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Using the nonequilibrium Green’s function (NEGF) approach, we develop a microscopic ac transport theory
in the presence of electron-phonon interaction. Taking into account the self-consistent Coulomb interaction, the
displacement current is included. This ensures that our theory satisfies the current-conserving and gauge-invariant
conditions. Importantly, the inclusion of self-consistent Coulomb interaction naturally connects the NEGF
formalism to the density functional theory (DFT). This allows us to calculate the self-consistent Hamiltonian
using DFT within the NEGF framework, which paves the way for first principles ac transport calculation of
nanoelectronic devices in the presence of electron-phonon interaction. It is known that the inelastic electron
tunneling spectroscopy (IETS) is a powerful tool in studying the inelastic dc quantum transport in molecular
devices. The basic idea of IETS is to obtain the information of vibrational spectrum of molecular devices by
measuring the second derivative of the dc current with respect to the bias voltage. In the ac transport, we find
that the phonon spectrum and electron-phonon coupling strength can be obtained from the second derivative of
the admittance with respect to the frequency which is the working principle of the inelastic electron admittance
spectroscopy (IEAS). Hence we propose to use IEAS to probe the effect of the phonon in ac transport. As an
example, dynamic conductance of a quantum dot is discussed in detail and the concept of IEAS is demonstrated.
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I. INTRODUCTION

Quantum transport in nanostructures has been intensively
investigated because of promising potential applications in
nanoelectronics [1–3]. Various transport properties includ-
ing I -V characteristic, conductivity, current noise, quantum
capacitance, etc. have been studied both experimentally
[4–9] and theoretically [10–16]. Although most theoretical
and experimental studies have been concentrated on the dc
transport regime, time-dependent transport problems have
attracted more and more attention including steady state ac
transport [17–32] and the transient problems driven by the step
function-like bias [33,34]. Ac quantum transport properties
have also been investigated in the super-conducting hybrid
system [35–37]. To examine the phase breaking effect, ac
quantum transport with electron-phonon interaction has been
studied by several groups [21,38,39]. For electron transport,
current-conserving and gauge-invariant conditions are two
fundamental requirements [10,11]. In order to satisfy the two
conditions in ac transport, one should include self-consistent
Coulomb interaction explicitly into the Hamiltonian and
calculate both conduction current and displacement current
due to the charge pileup in the scattering region [10,11,23,24].
Moreover, the inclusion of Coulomb interaction is also the key
for the first principles transport calculation for nanoelectronics
which bridges the nonequilibrium Green’s function in quantum
transport theory (NEGF) and the density function theory
(DFT) characterizing the chemical ingredient of the molecular
devices [40].

One of the most important issues in nanoelectronics theory
and modeling is the role played by interaction between
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electrons and the nuclear vibrations (phonons). This is because
the electron-phonon interaction gives rise to inelastic current
and modifies the elastic current that affects the characteristics
of nanoelectronic devices in an essential way. In addition, the
inelastic current due to electron-phonon interaction can be
used to measure vibrational spectra of single molecule as has
been demonstrated experimentally using inelastic tunneling
spectroscopy. Clearly, predicting quantum transport properties
of nanoelectronic devices in the presence of electron-phonon
interaction must use the first principle method including all
the atomic details of nanoelectronic devices.

Indeed, various effects on the transport in the molecular
devices have been studied such as inelastic electron scatter-
ing, atomic position rearrangements [3], energy dissipation
[41–43] and local heat in device [44], phonon-mediated nega-
tive differential resistance [45] and phonon assisted tunneling
[9,46], etc. In the dc situation, the inelastic transport properties
of molecular device are studied intensively [33,47–54]. The
inelastic tunneling spectroscopy (IETS), which is the second
derivative of the current over bias voltage, is usually used as
a powerful tool to identify the molecular vibrational modes
and the electron-phonon coupling strength [55,56]. These
first principle investigations show that under nonequilibrium
condition vibrational spectra and electron-phonon interaction
can be quite different from the equilibrium ones. For instance,
it was found that the dc bias voltage can drastically affect
the electron-phonon coupling strength while the phonon
frequencies change only a few percent [56]. Since most of the
nanoelectronic devices are operated with ac signals and finite
temperatures, there is a clear need to understand the role played
by electron-phonon interaction in the ac regime. Up to now,
most of the theoretical studies of electron-phonon interaction
focus on dc properties [57]. There is yet a first principle method
for calculating vibrational frequencies, electron-phonon
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couplings, and inelastic transport properties under ac condition
for nanoelectronic devices. It is the aim of this paper to provide
such a theoretical framework which is suitable for the first
principles calculation in nanoelectronics. In this paper, we
developed a microscopic theory for ac transport with electron-
phonon coupling using the nonequilibrium Green’s function
theory. Our formalism emphasizes the current conservation
and gauge invariance. The self-consistent Coulomb interaction
in the presence of phonon is included explicitly in the
Hamiltonian making it possible to combine with DFT for the
first principles transport calculation. Similar to the role IETS
played in the dc transport, we proposed a new tool named
as the ac inelastic electron admittance spectroscopy (IEAS) to
characterize the electron-phonon interaction including phonon
spectrum and electron-phonon coupling strength from the
dynamic point of view with frequency as an extra handle.

The rest of the paper is organized as follows. In Sec. II, the
formulas of current and conductance are derived for quantum
systems with ac bias and electron-phonon interaction. Using
the nonequilibrium Green’s function, the dynamic conduc-
tance is obtained by expanding ac current and admittance to
the first order with respect to the amplitude of ac bias. In
addition, current conservation and gauge invariance are proved
to be satisfied when the Coulomb interaction is considered.
Furthermore, the idea of IEAS is introduced and analyzed. In
Sec. III, as an example, the inelastic ac transport of a quantum
dot is numerically studied in detail. A summary is given in
Sec. IV.

II. THEORETICAL FORMALISM

We consider a scattering region coupled by two or mul-
tiple leads. The system can be described by the following
Hamiltonian:

H = Hlead + Hscat + HT . (1)

Hlead is the Hamiltonian of the leads,

Hlead =
∑
kα

εkαĈ
†
kαĈkα. (2)

Ĉ
†
kα (Ĉkα) is the creation (annihilation) operator of the k state

in the lead α (α = L,R for a two-probe system). εkα = ε
(0)
kα +

qvα cos ωt with ε
(0)
kα the energy level in lead α and vα is the ac

bias amplitude on the lead α. As usual, the electron-phonon
interaction and Coulomb interaction in the lead are neglected.

