n → 0. Then under condi-

tions (A1)–(A6), there exists a local maximizer β̂n of Qn(βn) such that

∥β̂n − β0∥ = OP (
√
pn/n ). �

Remark 3.1 Theorem 3.1 shows that we can obtain the consistent estimator even when

the data are censored. Under some regular conditions, the convergence rate is optimal for

the case of diverging number of parameters. �
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Theorem 3.2 (Oracle property). Suppose that p3n/n → 0, min16j6kn |β0j|/λn → ∞,

and
√

pn/n/λn → 0. If conditions (A1)–(A6) are satisfied, then the local maximizer β̂n =

(β̂⊤
1n, β̂

⊤
2n)

⊤ in Theorem 3.1 satisfies

(1) Sparsity:

Pr(β̂2n = 0) → 1 as n → ∞.

(2) Asymptotic normality:

√
nα⊤I

1
2
n (β10)(β̂1n − β10)

D→ N(0, 1),

where α is an arbitrary kn × 1 vector with ∥α∥ = 1. �

Remark 3.2 Theorem 3.2 indicates that under certain conditions on the tuning parameter

and model, the estimator enjoys the oracle property. Note that the model studied in this

paper has a specific density, so we only need the condition p3n/n → 0 after some detailed

calculations, which is weaker than the conditions p4n/n → 0 and p5n/n → 0 (Fan and Peng,

2004). �

4 Numerical examples

In this section, we first present an algorithm to conduct the variable selection. Next, sev-

eral simulation experiments are carried out to assess the finite sample performance of the

proposed method. Finally, a real data set is used to the illustration.

4.1 Computational algorithm

4.1.1 Local quadratic approximation and standard errors

Fan and Li (2001) proposed the local quadratic approximation (LQA) algorithm to attack the

singularity of the SCAD penalty at the origin. In this paper, we apply the LQA algorithm

to obtain the regression coefficient estimate in the continuous generalized linear model for
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the current status data. Suppose that there is an initial value β
(0)
n that is very close to the

maximizer of (2.2). If β
(0)
nj is very close to 0, then we set β

(0)
nj = 0. Otherwise, the penalty

function pλn(|βnj|) can be locally approximated by the following function

pλn(|βnj|) ≈ pλn(|β
(0)
nj |) +

1

2

p ′
λn
(|β(0)

nj |)
|β(0)

nj |
(β2

nj − β
(0)2
nj ), forβnj ≈ β

(0)
nj . (4.1)

Replacing the penalty function in (2.2) by (4.1), we can use the Newton–Raphson algorithm

to find the maximizer of (2.2). In fact, for the initial value β
(0)
n , the log-likelihood function

ℓn(βn) can be locally approximated by

ℓn(β
(0)
n ) +

[
∂ℓn(β

(0)
n )

∂βn

]⊤
(βn − β(0)

n ) +
1

2
(βn − β(0)

n )⊤

[
∂2ℓn(β

(0)
n )

∂βn∂β⊤
n

]
(βn − β(0)

n ). (4.2)

Therefore, by combining (4.1) with (4.2), we can see that the maximization of (2.2) is

equivalent to the maximization of the following expression[
∂ℓn(β

(0)
n )

∂βn

]⊤
(βn − β(0)

n ) +
1

2
(βn − β(0)

n )⊤

[
∂2ℓn(β

(0)
n )

∂βn∂β⊤
n

]
(βn − β(0)

n )

− 1

2
nβ⊤

nΣλn(β
(0)
n )βn, (4.3)

where

Σλn(β
(0)
n ) = diag

{
p ′
λn
(|β(0)

n1 |)
|β(0)

n1 |
, . . . ,

p ′
λn
(|β(0)

npn|)
|β(0)

npn|

}
.

Accordingly, the quadratic maximization of (4.3) leads to the following iteration:

β(1)
n = β(0)

n −

[
∂2ℓn(β

(0)
n )

∂βn∂β⊤
n

− nΣλn(β
(0)
n )

]−1 [
∂ℓn(β

(0)
n )

∂βn

− nΣλn(β
(0)
n )β(0)

n

]
. (4.4)

The estimator of parameter βn can be obtained according to the following algorithm:

Step 1. Let the initial value β
(0)
n equal the ordinary maximum likelihood estimate (without

penalty). If |β(0)
nj | < τ (τ is a pre-specified constant and equals to 10−4 in our

simulations and application to real data), then set β
(0)
nj = 0.

Step 2. Given the current value β
(k)
n = β

(0)
n , we can obtain β

(k+1)
n by the formula (4.4).
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Step 3. Repeat Step 2 until max16j6pn |β
(k+1)
nj − β

(k)
nj | 6 τ .