Hscat is the Hamiltonian of the scattering region which
includes three parts as follows:

Hscat = He + Hp + Hep. (3)

The Hamiltonian of electrons He in the scattering region can
be expressed as

He =
∑

n

(εn + qUn)d̂†
nd̂n, (4)

where d̂
†
n and d̂n are the creation and annihilation operators

in the scattering region and satisfy the fermion anticom-
mutation relation {d̂α,d̂

†
β} = δαβ . Un = ∑

m Vnm〈d̂†
md̂m〉 is the

self-consistent internal Coulomb potential inside the scattering
region with Vnm the matrix element of the Coulomb potential

[58]. If we wish to implement this formalism into the first
principles calculation, we will use the following Hamiltonian
that includes the potentials Vex and Vcor due to the the exchange
and correlation interactions, respectively:

He =
∑

n

(εn + qUn + qVex + qVcor)d̂
†
nd̂n. (5)

In Eq. (3), Hp is the phonon Hamiltonian and can be written as

Hp =
∑

ν

�ων

(
b̂†ν b̂ν + 1

2

)
, (6)

where ων is the phonon frequency. The phonon creation
and annihilation operators, b̂†ν and b̂ν , satisfy the boson
commutation relation [b̂α,b̂

†
β] = δαβ . The Hamiltonian of the

electron-phonon interaction is given by

Hep =
∑
νnn′

gν
nn′ (b̂†ν + b̂ν)d̂†

nd̂n′ , (7)

where gν
nn′ describes the electron-phonon coupling strength.

The third term HT in the total Hamiltonian Eq. (1) describes
the coupling between the scattering region and the leads. With
the coupling constant tkαn, it can be expressed as

HT =
∑
kαn

[tkαnĈ
†
kαd̂n + t∗kαnd̂

†
nĈkα]. (8)

Using the Heisenberg equation of motion, one obtains the
current in the form of Green’s function

Iα(t) = −
∑
kn

[tkαnG
<
n,kα(t,t)] + H.c. (9)

After the analytic continuation, we obtain [14]

Iα(t) = −q

∫
dt1Tr[Gr (t,t1)�<

eα(t1,t) + G<(t,t1)�a
eα(t1,t)

−�<
eα(t,t1)Ga(t1,t) − �r

eα(t,t1)G<(t1,t)], (10)

where

�γ
eαmn(t,t ′) =

∑
k

t∗kαmg
γ

kα(t,t ′)tkαn, (11)

with γ = <,r,a. Here �
γ
eα is the self-energy due to the

electron coupling between the scattering region and the lead α.
Electron-phonon coupling between the scattering region and
the leads is set to zero since we assume that the phonon exists
only in the scattering region but not in the lead regions. In
Eq. (11), the Green’s functions of isolated leads are

g
r,a
kα (t,t ′) = ∓iθ (±t ∓ t ′)exp

[
− i

∫ t

t ′
dt1εkα(t1)

]
(12)

and

g<
kα(t,t ′) = if

(
ε

(0)
kα

)
exp

[
− i

∫ t

t ′
dt1εkα(t1)

]
. (13)

The effect of phonon is included in the Green’s function Gγ in
Eq. (10) as self-energy �

γ
ep which will be discussed in detail

in Sec. II B.
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A. Nonequilibrium Green’s function at small bias

We are interested in the linear response regime where the
bias voltage is small. To calculate the ac current and dynamic
conductance in this regime, one can expand the Green’s
function Gγ , electronic self-energy �

γ
e , and the self-energy of

electron-phonon coupling �
γ
ep to the first order of the external

bias vα as follows:

Gγ (t,t1) = G
γ

0 (t,t1) + gγ (t,t1), (14)

�γ
eα(t,t1) = �

γ

0eα(t,t1) + σγ
eα(t,t1), (15)

and

�γ
ep(t,t1) = �

γ

0ep(t,t1) + σγ
ep(t,t1), (16)

where G
γ

0 , �
γ

0eα , and �
γ

0ep are equilibrium Green’s functions
and equilibrium self-energies and gγ , σ

γ
eα , and σ

γ
ep are the first

order corrections due to the bias vα . It is straightforward to
find that the current in the linear regime is written as

Iα(t) = −q

∫
dt1Tr

[
Gr

0(t,t1)σ<
eα(t1,t) + gr (t,t1)�<

0eα(t1,t)

+G<
0 (t,t1)σa

eα(t1,t) + g<(t,t1)�a
0eα(t1,t)

−�<
0eα(t,t1)ga(t1,t) − σ<

eα(t,t1)Ga
0(t1,t)

−�r
0eα(t,t1)g<(t1,t) − σ r

eα(t,t1)G<
0 (t1,t)

]
. (17)

After taking double-time Fourier transform, the expression of
current in energy representation is obtained as

Iα(�) = −q

∫
dE

2π
Tr

[
Gr

0(E+)σ<
eα(E+,E) + gr (E+,E)

×�<
0eα(E)+G<

0 (E+)σa
eα(E+,E)+g<(E+,E)�a

0eα(E)

−�<
0eα(E+)ga(E+,E) − σ<

eα(E+,E)Ga
0(E)

−�r
0α(E+)g<(E+,E) − σ r

eα(E+,E)G<
0 (E)

]
, (18)

where E+ = E + �. (We will set � = 1 in the rest of
the paper.) To obtain Eq. (18), we have used the fact
that Fourier transform G

γ

0 (E,E′) = 2πδ(E − E′)Gγ

0 (E) and
similar relation for the equilibrium self-energy. This is because
the equilibrium Green’s function G

γ

0 (t1,t2) and self-energy
�

γ

0e(t1,t2) depend only on the time difference t1 − t2.
In the energy representation, the expression of the retarded

Green’s function is [59]

Gr = 1

E − H0 − U − �r
e − �r

ep

, (19)

where H0 = ∑
n εnd̂

†
nd̂n is the Hamiltonian of isolated scatter-

ing region, U is the self-consistent internal Coulomb potential,
and �r

ep is the phonon self-energy to be discussed in detail in
the next subsection. Expanding U (t) in terms of the amplitude
of the external bias vα(0) = vα , we have

U (t) = Ueq + U1(t) + U2(t) + · · ·

= Ueq +
∑

α

uα(t)vα + 1

2

∑
αβ

uαβ(t)vαvβ + · · · , (20)

where Ueq is the equilibrium Coulomb potential and uα(t),
uαβ(t) are the so-called characteristic potentials [11,25]. Here
uα(t) corresponds to the first order response of the Coulomb

interaction due to ac bias and uαβ(t) describes the second order
correction, etc. According to the gauge-invariant condition the
current should remain unchanged when all the external bias
voltages are shifted to an equal amount at the same time; we
have

∑
α uα(t) = cos ωt and

∑
α uαβ(t) = ∑

β uαβ(t) = 0 in
the presence of phonon [11,25].

In the linear response regime, we treat U1, σ r
e , and σ r

ep as the
perturbation to the equilibrium quantity Ueq, �r

0e, and �r
0ep,

respectively. We have from the Dyson equation

Gr = Gr
0 + Gr

0

(
U1 + σ r

e + σ r
ep

)
Gr

0, (21)

where the equilibrium Green’s function Gr
0 is

Gr
0 = 1

E − H0 − Ueq − �r
0e − �r

0ep

. (22)

So from Eqs. (14) and (21), the first order correction for the
retarded Green’s function is

gr/a = G
r/a

0

(
U1 + σ r/a

e + σ r/a
ep

)
G

r/a

0 . (23)

Using the Keldysh equation G< = Gr�<Ga , and collecting
the first order terms of the external bias, one finds

g< = Gr
0�

<
0 ga + Gr

0σ
<Ga

0 + gr�<
0 Ga

0, (24)

where

�<
0 = �<

0e + �<
0ep

and

σ< = σ<
e + σ<

ep. (25)

Note that Eqs. (23) and (24) are in time space. Taking
double-time Fourier transform of these two equations and
using the abbreviation Ḡ

γ

0 = G
γ

0 (E+) and �̄
γ

0 = �
γ

0 (E+) with
E+ = E + �, we have

gr/a(E+,E) = Ḡ
r/a

0 [U1(�) + σ r/a
e (E+,E)

+ σ r/a
ep (E+,E)]Gr/a

0 (26)

and

g<(E+,E) = Ḡr
0(�̄<

0e + �̄<
0ep)ga(E+,E) + Ḡr

0[σ<
e (E+,E)

+ σ<
ep(E+,E)]Ga

0 + gr (E+,E)(�<
0e + �<

0ep)Ga
0.

(27)

The Fourier transform of the first order correction of the
nonequilibrium self-energy is [21]

σγ
eα = qvα(�)

�

[
�

γ

0eα − �̄
γ

0eα

]
, (28)

where vα(�) = πvα[δ(� + ω) + δ(� − ω)]. Here ω is the
driving frequency and � is the response frequency. In the
equations above, U1(�) is the Fourier transform of U1(t) with

U1(�) =
∑

α

uα(�)vα(�). (29)

From
∑

α uα(t) = cos ωt , we obtain∑
α

uα(�) = 1. (30)

Note that here uα(�) is defined by Eq. (29) but not the direct
Fourier transform of uα(t). The expressions of �

γ

0ep and σ
γ
ep

will be derived in the next subsection.
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B. Self-energy due to electron-phonon coupling

It can be extremely computationally demanding to include
the effect of electron-phonon coupling in the quantum trans-
port. This is because the electron distribution function and
electron transport are affected by the presence of phonons
which in turn influence the phonon distribution function
and the equilibrium positions of the atoms. So to solve
this inelastic transport thoroughly, one should carry out the
self-consistent calculation to get the electron density, the
Coulomb interaction, as well as the electron-phonon coupling
including the positions of atoms and the vibration modes. This
makes the calculation extremely hard if not impossible. To
reduce the complexity of the problem, only the lowest-order
contributions due to electron-phonon coupling are usually con-
sidered [39,53,60–62]. At this level, if the phonon calculation
is decoupled with the electronic part, we call it the Born
approximation. Otherwise, it is called the self-consistent Born
approximation.

In order to proceed further, we assume that [56,63] the
phonon is in equilibrium and its lifetime is infinite. Under this
approximation, we can write the bare phonon Green’s function
as [64]

Dr
ν(�) = 1

� − ων + iε
− 1

� + ων + iε
,

D<
ν (�) = −2πi[nνδ(� − ων) + (nν + 1)δ(� + ων)], (31)

D>
ν (�) = −2πi[(nν + 1)δ(� − ων) + nνδ(� + ων)],

where

nν = 1

eων/kBT − 1
(32)

is the Bose-Einstein distribution function and Da
ν (�) =

[Dr
ν(�)]†. Within the self-consistent Born approximation

(SCBA), the electron self-energy due to electron-phonon
coupling can be written as [64]

�ep(τ,τ ′) = i
∑

ν

gνG(τ,τ ′)gν†Dν(τ,τ ′), (33)

where Dν is the equilibrium phonon Green’s function and only
depends on the time difference τ − τ ′. After performing the
Fourier transform, we have

�ep(E,E′) = i
∑

ν

∫
d�

2π
gνG(E − �,E′ − �)gν†D(�),

(34)

where gν is the electron-phonon coupling matrix. Its first order
correction to the external bias can be written as [21]

σep(E,E′) = i
∑

ν

∫
d�

2π
gνg(E − �,E′ − �)gν†D(�). (35)

From Eq. (34), the equilibrium self-energies due to electron-
phonon coupling can be solved as [63]

�r
0ep(E) =

∑
ν

gν

[
(1 + nν)Gr

0(E − ων) + nνG
r
0(E + ων)

+ 1

2
[G<

0 (E − ων) − G<
0 (E + ων)]

]
gν†, (36)

�<
0ep(E) =

∑
ν

gν[(1 + nν)G<
0 (E + ων)

+ nνG
<
0 (E − ων)]gν†, (37)

and

�>
0ep(E) =

∑
ν

gν[(1 + nν)G>
0 (E − ων)

+ nνG
<
0 (E + ων)]gν†. (38)

At zero temperature, nν = 0, and the expressions above can
be simplified as

�r
0ep(E) =

∑
ν

gν

[
Gr

0(E − ων) + 1

2
G<

0 (E − ων)

− 1

2
G<

0 (E + ων)

]
gν†, (39)

�<
0ep(E) =

∑
ν

gνG<
0 (E + ων)gν†, (40)

and

�>
0ep(E) =

∑
ν

gνG>
0 (E − ων)gν†. (41)

Here, the Green’s functions are the equilibrium Green’s
functions which also include the electron-phonon interaction.