Using the similar techniques in Fan and Peng (2004), the covariance matrix of β̂1n (the

nonzero components of β̂n), can be approximated by the following sandwich formula:[
∂2ℓn(β̂1n)

∂β1n∂β⊤
1n

− nΣλn(β̂1n)

]−1

ĉov

(
∂ℓn(β̂1n)

∂β1n

)[
∂2ℓn(β̂1n)

∂β1n∂β⊤
1n

− nΣλn(β̂1n)

]−1

,

where ĉov(∂ℓn(β̂1n)/∂β1n) is the covariance matrix of ∂ℓn(β1n)/∂β1n evaluated at β1n = β̂1n.

4.1.2 Choice of the tuning parameter

It is very critical to choose a proper tuning parameter λn since it determines the sparsity of

the selected model. An optimal tuning parameter can result in a parsimonious model with

good prediction performance. Wang et al. (2007, 2009) showed that Bayesian information

criterion (BIC) is consistent in model selection. We employ the BIC-type criterion to choose

the tuning parameter. For a given λn, we can obtain an estimate β̂λn . Let dλn be the number

of nonzero components of β̂λn . The BIC-type criterion is defined by

BIC(λn) = −2ℓn(β̂λn) + dλn × log n.

4.2 Simulation studies

In this subsection, we evaluate the performance of the proposed method through two simu-

lation examples. To measure the estimation accuracy of the estimator, we use the average

mean squared errors (MSE) E∥β̂n −β0∥2. The variable selection performance is assessed by

(C, IC, Correctly fitted, Overfitted), where “C” denotes the average number of zero coef-

ficients correctly set to zero, “IC” is the average number of nonzero coefficients incorrectly

set to zero, “Correctly fitted” represents the proportion of times that the correct model is

selected, and “Overfitted” is the proportion of including all significant variables and some

noise variables. We compare the performance of the SCAD penalty with the Lasso, the
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adaptive Lasso (ALasso) and the Oracle. The oracle estimator is computed by using the

true model when the zero coefficients are known. In practice, the oracle estimator cannot be

obtained. We only use it as a benchmark for comparison. For each simulation setting, 500

simulated data sets are generated.

Example 1. Let n observations be generated from the linear model

Y = β⊤
nX + ε,

where X = (X1, . . . , Xpn)
⊤. The number of parameter is assumed to be pn = ⌊6n1/4 − 5⌋

and the number of nonzero coefficients is assumed to be kn = 3qn, where qn = ⌊pn/7⌋ and

⌊·⌋ denotes the floor function. The true coefficients β⊤
n = (0.8 · 1⊤qn ,1

⊤
qn , 1.5 · 1⊤qn ,0

⊤
pn−kn

),

where 1m is an m-vector of ones and 0m is an m-vector of zeros. Xj (j = 1, . . . , pn) are

independent standard normal variables. We consider two different error distributions. The

first error follows the standard normal distribution and the censoring variable Z is generated

from N(µ1, 1) for each simulated data set, where µ1 is chosen such that the corresponding

censoring rate is about 25%. The second error has a standard logistic distribution and the

censoring variable Z ∼ Logistic(µ2, 1), where µ2 is chosen to obtain the censoring rate 25%.

We consider three sample sizes, n = 100, n = 300 and n = 600.

Table 1 summarizes the average MSE and the corresponding results of variable selection.

The numbers in parentheses are standard deviations. From Table 1, it is easy to see that

(1) Overall, both SCAD and adaptive Lasso perform better than the Lasso in terms

of both variable selection and MSE. The SCAD outperforms the adaptive Lasso when the

sample size is large. When the sample size increases, for the SCAD, the proportion of times

of the correctly selected model increases while the MSE decreases. Although the Lasso can

produce a sparse model, the proportion of times of the correctly selected model is very low

for large sample sizes.

(2) In terms of MSE, there exists a certain discrepancy between SCAD and Oracle for

small sample sizes. However, the discrepancy becomes very small when the sample size
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increases to infinity. In contrast, although the discrepancy between Lasso and Oracle also

decreases when sample sizes increase, the discrepancy is still very significant for large sample

sizes. Therefore, we can conclude that the SCAD enjoys the oracle property as the sample

size tends to infinity, while the Lasso does not.

(3) For the normal and logistic error distributions, both Lasso and SCAD can identify

redundant parameters and reduce the complexity of the model. When the quasi-likelihood

method is applied to the continuous generalized linear model, we find that the results for

variable selection have no significant difference for the two error distributions.

(4) As suggested by one referee, we show the difference about results of the SCAD by

choosing the value of a (denote by SCAD* in Table 1). From Table 1, we can see that the

choice of a = 3.7 is very reasonable, especially for large sample sizes.

Example 2. In this example, we generate n observations from

Y = exp(β⊤
nX) + ε.

The true regression coefficients are set to be β⊤
n = (0.4 · 1⊤qn , 0.5 · 1⊤qn , 0.75 · 1⊤qn ,0

⊤
pn−kn

),

while the other parameters are identical to those in Example 1. The simulation results are

displayed in Table 2. The numbers in parentheses are the corresponding standard errors.

From Table 2, we can obtain a similar conclusion as in Example 1.