At zero temperature, the first order correction of phonon
self-energies can be written as

σ r
ep(E+,E) =

∑
ν

gν

[
gr (E+ − ων,E − ων)

+ 1

2
g<(E+ − ων,E − ων)

− 1

2
g<(E+ + ων,E + ων)

]
gν†, (42)

σ<
ep(E+,E) =

∑
ν

gνg<(E+ + ων,E + ων)gν†, (43)

and

σ>
ep(E+,E) =

∑
ν

gνg>(E+ − ων,E − ων)gν†. (44)

We note that the first order correction of phonon self-energies
cannot be expressed analytically because Green’s functions gγ

themselves contain the phonon self-energy, so they can only
be solved numerically. With the phonon self-energies defined,
we are able to calculate dynamic conductance in the presence
of phonon.

C. Dynamic conductance

The dynamic conductance (admittance) Gαβ is defined as

Iα(�) =
∑

β

Gαβ(�)vβ(�). (45)

Comparing Eq. (18) with Eq. (45) and defining g
γ
α (�) and

σ
γ
α (�) according to

gγ (E+,E) =
∑

α

gγ
α (�)vα(�) (46)
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and

σγ (E+,E) =
∑

α

σ γ
α (�)vα(�), (47)

the dynamic conductance is found to be

Gαβ(�) = −q

∫
dE

2π
Tr

[
g<

β (�a
eα − �̄r

eα) + gr
β�<

eα − �̄<
eαga

β

+ (Ḡrσ<
eα − σ<

eαGa + Ḡ<σ a
eα − σ r

eαG<)δαβ

]
. (48)

Note that we have simplified the notation and use Gr to denote
the equilibrium Green’s function instead of Gr

0. This applies
to other Green’s functions and self-energies. Whenever we
have two energy variables such as G<(E+,E) it refers to a
nonequilibrium situation. Moreover, in the above equation,
g

γ
α = g

γ
α (�) and σ

γ
eα = σ

γ
eα(�). To make the expression of

dynamic conductance simpler, we will use the wideband limit
(WBL), where the linewidth function is independent of energy.
It is straightforward to extend it to a non-WBL case. Under
WBL, Eq. (28) gives

σ r,a
eα = 0 (49)

and

σ<
eα = iq

�
�eα(f − f̄ ). (50)

So the first order correction of the Green’s function is

gr,a
α (�) = Ḡr,a

[
uα(�) + σ r,a

epα

]
Gr,a, (51)

where σ r,a
epα(�) = ∂σ r,a

ep (E+,E)
∂vα (�) . Under WBL, the expression of

the dynamic conductance can be simplified as

Gαβ(�) = −q

∫
dE

2π
Tr

[
ig<

β �eα + Ḡrσ r
epβGr�<

eα

+ ḠruβGr�<
eα − Ḡaσ a

epβGa�̄<
eα

− ḠauβGa�̄<
eα + σ<

eα(Ḡr − Ga)δαβ]. (52)

Using the relation

[Ḡr ]−1 − [Ga]−1 = � + �a − �̄r

= � + i�e + (
�a

ep − �̄r
ep

)
, (53)

where �e = ∑
α �eα , we have

Ga − Ḡr = Ḡr
[
� + i�e + (

�a
ep − �̄r

ep

)]
Ga

= Ga
[
� + i�e + (

�a
ep − �̄r

ep

)]
Ḡr . (54)

Substituting the above equation into Eq. (52), we find

Gαβ(�) = −q

∫
dE

2π
Tr

[
iḠr (σ<

eβ + σ<
epβ)Ga�eα

+ Ḡr
(
σ r

epβ + uβ

)
Gr�<

eα − Ḡa
(
σa

epβ + uβ

)
Ga�̄<

eα

+ iḠr
(
σ r

epβ+uβ

)
G<�eα + iḠ<

(
σa

epβ + uβ

)
Ga�eα

− Ḡrσ<
eαGa

(
� + i�e + �a

ep − �̄r
ep

)
δαβ

]
. (55)

Now we derive the equation which determines the charac-
teristic potential uα(�). The Fourier transform of the Poisson
equation under ac bias voltage is given by

∇2U (x) = −4πρ(�)(x) = −4πiq

∫
dE

2π
[G<(E+,E)]xx.

(56)

With the Poisson equation at equilibrium

∇2Ueq(x) = −4πρ0(x) = −4πiq

∫
dE

2π
[G<(E)]xx, (57)

we find the relation between the induced charge distribution
δρind = ρ(�) − ρ0 and first order correction of Coulomb
potential U1 due to ac voltage

∇2U1 = −4πδρind(�) = −4πiq

∫
dE

2π
[g<(E+,E)]xx. (58)

Taking the derivative with respect to vα(�) on both sides of
the above equation, we find (within WBL)

∇2uα = −4πiq

∫
dE

2π

[
∂g<(E+,E)

∂vα

]
xx

= −4πiq

∫
dE

2π

[
Ḡr

(
uα + σ r

epα

)
G<

+ Ḡ<
(
uα + σa

epα

)
Ga + Ḡr (σ<

eα + σ<
epα)Ga

]
xx

. (59)

Setting uα = 0 on the right-hand side of Eq. (59), we obtain
the generalized injectivity dnα/dE in the presence of phonon,

dnα/dE = i

∫
dE

2π

[
Ḡrσ r

epα(0)G< + Ḡ<σ a
epα(0)Ga

+ Ḡr (σ<
eα + σ<

epα(0))Ga
]
xx

, (60)

where σ
γ
epα(0) with γ = r,a,< denotes the phonon self-energy

in the absence of Coulomb interaction. Here the generalized
injectivity dnα/dE describes the density of states inside
the scattering region due to the injection of electron in the
α lead [11]. Since g<(E+,E) depends on external bias vα

and Coulomb potential U1 [see Eqs. (26) and (27)], we
have

ig<(E+,E) = q
∑

α

dnα/dEvα + qMU1 (61)

in the Thomas-Fermi approximation [11], where dnα/dE =
∂g</∂vα and M is a Lindhard response function to be
determined. From Eq. (58), we see that if we shift vα by
a constant amount v0, U1 shifts by the same constant and
g< remains the same. Under this voltage shift, we imme-
diately find from Eq. (61) M = −∑

α dnα/dE = dn/dE.
So the Poisson-like equation can be cast into the familiar
form

∇2uα = −4πq2 dnα

dE
+ 4πq2 dn

dE
uα. (62)

The physical meaning of the right-hand side of Eq. (62) is
clear: the first term is the injected charge density, while the
second term is the induced charge density due to the Coulomb
interaction.