4.3 Application to primary biliary cirrhosis data

Consider the primary biliary cirrhosis (PBC) data of the liver collected from January 1974

to May 1984 in Mayo Clinic trial for comparing the drug D-penicillamine (DPCA) with

a placebo. The data contain information about the survival time and prognostic factors

for 418 patients. Discarding observations with missing values, only 276 observations are

available. Variables in this dataset include survival time Ti, right censoring indicator δi, and

17 covariates X1, . . . , X17. All the notations are the same as those of Tibshirani (1997). The
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detailed descriptions of this dataset can be found in Fleming and Harrington (1991) and

Tibshirani (1997), where the Cox model is employed in their analyses. Here, we treat these

data as the current status data and apply the linear model as an illustration. We take the

logarithm transformation to Ti and standardize the covariates.

Table 3 gives the estimated coefficients of four methods including the maximum likelihood

estimate (MLE), Lasso, adaptive Lasso (ALasso) and SCAD, together with the corresponding

standard errors. We also list the results for the Lasso in Tibshirani (1997) for comparison

(Lasso(T)). The optimal values of λn are 0.053, 0.012 and 0.082 for the Lasso, adaptive Lasso

and SCAD, respectively. From Table 3, we find that the SCAD identifies a simpler model

with seven important variables, while the Lasso includes more variables. The adaptive Lasso

contains ten variables which are included by the Lasso. For the Lasso, We can see that our

results are same as that of Tibshirani (1997) except for the variable ”Alkaline phosphatase”,

which is selected by others such as Shows et al. (2010).

5 Discussion

When comparing with the right-censored data, the current status data provides less informa-

tion for analysis, resulting in some challenges in statistical inferences. The existing studies

about modeling the current status data mainly focus on the estimation of the regression

coefficients. Little work has been done on the variable selection in the setting of current sta-

tus data. In this paper, we study variable selection about the high-dimensional continuous

generalized linear model with current status data. We apply the SCAD penalty to achieve

the identification of the sparsity model. Under some regularity conditions, the rate of con-

vergence of the proposed estimator and oracle property are established when the numbers of

parameters increase to infinity as the sample size. The effectiveness of the proposed method

is verified through simulation studies and a real data set.

14



We demonstrate the convergence of our algorithm. The data are generated from the

model in example 1 (Section 4.2). The sample size is 100, and the error is standard normal

distribution. Our experiment showed that the proposed algorithm converged to the right

solution. The corresponding computation time in R for the SCAD, adaptive Lasso and

Lasso are 0.37, 0.57 and 0.49 s, respectively. The numbers of iterations are 10, 11 and 33,

respectively for the SCAD, adaptive Lasso and Lasso.

We have only considered the SCAD penalty. It is not difficult to obtain the variable selec-

tion results via the MCP function, because both the SCAD and MCP belong to nonconvex

penalty. In addition, how to derive the theoretical properties in the setting of ultrahigh

dimensionality is an interesting topic for our future study.

A Appendix

To facilitate the proof of Theorem 3.1, we need the following result.

Lemma A.1 Under conditions (A1), (A2) and (A4), if p3n/n → 0, then we have∥∥∥∥ 1n∇2ℓn(β0) + In(β0)

∥∥∥∥ = oP

(
1

√
pn

)
. �

Proof. For any ϵ > 0, by the Chebyshev’s inequality, we have

Pr

{∥∥∥∥1n∇2ℓn(β0) + In(β0)

∥∥∥∥ > 1
√
pn

ϵ

}
6 pn

ϵ2
1

n2
E0∥∇2ℓn(β0) + nIn(β0)∥2

=
pn
ϵ2

1

n2

pn∑
j,k=1

nE0

[
∂2ℓn1(β0)

∂βnj∂βnk

+ Injk(β0)

]2

6 pn
ϵ2

1

n

pn∑
j,k=1

E0[dn1(β0,W1)X1jX1k]
2

6 pn
nϵ2

p2nM
4
3M4 → 0.

15
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Proof of Theorem 3.1. It suffices to show that for any ϵ > 0, there exists a large constant

C > 0 such that

Pr

{
sup

∥u∥=C

Qn(β0 + αnu) < Qn(β0)

}
> 1− ϵ, (A.1)

where αn
△
=
√

pn/n. (A.1) implies that with probability at least 1 − ϵ, there exists a local

maximum in the ball {β0+αnu : ∥u∥ 6 C}, where u is a pn×1 scalar vector. That is, there

exists a local maximizer such that ∥β̂n − β0∥ = OP (
√

pn/n ).

Noting that pλn(0) = 0, we have

Qn(β0 + αnu)−Qn(β0)

= ℓn(β0 + αnu)− ℓn(β0)− n

pn∑
j=1

pλn(|β0j + αnuj|) + n

pn∑
j=1

pλn(|β0j|)

6
[
ℓn(β0 + αnu)− ℓn(β0)

]
+ n

kn∑
j=1

pλn(|β0j|)

△
= In1 + In2.

First, we consider the term In1. Applying the third order Taylor expansion, we obtain

In1 = αn∇⊤ℓn(β0)u+
1

2
α2
nu

⊤∇2ℓn(β0)u+
1

6
α3
n∇⊤(u⊤∇2ℓn(β

∗
n)u
)
u

△
= In11 + In12 + In13.

For the first term In11, by the conditions (A1) and (A3), we obtain

E0(I
2
n11) = α2

nE0

{
n∑

i=1

[−D(ξ(β0,Wi))]g
′(β⊤

0Xi)X
⊤
iu

}2

= nα2
nE0[D

2(ξ(β0,W1))g
′2(β⊤

0X1)(X
⊤
1u)

2]

= nα2
nu

TE0[D
2(ξ(β0,W1))g

′2(β⊤
0X1)X1X

⊤
1]u

6 λmax(In(β0))nα
2
n∥u∥2

6 M2npnα
2
n∥u∥2.
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Therefore, |In11| = OP (αn
√
npn )∥u∥ = OP (nα

2
n)∥u∥. For the second term In12, we have

In12 =
1

2
α2
nu

⊤{∇2ℓn(β0)− E0[∇2ℓn(β0)]}u+
1

2
α2
nu

⊤E0[∇2ℓn(β0)]u

=
1

2
nα2

nu
⊤
[
1

n
∇2ℓn(β0) + In(β0)

]
u− 1

2
nα2

nu
⊤In(β0)u

△
= In121 + In122.

According to Lemma A.1,

|In121| 6 1

2
nα2

n∥u∥2
∥∥∥∥1n∇2ℓn(β0) + In(β0)

∥∥∥∥
=

1

2
nα2

n∥u∥2oP
(

1
√
pn

)
= nα2

n∥u∥2oP (1).

For the third term In13, let

A(n) =
1

n

n∑
i=1

H(Wi)XiX
⊤
i − E0[H(W1)X1X

⊤
1 ].

Under conditions (A4) and (A5), we have ∥A(n)∥ = oP (1), since for every η > 0,

Pr(∥A(n)∥ > η) 6 E0∥A(n)∥2

η2

=
1

η2n2

pn∑
j,k=1

n∑
i=1

E0

{
H(Wi)XijXik − E0[H(Wi)XijXik]

}2

6 1

η2n

pn∑
j,k=1

E0[H(W1)X1jX1k]
2

6 1

η2n
p2nM

2
3M6 → 0.
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So, under condition (A6), we have

E0(I
2
n13) =

1

36
α6
nE0

{
pn∑
l=1

[
pn∑

j,k=1

n∑
i=1

dn2(β
∗
n,Wi)XijXikXilujuk

]
ul

}2

6 1

36
α6
n∥u∥2E0

[
n∑

i=1

(
pn∑
l=1

Xil

)
dn2(β

∗
n,Wi)u

⊤XiX
⊤
iu

]2

6 1

36
α6
n∥u∥2E0

[
n∑

i=1

∣∣∣∣∣
pn∑
l=1

Xil

∣∣∣∣∣ · |dn2(β∗
n,Wi)|u⊤XiX

⊤
iu

]2

6 1

36
α6
np

2
nM

2
3∥u∥2E0

[
u⊤

n∑
i=1

H(Wi)XiX
⊤
iu

]2
6 1

18
n2α6

np
2
nM

2
3∥u∥2

{
E0(u

⊤A(n)u)2 + E0[u
⊤E0(H(W1)X1X

⊤
1)u]

2
}

=
1

18
n2α6

np
2
nM

2
3∥u∥2

{
E0(u

⊤A(n)u)2 + E0[u
⊤E0(H(W1)X1X

⊤
1)u]

2
}

6 1

18
n2α6

np
2
nM

2
3∥u∥2

{
E0

[
E0

(
(u⊤A(n)u)2

∣∣∣∥A(n)∥ 6 ρn2
2

)]
+ ρ2n2∥u∥4

}
6 1

18
n2α6

np
2
nM

2
3∥u∥2

(
ρ2n2
4

∥u∥4 + ρ2n2∥u∥4
)

= O(α6
nn

2p2n∥u∥4).

Therefore, |In13| = OP (α
3
nnpn∥u∥2) = oP (nα

2
n)∥u∥2. Now we consider the term In2, by the

definition of the SCAD penalty and nλ2
n = O(1), we can obtain

In2 6 nkn(a+ 1)λ2
n/2 = O(nα2

n).

Hence, by choosing a sufficient large constant C, all terms are dominated by In122, which is

negative. This completes the proof of the theorem. �

To facilitate the proof of Theorem 3.2, we give the following lemma, which shows that

under certain regularity conditions, with proper choice of the tuning parameter, the estimator

possesses the sparsity property; that is, the insignificant variables can exactly be estimated

by zero with probability tending to 1.