Once we have all the Green’s functions and self-energies,
we can solve for the characteristic potential uα and hence
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the dynamic conductance. In the following, we will show
that our formalism satisfies two fundamental requirements for
transport in the presence of phonon, i.e., current conservation
and gauge invariance. Mathematically, they correspond to∑

α Gαβ = 0 and
∑

β Gαβ = 0.

D. Current conservation and Gauge invariance

Before we proceed to show the current conservation and
gauge invariance for inelastic ac transport, we want to discuss
the basic assumption in the quantum transport of open systems.
To deal with quantum transport for an open system such
as a two probe system, we always divide the system into
scattering region and two semi-infinite leads, where the
potential landscape of the lead is assumed to be constant or a
periodic function. With this assumption, we can calculate the
wave function analytically in the lead region from which the
self-energy of the lead in the NEGF approach can be calculated
and the scattering matrix in the scattering matrix approach
can be constructed. In other words, using this assumption the
scattering problem of an open system with infinite degree of
freedom can be reduced to a problem of a closed system with
finite degree of freedom. In addition, applied ac or dc bias
is assumed to shift the potential landscape of the lead by a
constant amount (called adiabatic approximation) [15]. The
assumption that the potential landscape of the lead is a constant
or a periodic function implies that the Coulomb interaction is
screened in the lead so that the electric field of the lead is always
zero [11]. From Gauss’s theorem, the total charge Q(t) inside
of the scattering region is always zero, i.e., Q(t) = 0, although
the electrons might be re-distributed in the scattering region
due to the existence of the bias voltage. From the continuity
equation, we have

∑
α Iα + ∂tQ(t) = 0; we conclude that∑

α Iα = 0 as a result of Coulomb interaction. In order to
make this assumption valid in practice, we assume that the
scattering region is large enough so that the boundaries along
the transport directions are deep inside the leads where the
electrons are assumed to obey equilibrium distribution fL/R =

1
e

(E−μL/R−qVL/R )/kB T +1
. Here μL/R are the chemical potentials of

left/right leads and VL/R are the bias potentials added at
left/right leads.

In the following, we will first derive the continuity equation
on the operator level and discuss its implication on current
conservation. We then prove explicitly that the current conser-
vation is satisfied in the presence of phonon for both dc and ac
cases.

1. Current conservation on the operator level

First of all, we give a derivation of the continuity equation
on the operator level. Using the Heisenberg equation of motion,
one finds

dN̂α

dt
= −i[N̂α,Ĥ ] = −i[N̂α,ĤT ]

=
∑
kn

(tkαnĈ
†
kαd̂n − t∗kαnd̂

†
nĈkα), (63)

where N̂α = ∑
k Ĉ

†
kαĈkα is the number operator for the

electron in the lead α that commutes with Ĥlead, Ĥe, Ĥp, and

Ĥep. Defining N̂scat = ∑
n d̂

†
nd̂n the number operator for the

electron in the scattering region, we have

dN̂scat

dt
= −i[N̂scat,Ĥ ] = −i[N̂scat,ĤT ]

=
∑
kαn

(−tkαnĈ
†
kαd̂n + t∗kαnd̂

†
nĈkα), (64)

from which we obtain the continuity equation on the operator
level in the presence of phonon

∑
α

dN̂α

dt
+ dN̂scat

dt
= 0. (65)

Taking the quantum average we have the usual continuity
equation in the presence of phonon

∑
α

Iα + ∂Q

∂t
= 0, (66)

where Q is the total charge in the scattering region. By
including the Coulomb interaction, we solve the following
Poisson equation:

∇2U (x,t) = −4πρ(x,t), (67)

with the requirement that the electric field is zero on the bound-
ary. From Gauss’s theorem, we have Q(t) = ∫

dx ρ(x,t) = 0
or

∑
α Iα = 0 from Eq. (66). This shows that the ac current in

the presence of phonon is conserved.

2. Current conservation in dc case

Now we show explicitly that the current is conserved in the
dc case within SCBA. The general expression for current in
the dc case is given by

Iα = −q

∫
dE

2π
Tr[Gr�<

eα + G<�a
eα + c.c.]

= −q

∫
dE

2π
Tr[�<

eαG> − �>
eαG<]. (68)

Note that the total self-energy in a two-probe system with
electron-phonon interaction can be written as

�
γ
tot = �

γ

eL + �
γ

eR + �γ
ep (γ = >,<,r,a). (69)

The total electron current can be written as

∑
α

Iα = −q

∫
dE

2π
Tr

[ ∑
α

�<
eαG> −

∑
α

�>
eαG<

]

= −q

∫
dE

2π
Tr[�<

totG
> − �>

totG
<]

− q

∫
dE

2π
Tr[�<

epG> − �>
epG<]. (70)

Using the relationships

�>
tot − �<

tot = �r
tot − �a

tot, Gr�totG
a = Ga�totG

r,

it is straightforward to show that the first term of
Eq. (70) is zero. Within SCBA, the self-energies due to the
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electron-phonon interaction are [61,62]

�<
ep(E) =

∑
ν

[nνg
νG<(E − �ων)gν†

+ (nν + 1)gνG<(E + �ων)gν†],

�>
ep(E) =

∑
ν

[(nν + 1)gνG>(E − �ων)gν†

+ nνg
νG>(E + �ων)gν†]. (71)

Plugging these self-energies into Eq. (70), it is easy to show
that ∫

dE Tr[�<
epG> − �>

epG<] = 0. (72)

Hence the dc current is conserved within the SCBA.
In general, the self-energies due to the leads depend on

E − qvα . By including the Coulomb interaction, the electron
Green’s functions depend on E − qU as well as self-energies
due to the lead and electron-phonon coupling, where U

is the Coulomb potential. Thus the self-energies due to
electron-phonon coupling depend on E − qU as well since
they contain electron Green’s function [see Eq. (71)]. If all
the external biases are shifted by a constant amount v0, U

will also be shifted by v0. Hence by changing the variable
E to E + qv0 in the energy integration in Eq. (68), the
current remains unchanged. Therefore, the gauge-invariant
condition is automatically satisfied if Coulomb interaction is
included.