Lemma A.2 (Sparsity). Suppose conditions (A1)–(A6) hold. If
√
pn/n/λn → 0, then

with probability tending to 1, for any given β1n satisfying ∥β1n − β10∥ = OP (
√
pn/n ) and

18



any constant C, we have

Qn

(
(β⊤

1n,0
⊤)⊤
)
= max

∥β2n∥6C(pn/n)1/2
Qn

(
(β⊤

1n,β
⊤
2n)

⊤) .
Namely, for the local maximizer β̂n = (β̂⊤

1n, β̂
⊤
2n)

⊤ in Theorem 3.1, we have

Pr(β̂2n = 0) → 1. �

Proof. Let ϵn = C
√

pn/n. It is sufficient to show that with probability tending to 1 as

n → ∞, for any β1n satisfying ∥β1n − β10∥ = OP (
√

pn/n ), we have

∂Qn(βn)

∂βnj

< 0, if 0 < βnj < ϵn,

∂Qn(βn)

∂βnj

> 0, if − ϵn < βnj < 0.

where j = kn + 1, . . . , pn.

Since
√

pn/n/λn → 0 and ∥β2n∥ 6 C
√
pn/n, by the Taylor expansion we have

∂Qn(βn)

∂βnj

=
∂ℓn(βn)

∂βnj

− nλnsgn(βnj)

=
∂ℓn(β0)

∂βnj

+

pn∑
k=1

∂2ℓn(β0)

∂βnj∂βnk

(βnk − β0k)

+
1

2

pn∑
k,l=1

∂3ℓn(β
∗
n)

∂βnj∂βnk∂βnl

(βnk − β0k)(βnl − β0l)− nλnsgn(βnj)

△
= Jn1 + Jn2 + Jn3 + Jn4,

where β∗
n is a vector between βn and β0, and sgn(t) = −1, 0 or 1 if t < 0,= 0 or > 0. Now

we consider the first term Jn1. By conditions (A1) and (A4), we have

E0(J
2
n1) = E0

[
n∑

i=1

D(ξ(β0,Wi))g
′(β⊤

0Xi)Xij

]2
= nE0

[
D2(ξ(β0,W1))(g

′(β⊤
0X1))

2X2
1j

]
6 nM2

3M
1/2
5 ,
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so that

Jn1 = OP (
√
n ) = oP (

√
npn ). (A.2)

For the second term Jn2,

Jn2 =

pn∑
k=1

[
∂2ℓn(β0)

∂βnj∂βnk

+ Injk(β0)

]
(βnk − β0k)−

pn∑
k=1

Injk(β0)(βnk − β0k)

△
= Jn11 + Jn12,

where Injk(β0) is the (j, k)-th cell element of In(β0),

|Jn11| 6
{

pn∑
k=1

[
∂2ℓn(β0)

∂βnj∂βnk

+ Injk(β0)

]2} 1
2

∥βn − β0∥

= OP (
√
npn )OP

(√
pn
n

)
= oP (

√
npn )

and

|Jn12| 6 n

{
pn∑
k=1

I2njk(β0)

} 1
2

∥βn − β0∥

6 nλmax{In(β0)}OP

(√
pn
n

)
= OP (

√
npn ).

So we have

|Jn2| = OP (
√
npn ). (A.3)
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For the third term Jn3, by the condition (A6), we obtain

E0(J
2
n3) =

1

4
E0

{
pn∑

k,l=1

[
n∑

i=1

dn2(β
∗
n,Wi)XijXikXil

]
(βnk − β0k)(βnl − β0l)

}2

=
1

4
E0

{
n∑

i=1

[
pn∑

k,l=1

XikXil(βnk − β0k)(βnl − β0l)

]
dn2(β

∗
n,Wi)Xij

}2

6 1

4
E0

{
n∑

i=1

[
(βn − β0)

⊤XiX
⊤
i (βn − β0)

]
|dn2(β∗

n,Wi)| · |Xij|

}2

6 1

4
M2

3E0

[
(βn − β0)

⊤
n∑

i=1

H(Wi)XiX
⊤
i (βn − β0)

]2
6 1

2
n2M2

3E0

{
E0

[(
(βn − β0)

⊤A(n)(βn − β0)
)2 ∣∣∣∥A(n)∥ 6 ρn2

2

]}
+
1

2
n2M2

3ρ
2
n2O

(
p2n
n2

)
6 1

2
n2M2

3

ρ2n2
4

O

(
p2n
n2

)
+

1

2
n2M2

3ρ
2
n2O

(
p2n
n2

)
= O(p2n).

Hence

|Jn3| = OP (pn) = oP (
√
npn ). (A.4)

From (A.2)–(A.4), we have

∂Qn(βn)

∂βnj

= OP (
√
npn )− nλnsgn(βnj)

= nλn

[
OP

(√
pn/n

/
λn

)
− sgn(βnj)

]
.

Since
√
pn/n

/
λn → 0, it is clear that the sign of ∂Qn(βn)/∂βnj is completely determined by

the sign of βnj. Therefore, Lemma A.2 follows. �

Proof of Theorem 3.2. As shown in Theorem 3.1, there exists a local maximizer β̂n

of Qn(βn). It follows from Lemma A.2 that part (1) holds. Now we prove part (2). From

Theorem 3.1, we obtain ∥β̂n−β0∥ = OP (
√
pn/n ). Using the condition min16j6kn |β0j|/λn →

∞, with probability tending to 1, all β̂nj (j = 1, . . . , kn) are bounded away from [−aλn, aλn].
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In addition, Pr(β̂2n = 0) → 1. Thus, with probability tending to 1, we have

∇Qn

(
(β̂⊤

1n,0
⊤)⊤
)
=

∂ℓn

(
(β̂⊤

1n,0
⊤)⊤
)

∂β1n

= 0.

For simplicity, let ℓn

(
(β̂⊤

1n,0
⊤)⊤
)

△
= ℓ1n(β̂1n) and In

(
(β⊤

10,0
⊤)⊤
) △
= In(β10). Using the Taylor

expansion on ∂ℓ1n(β̂1n)
/
∂β1n around β10, we have

0 =
∂ℓ1n(β̂1n)

∂β1n

=
∂ℓ1n(β10)

∂β1n

+
∂2ℓ1n(β10)

∂β1n∂β⊤
1n

(β̂1n − β10) +
1

2
(β̂1n − β10)

⊤∇2

(
∂ℓ1n(β

∗
1n)

∂β1n

)
(β̂1n − β10),

or,

1

n

∂2ℓ1n(β10)

∂β1n∂β⊤
1n

(β̂1n − β10) = − 1

n

∂ℓ1n(β10)

∂β1n

− 1

2n
(β̂1n − β10)

⊤∇2

(
∂ℓ1n(β

∗
1n)

∂β1n

)
(β̂1n − β10).

Since∣∣∣∣[ 1n ∂2ℓ1n(β10)

∂β1n∂β⊤
1n

+ In(β10)

]
(β̂1n − β10)

∣∣∣∣ 6
∥∥∥∥1n ∂2ℓ1n(β10)

∂β1n∂β⊤
1n

+ In(β10)

∥∥∥∥ · ∥β̂1n − β10∥

= oP

(
1

√
pn

)
OP

(√
pn
n

)
= oP

(
1√
n

)
and

E0

∥∥∥∥ 1

2n
(β̂1n − β10)

⊤∇2

(
∂ℓ1n(β

∗
1n)

∂β1n

)
(β̂1n − β10)

∥∥∥∥2
=

1

4
E0


pn∑
l=1

[
1

n

pn∑
j,k=1

n∑
i=1

dn2(β
∗
1n,W1i)X1ijX1ikX1il(β̂1nj − β10j)(β̂1nk − β10k)

]2
=

1

4
E0


pn∑
l=1

[
1

n

n∑
i=1

dn2(β
∗
1n,W1i)X1il(β̂1n − β10)

⊤X1iX
⊤
1i(β̂1n − β10)

]2
6 1

4
E0


pn∑
l=1

[
1

n

n∑
i=1

|dn2(β∗
1n,W1i)| · |X1il|(β̂1n − β10)

⊤X1iX
⊤
1i(β̂1n − β10)

]2
6 1

4
M2

3pnE0

[
1

n
(β̂1n − β10)

⊤
n∑

i=1

H(W1i)X1iX
⊤
1i(β̂1n − β10)

]2
= o

(
pn

p2n
n2

)
= o

(
1

n

)
.
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Therefore,

In(β10)(β̂1n − β10) =
1

n

∂ℓ1n(β10)

∂β1n

+ oP

(
1√
n

)
.

For any kn × 1 scalar vector α, we have

√
nα⊤I

1
2
n (β10)(β̂1n − β10) =

1√
n
α⊤I

− 1
2

n (β10)
∂ℓ1n(β10)

∂β1n

+ oP (1)

=
1√
n

n∑
i=1

α⊤I
− 1

2
n (β10)

∂ℓ1ni(β10)

∂β1n

+ oP (1).

Let

Vni =
1√
n
α⊤I

− 1
2

n (β10)
∂ℓ1ni(β10)

∂β1n

,

then E0(Vni) = 0 and

E0(V
2
ni) =

1

n
α⊤I

− 1
2

n (β10)E0

{[
∂ℓ1ni(β10)

∂β1n

] [
∂ℓ1ni(β10)

∂β1n

]⊤}
I
− 1

2
n (β10)α =

1

n
.

We only need to verify the condition of the Lindeberg–Feller central limit theorem.

Namely, for every ϵ > 0,

lim
n→∞

n∑
i=1

E0

[
V 2
niI(|Vni| > ϵ)

]
= 0.

By the Hölder inequality, we have

n∑
i=1

E0

[
V 2
niI(|Vni| > ϵ)

]
= nE0

[
V 2
n1I(|Vn1| > ϵ)

]
6 n[E0(V

4
n1)]

1
2 · [Pr(|Vn1| > ϵ)]

1
2 .