3. Current conservation and gauge invariance in ac case

Now we will prove the continuity equation explicitly in the
ac case, i.e., we need to prove

∑
α

Gαβ(�) = iq

∫
dE

2π
Tr[g<(E+,E)]. (73)

As we have discussed previously, this equation along with the
boundary condition of the Poisson equation will ensure the
current conservation. Since the phonon self-energy σ

γ
ep (γ =

r,a,<) cannot be solved explicitly, we will use a perturbative
approach by expanding the electron-phonon coupling strength
|gν |2 order by order and show that the current is conserved to
all orders of |gν |2 [for gν , see Eq. (34)]. For instance, we have

g< = g<(0) + g<(1) + g<(2) + · · · , (74)

where g<(0) is the lesser Green’s function without phonon and
g<(n) is the nth order correction to the lesser Green’s function,
i.e., the term containing |gν |2n.

To simplify the proof, we will use the WBL and start
with Eq. (55). From the Dyson equation, we can expand the
Green’s function to the first order of the phonon coupling
strength,

Gr = Gr
e + Gr

e�
r
epGr

e, (75)

where

Gr
e = 1

E − H0 − Ueq − �r
e

(76)

is the retarded Green’s function in the absence of phonon.
We first show that the current is conserved to the first order

of the electron-phonon coupling strength. So we will keep
only the zeroth and the first order terms in �

γ
ep and σ

γ
ep (with

γ = r,a,<) in Eq. (55). Similar expansion can be done on
Eqs. (26) and (27); we find

gr,a
α = (

Ḡr,a
e + Ḡr,a

e �̄r,a
ep Ḡr,a

e

)(
uα + σ r,a

ep

)
× (

Gr,a
e + Gr,a

e �r,a
ep Gr,a

e

)
(77)

and

g<
α = (

Ḡr
e + Ḡr

e�̄
r
epḠr

e

)(
�̄<

e + �̄<
ep

)
ga

α

+ (
Ḡr

e + Ḡr
e�̄

r
epḠr

e

)(
σ<

eα + σ<
epα

)(
Ga

e + Ga�a
epGa

e

)
+ gr

α

(
�<

e + �<
ep

)(
Ga

e + Ga
e�

a
epGa

e

)
. (78)

The ac conductance is expanded in terms of electron-
phonon coupling strength,

Gαβ = G
(0)
αβ + G

(1)
αβ + G

(2)
αβ + · · · , (79)

where G
(0)
αβ is the conductance in the absence of phonon,

while G
(1)
αβ corresponds to the conductance of the first order

correction due to the phonon.
Substituting Eq. (75), Eq. (77), and Eq. (78) into Eq. (55),

and using
∑

β uβ(�) = 1, we have

∑
α

G
(0)
αβ = −q

∫
dE

2π
Tr

[(
Ḡr

e − Ga
e

)
σ<

eβ + Ḡr
euβGr

e�
<
e

− �̄<
e Ḡa

euβGa
e + iḠr

e

(
uβGr

e�
<
e + σ<

eβ

+ �̄<
e Ḡa

euβ

)
Ga

e�e

]
(80)

and∑
α

G
(1)
αβ = −q

∫
dE

2π
Tr[A1 + A2 + A3 + A4 + A5]. (81)

Here,

A1 = (
Ḡr

e�̄
r
epḠr

e − Ga
e�

a
epGa

e

)
σ<

eβ, (82)

A2 = Ḡr
e

(
σ r

epβ + uβGr
e�

r
ep + �̄r

epḠr
euβ

)
Gr

e�
<
e

− �̄<
e Ḡa

e (σa
epβ + uβGa

e�
a
ep + �̄a

epḠa
euβ

)
Ga

e , (83)

A3 = iḠr
e

(
�̄r

epḠr
euβGr

e�
<
e + uβGr

e�
r
epGr

e�
<
e

+ σ r
epβGr

e�
<
e + uβGr

e�
<
ep + uβGr

e�
<
e Ga

e�
a
ep

)
Ga

e�e,

(84)

A4 = iḠr
e

(
�̄r

epḠr
e�̄

<
e Ḡa

euβ + �̄<
e Ḡa

e �̄
a
epḠa

euβ

+ �̄<
epḠa

euβ + �̄<
e Ḡa

eσ
a
epβ + �̄<

e Ḡa
euβGa

e�
a
ep

)
Ga

e�e,

(85)

and

A5 = iḠr
e

(
�̄r

epḠr
eσ

<
eβ + σ<

epβ + σ<
eβGa

e�
a
ep

)
Ga

e�e. (86)

Using the relationship

iGa
e�eḠ

r
e = Ga

e − Ḡr
e − �Ga

eḠ
r
e,

(87)
Ga

e − Gr
e = iGr

e�eG
a
e = iGa

e�eG
r
e,
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it is straightforward but tedious to show that
∑

α

G
(0)
αβ = q�

∫
dE

2π
Tr

[
g

<(0)
β

] = 0 (88)

and ∑
α

G
(1)
αβ = q�

∫
dE

2π
Tr

[
g

<(1)
β

] = 0. (89)

One can easily push it to higher order and show that
∑

α

G
(n)
αβ = q�

∫
dE

2π
Tr

[
g

<(n)
β

] = 0 (90)

for n > 1. Finally, we obtain that∑
α

Gαβ = 0, (91)

which is the expected result.
Now we show that the gauge-invariant condition is satisfied.

From Eq. (48), we have
∑

β

G
(0)
αβ = −q

∫
dE

2π
Tr

[(
Ḡr

e − Ga
e

)
σ<

eα + i
(
f Ḡr

eG
r
e

− f̄ Ḡa
eG

a
e + Ḡr

eG
<
e + Ḡ<

e Ga
e + Ḡr

eσ
<
e Ga

e

)
�eα

]
.