Under conditions (A3) and (A4), we obtain

Pr(|Vn1| > ϵ) 6 E0(V
2
n1)

ϵ2
= O

(
1

n

)
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and

E0(V
4
n1) =

1

n2
E0

{[
∂ℓ1n1(β10)

∂β1n

]⊤
I
− 1

2
n (β10)αα⊤I

− 1
2

n (β10)

[
∂ℓ1n1(β10)

∂β1n

]}2

6 1

n2
λmax(αα⊤)λmax{I−1

n (β10)}E0

{
kn∑
j=1

[
∂ℓ1n1(β10)

∂β1nj

]2}2

6 1

n2
λ−1
min{In(β10)}kn

kn∑
j=1

E0

[
∂ℓ1n1(β10)

∂β1nj

]4
= O

(
p2n
n2

)
.

Thus we have
n∑

i=1

E0

[
V 2
niI(|Vni| > ϵ)

]
6 O

(
n
pn
n

1√
n

)
= o(1).

Hence, by the Lindeberg–Feller central limit theorem and Slutsky’s theorem, Theorem 3.2

(2) follows. �
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Table 1: Simulation results for the linear model Y = β⊤
nX + ε

Correctly No. of zeros Average

Error (n, pn) Method fitted Overfitted C IC MSE

Normal (100,13) Lasso 0.042(0.201) 0.918(0.275) 7.582(1.527) 0.042(0.211) 0.640(0.346)

ALasso 0.122(0.328) 0.800(0.400) 8.572(1.025) 0.086(0.308) 0.377(0.330)

SCAD 0.610(0.488) 0.262(0.440) 9.584(0.782) 0.128(0.334) 0.381(0.467)

SCAD* 0.698(0.460) 0.210(0.408) 9.680(0.618) 0.096(0.308) 0.363(0.451)

Oracle 1.000(0.000) 0.000(0.000) 10.000(0.000) 0.000(0.000) 0.176(0.171)

(300,19) Lasso 0.004(0.063) 0.996(0.063) 9.398(1.962) 0.000(0.000) 0.577(0.259)

ALasso 0.243(0.430) 0.757(0.430) 12.013(0.745) 0.000(0.000) 0.243(0.130)

SCAD 0.860(0.347) 0.140(0.347) 12.834(0.446) 0.000(0.000) 0.155(0.107)

SCAD* 0.823(0.382) 0.177(0.382) 12.810(0.426) 0.000(0.000) 0.162(0.114)

Oracle 1.000(0.000) 0.000(0.000) 13.000(0.000) 0.000(0.000) 0.127(0.071)

(600,24) Lasso 0.002(0.045) 0.998(0.045) 10.658(2.861) 0.000(0.000) 0.570(0.192)

ALasso 0.460(0.501) 0.540(0.501) 14.370(0.661) 0.000(0.000) 0.236(0.105)

SCAD 0.870(0.337) 0.130(0.337) 14.846(0.437) 0.000(0.000) 0.135(0.076)

SCAD* 0.840(0.368) 0.160(0.368) 14.820(0.435) 0.000(0.000) 0.127(0.067)

Oracle 1.000(0.000) 0.000(0.000) 15.000(0.000) 0.000(0.000) 0.119(0.060)

Logistic (100,13) Lasso 0.192(0.394) 0.414(0.493) 8.810(1.620) 0.490(0.668) 1.729(0.778)

ALasso 0.286(0.452) 0.274(0.446) 8.918(1.660) 0.576(0.722) 1.426(0.849)

SCAD 0.338(0.474) 0.126(0.332) 9.652(0.651) 0.640(0.663) 1.100(0.987)

SCAD* 0.378(0.485) 0.144(0.351) 9.596(0.655) 0.562(0.644) 1.059(0.971)

Oracle 1.000(0.000) 0.000(0.000) 10.000(0.000) 0.000(0.000) 0.360(0.374)

(300,19) Lasso 0.170(0.376) 0.746(0.436) 10.614(3.255) 0.086(0.288) 1.707(0.600)

ALAsso 0.492(0.500) 0.424(0.495) 12.484(0.589) 0.084(0.278) 0.911(0.430)

SCAD 0.678(0.468) 0.162(0.369) 12.742(0.576) 0.170(0.402) 0.436(0.364)

SCAD* 0.718(0.450) 0.154(0.361) 12.780(0.482) 0.130(0.343) 0.411(0.352)

Oracle 1.000(0.000) 0.000(0.000) 13.000(0.000) 0.000(0.000) 0.269(0.162)

(600,24) Lasso 0.084(0.278) 0.914(0.281) 6.728(5.273) 0.002(0.045) 0.983(0.775)

ALasso 0.698(0.460) 0.286(0.452) 14.692(0.483) 0.016(0.126) 0.959(0.348)

SCAD 0.852(0.355) 0.132(0.339) 14.832(0.482) 0.018(0.147) 0.272(0.176)

SCAD* 0.814(0.389) 0.174(0.379) 14.792(0.479) 0.012(0.109) 0.273(0.180)

Oracle 1.000(0.000) 0.000(0.000) 15.000(0.000) 0.000(0.000) 0.229(0.112)
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Table 2: Simulation results for the model Y = exp(β⊤
nX) + ε