(92)

Here,

σ<
e = σ<

e (�) =
∑

β

σ<
eβ(�). (93)

Similar to the current conservation, we have the expression
of first order correction to the conductance in the presence of
phonon

∑
β

G
(1)
αβ = −q

∫
dE

2π
Tr[B1 + B2 + B3 + B4 + B5], (94)

where

B1 = (
Ḡr

e�̄
r
epḠr

e − Ga
e�

a
epGa

e

)
σ<

eα, (95)

B2 = Ḡr
e

(
σ r

ep + Gr
e�

r
ep + �̄r

epḠr
e

)
Gr

e�
<
eα

− Ḡa
e

(
σa

ep + Ga
e�

a
ep + �̄a

epḠa
e

)
Ga

e�̄
<
eα, (96)

B3 = iḠr
e

(
σ r

epGr
e�

<
e + Gr

e�
<
e Ga

e�
a
ep + Gr

e�
<
ep

+Gr
e�

r
epGr

e�
<
e + �̄r

epḠr
eG

r
e�

<
e

)
Ga

e�eα, (97)

B4 = iḠr
e

(
�̄<

e Ḡa
eσ

a
ep + �̄<

e Ḡa
e �̄

a
epḠa

e + �̄<
epḠa

e

+ �̄<
e Ḡa

eG
a
e�

a
ep + �̄r

epḠr
e�̄

<
e Ḡa

e

)
Ga

e�eα, (98)

B5 = iḠr
e

(
σ<

ep + σ<
e Ga

e�
a
ep + �̄r

epḠr
eσ

<
e

)
Ga

e�eα. (99)

Using the relationship of Eq. (87) and
∑

β uβ(�) = 1, it is
straightforward to show∑

β

G
(0)
αβ = 0 (100)

and ∑
β

G
(1)
αβ = 0. (101)

So far, we have proved that the zeroth order and first order
of

∑
β Gαβ are zero. In the same way, we can prove that

all the higher order terms are zero although it is tedious but
straightforward. Finally, we have∑

β

Gαβ = 0. (102)

That is the condition of gauge invariance.

E. First principles calculation

We note that a first principles formalism of dc quantum
transport by doing density function theory (DFT) calculation
within nonequilibrium Green’s function theory (NEGF-DFT)
has been well established and extended to include the electron-
phonon interaction [40,52]. First principles investigations
have also been carried out using the NEGF-DFT approach
for molecular devices in the presence of ac bias [65]. In
view of the above progress, our formalism presented in this
paper can in principle be implemented within NEGF-DFT
framework so that inelastic ac transport calculation can be
carried out from first principles. To do this, we start from
Eq. (5) where the potentials due to the exchange and correlation
are included that are functional of charge density which is
given before the iteration. From Eqs. (5), (36), and (37) we
find the equilibrium Green’s function from which we can
construct the new charge density. This in turn gives the new
potential due to exchange and correlation. We then solve
the Poisson-like Eq. (62) to find the characteristic potential
which gives a new Hamiltonian. We repeat this iteration
until it reaches the self-consistency. Finally, we use Eq. (55)
to calculate the dynamic conductance in the presence of
phonon.

So far, we have treated the electron-phonon coupling
strength gν as a constant. Actually both electron-phonon
coupling and phonon spectrum depend on the external bias
in the dc case and the driving frequency in the ac linear
regime. In the presence of phonon, we assume that the phonon
exists only in the scattering region. To calculate the phonon
spectrum, one has to diagonalize the Hessian matrix (dynamic
matrix) which is constructed from the second derivative of
the total energy of the scattering region with respect to the
position of the atom (for details, see Chaps. 4 and 5 in
Ref. [66]). Importantly, the total energy is a functional of
charge density which depends on external bias in the dc case
and the driving frequency in the ac case. As a result, the phonon
frequency and phonon eigenvector depend on the external bias
in the dc case. The electron-phonon coupling is also related
to the phonon frequency and corresponding eigenvector. It
was found in Refs. [52,56] that due to the external bias many
phonon frequencies are renormalized between 10% and 30%
for molecular junctions, while the electron-phonon coupling
constant is affected significantly by an order of magnitude.
Since the Hessian matrix depends on the driving frequency
of the external bias in the ac case, the phonon frequency as
well as electron-phonon coupling may also be sensitive to the
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driving frequency. To address this issue quantitatively, a first
principles calculation has to be performed. In this paper we
have laid down the foundation of ac transport theory in the
presence of phonon; the implementation of this formalism
in first principles calculation will be the subject of future
work.

Now we wish to make some comments on the DFT used
in NEGF-DFT. In the dc case, the leads are in equilibrium
with well defined Fermi distribution functions. However, the
scattering region is out of equilibrium with the charge density
expressed in terms of nonequilibrium lesser Green’s function
that depends on external bias. Therefore, in the formalism of
NEGF-DFT, the density matrix or charge density is constructed
at nonequilibrium using nonequilibrium Green’s functions.
Due to this nonequilibrium nature, there is no minimization
principle to converge the charge density in open systems
[67]. The above discussion applies to the ac case as well
except that one has to use time-dependent DFT (TDDFT)
[68] instead of static DFT. To reduce the computational
complexity while still capturing the essential physics, people
usually use the adiabatic local density approximation for
the exchange and correlation functionals in TDDFT. This
scheme has been used to predict transient dynamics of
molecular junctions [34]. Recently, the applicability of DFT
in the open systems has been put on a more rigorous
basis [69].

F. Inelastic electron admittance spectroscopy

In the dc situation, inelastic electron tunneling spectroscopy
(IETS), which is the second derivative of the current with
respect to the bias voltage, is widely used as a powerful
tool to identify the molecular vibrational modes and the
electron-phonon coupling strength. Similarly, in the ac situ-
ation we will show below that the inelastic electron admit-
tance spectroscopy (IEAS), which is the second derivative
of the admittance with respect to ac frequency, can have
a similar functionality but with the frequency as an extra
handle.

To demonstrate the feasibility of IEAS, we focus on the
conductance up to the first order in electron-phonon coupling
strength, which gives

GLR = −q2
∫

dE

2π

f − f̄

�

{
Tr[B1] +

∑
ν

Tr[B2]

}

− q2
∫

dE

2π

f − f̄

�

∑
ν

f (E + ων)Tr[B3], (103)

where f = f (E), f̄ = f (E + �), and Bi are expressed in
terms of the Green’s function

B1 = i�Ḡr
euRGa

e�eL − Ḡr
0e�eRGa

e�eL

+ i�Ḡr
euRGa

e

(
�a

epGa
e�eL + �eLḠr

e�̄
r
ep

)
− Ḡr

e�eRGa
e

(
�a

epGa
e�eL + �eLḠr

e�̄
r
ep

)
, (104)

B2ν = i�Ga
e�eLḠr

eg
ν
(
Ḡr

e−uRGr
e− + Ḡa

e−uRGa
e−

)
gν†/2,

(105)

and

B3ν = [
i�Ga

e�eLḠr
eg

νḠr
e+uR

(
Ga

e+ − Gr
oe+

)
gν†

−Ga
e�eLḠr

eg
νḠr

e+�eRGa
e+gν†]/2

+ [
Ga

e+�eLḠr
e+gνḠr

e(i�uR − �R)Ga
eg

ν†]/2. (106)

In the above equations, G
γ
e± = G

γ
e (E ± ων). From Eqs. (42)–

(44) we see that the phonon self-energies in general contain
Fermi distribution functions through g< and g>. As a result, we
see from Eqs. (55) and (103) that we will have terms involving
two Fermi distribution functions f (E) and f (E + ων). As we
will see below, these terms are very important for inelastic
electron admittance spectroscopy.

At zero temperature, Eq. (103) becomes

GLR = −q2

�

∫ 0

−�

dE

2π

{
Tr[B1] +

∑
ν

Tr[B2ν]

}

− q2

�

∫ 0

−�

dE

2π

∑
ν

f (E + ων)Tr[B3ν], (107)

where at zero temperature f (E + ων) is a step function and
we have set the Fermi energy EF = 0. So the second term
in Eq. (107) is zero for E > −ων . On the other hand, the
lower and upper limits of the integral require −� < E < 0.
Consequently, the second term does not contribute to the
integral when � < ων . As a result, as we vary � the integrand
of the second term in Eq. (107) will jump by Tr[B3ν]
whenever � sweeps through ων . After the integration over
energy, the contribution of this term near ων is proportional
to (� − ων)Tr[B3ν] giving rise to a discontinuity of ∂�GLR

near ων [see Fig. 3(b)]. Furthermore, from Eq. (106), Tr[B3ν]
is proportional to the electron-phonon coupling strength. In
contrast, the first term in Eq. (107) is a continuous function
of � and the numerical calculation in Sec. III also shows that
this term changes slowly with frequency �. Hence the second
derivative of the second term in GLR with respect to � will
give peaks at � = ων , while no peaks are contributed from the
first term in GLR . Thus we have

∂2GLR

∂�2
∼ q2

�

∑
ν

δ(ων − �)Tr[B3ν(−�)]. (108)

So this quantity can be used to analyze the inelastic ac quantum
transport which we term as ac inelastic electron admittance
spectroscopy (IEAS).

III. NUMERICAL CALCULATION OF A QUANTUM DOT

To study dynamic conductance numerically, we consider
a single level quantum dot system connected by two leads.
All the quantities we use in the following calculation are in
the Hartree atomic unit. As we did in formulating the theory,
we assume that the electron-phonon interaction exists only
in the quantum dot. Furthermore, we assume that there are
four vibrational modes in the quantum dot and the vibrational
frequencies ων are 0.003, 0.005, 0.007, and 0.009, and the
corresponding electron-phonon coupling strengths gν are 0.09,
0.07, 0.05, and 0.03, respectively, and we set the electron
self-energy �eL = 0.2 and �eR = 0.3.
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FIG. 1. (Color online) Real part of admittance vs frequency. The
blue dash line is for Re[GLL(�)], the green dash dot line for
Re[GLR(�)] and the red dot line for Re[GRL(�)] are overlap,
and the black solid line is for the real part of Re(GLL + GLR) or
Re(GLL + GRL).

Figures 1 and 2 depict the real and imaginary part of
dynamic admittance versus the frequency, respectively. The
blue dash line is for GLL, the green dash dot line is for GLR ,
and the red dot line is for GRL. When the ac frequency exceeds
certain phonon frequency, the effect of this phonon mode is
activated. So the real part and imaginary part of admittance
show piece-wise behaviors. Furthermore, our results show
that GLR and GRL are the same as expected. The black
solid line is for GLL + GLR or GLL + GRL which confirm
the conservations of inelastic ac current, i.e., GLL + GRL = 0
and GLL + GLR = 0.

In Fig. 3 we plot the imaginary part of dynamic admittance
Im(GLL), its first derivative ∂ Im(GLL)

∂�
and the second derivative

∂2Im(GLL)
∂�2 versus the frequency in panels (a), (b), and (c),

FIG. 2. (Color online) Imaginary part of admittance vs fre-
quency. The blue dash line is for Im[GLL(�)], the green dash dot
line for Im[GLR(�)] and the red dot line for Im[GRL(�)] are overlap,
and the black solid line is for the real part of Im(GLL + GLR) or
Im(GLL + GRL).

(a)

(b)

(c)

FIG. 3. (a) Imaginary part of admittance, (b) the first derivative
of imaginary part of admittance with respective to frequency, and
(c) the second derivative of imaginary part of admittance with
respective to frequency versus the frequency.

respectively. One can see that ∂2Im(GLL)
∂�2 gives a peak at each

phonon frequency with the peak height determined by the
electron-phonon strength. The larger the strength, the higher
the peak. Similar behavior is found for the real part of
dynamic admittance Re(GLL). This shows that we can use
∂2GLL

∂�2 to acquire the information of electron-phonon interaction
including its frequency and coupling strength, making the
IEAS a useful tool in studying the inelastic ac transport.

IV. SUMMARY

In this paper, we developed a theoretical formalism for
ac transport with electron-phonon interaction based on the
nonequilibrium Green’s function method. The Coulomb in-
teraction is included self-consistently so that the current-
conserving and gauge-invariant conditions are satisfied. Our
formalism can be used for first principles transport calculation
within NEGF-DFT formalism. We also proposed that the
inelastic electron admittance spectroscopy can be used to
probe the influence of the electron-phonon interaction on the
dynamic conductance in molecular devices.
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F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry, M.
Pellarin, M. Broyer, M. Maillard, M. P. Pileni, and M. Treguer,
Phys. Rev. Lett. 90, 177401 (2003).

[43] J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S.
Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Lett.
4, 517 (2004).

[44] Y. C. Chen, M. Zwolak, and M. D. Ventra, Nano Lett. 3, 1691
(2003).

[45] J. Gaudioso, L. J. Lauhon, and W. Ho, Phys. Rev. Lett. 85, 1918
(2000).

[46] S. Sapmaz, P. Jarillo-Herrero, Ya. M. Blanter, C. Dekker, and
H. S. J. van der Zant, Phys. Rev. Lett. 96, 026801 (2006).

[47] P. Kral, F. W. Sheard, and F. F. Ouali, Phys. Rev. B 57, 15428
(1998).

[48] J. K. Viljas, J. C. Cuevas, F. Pauly, and M. Hafner, Phys. Rev.
B 72, 245415 (2005).

[49] J. T. Lu and J. S. Wang, Phys. Rev. B 76, 165418 (2007).
[50] J. Ren, J. X. Zhu, J. E. Gubernatis, C. Wang, and B. W. Li, Phys.

Rev. B 85, 155443 (2012).
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