Correctly No. of zeros Average

Error (n, pn) Method fitted Overfitted C IC MSE

Normal (100,13) Lasso 0.156(0.363) 0.690(0.463) 8.354(1.393) 0.174(0.429) 0.154(0.111)

ALasso 0.448(0.498) 0.382(0.486) 9.324(0.939) 0.188(0.435) 0.113(0.100)

SCAD 0.274(0.446) 0.572(0.495) 8.882(1.148) 0.176(0.435) 0.136(0.133)

Oracle 1.000(0.000) 0.000(0.000) 10.000(0.000) 0.000(0.000) 0.040(0.038)

(300,19) Lasso 0.010(0.100) 0.990(0.100) 9.904(1.797) 0.000(0.000) 0.080(0.042)

ALasso 0.508(0.500) 0.492(0.500) 12.294(0.837) 0.000(0.000) 0.040(0.023)

SCAD 0.478(0.500) 0.522(0.500) 12.258(0.939) 0.000(0.000) 0.040(0.030)

Oracle 1.000(0.000) 0.000(0.000) 13.000(0.000) 0.000(0.000) 0.026(0.017)

(600,24) Lasso 0.000(0.000) 1.000(0.000) 10.532(2.111) 0.000(0.000) 0.067(0.032)

ALasso 0.448(0.498) 0.552(0.498) 14.324(0.699) 0.000(0.000) 0.026(0.014)

SCAD 0.640(0.480) 0.360(0.480) 14.590(0.622) 0.000(0.000) 0.022(0.014)

Oracle 1.000(0.000) 0.000(0.000) 15.000(0.000) 0.000(0.000) 0.017(0.009)

Logistic (100,13) Lasso 0.140(0.347) 0.380(0.486) 8.962(1.205) 0.654(0.769) 0.291(0.219)

ALasso 0.190(0.393) 0.256(0.437) 9.324(1.022) 0.744(0.769) 0.285(0.233)

SCAD 0.206(0.405) 0.266(0.442) 9.316(1.038) 0.742(0.793) 0.338(0.288)

Oracle 1.000(0.000) 0.000(0.000) 10.000(0.000) 0.000(0.000) 0.081(0.089)

(300,19) Lasso 0.160(0.367) 0.814(0.389) 11.092(1.532) 0.026(0.159) 0.129(0.075)

ALasso 0.552(0.498) 0.414(0.493) 12.364(0.888) 0.036(0.197) 0.081(0.066)

SCAD 0.732(0.443) 0.222(0.416) 12.670(0.706) 0.052(0.248) 0.063(0.064)

Oracle 1.000(0.000) 0.000(0.000) 13.000(0.000) 0.000(0.000) 0.039(0.028)

(600,24) Lasso 0.128(0.334) 0.872(0.334) 12.330(2.292) 0.000(0.000) 0.097(0.112)

ALasso 0.716(0.451) 0.282(0.450) 14.414(1.424) 0.002(0.045) 0.074(0.147)

SCAD 0.780(0.415) 0.220(0.415) 14.370(1.859) 0.000(0.000) 0.056(0.126)

Oracle 1.000(0.000) 0.000(0.000) 15.000(0.000) 0.000(0.000) 0.030(0.022)
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Table 3: Results for primary biliary cirrhosis data

MLE Lasso(T) Lasso ALasso SCAD

Variables Est SE Est SE Est SE Est SE Est SE

X1 0.096 0.094 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

X2 −0.265 0.104 0.17 0.09 −0.203 0.055 −0.228 0.061 −0.339 0.092

X3 0.065 0.095 −0.01 0.03 0.005 0.004 0.000 0.000 0.000 0.000

X4 −0.266 0.159 0.04 0.07 −0.149 0.047 −0.142 0.051 0.000 0.000

X5 0.019 0.110 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

X6 −0.132 0.102 0.02 0.05 −0.064 0.031 0.000 0.000 0.000 0.000

X7 −0.281 0.136 0.18 0.11 −0.260 0.062 −0.257 0.069 −0.433 0.112

X8 −0.842 0.216 0.35 0.12 −0.702 0.099 −1.073 0.143 −1.212 0.162

X9 −0.022 0.115 0.00 0.01 0.000 0.000 0.000 0.000 0.000 0.000

X10 0.149 0.111 −0.22 0.10 0.113 0.043 0.026 0.011 0.000 0.000

X11 −0.179 0.124 0.21 0.11 −0.223 0.059 −0.136 0.042 −0.021 0.008

X12 −0.234 0.101 0.00 0.00 −0.138 0.048 −0.161 0.052 −0.306 0.095

X13 −0.180 0.104 0.09 0.08 −0.093 0.039 −0.011 0.006 0.000 0.000

X14 −0.096 0.121 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

X15 −0.039 0.101 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000

X16 −0.346 0.106 0.09 0.09 −0.247 0.060 −0.268 0.070 −0.175 0.056

X17 −0.257 0.115 0.21 0.09 −0.193 0.055 −0.225 0.062 −0.345 0.095
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