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THE BOOTSTRAP IN THRESHOLD
REGRESSION

PING YU
University of Auckland

This paper develops a general procedure to check the bootstrap validity in
M-estimation. We apply the procedure in discontinuous threshold regression to
show the inconsistency of the nonparametric bootstrap for inference on the thresh-
old point. Especially, the conditional weak limit of the nonparametric bootstrap
is shown not to exist. By comparing with two other boundaries in the literature,
we show the fact that the threshold point is a boundary of the covariate that makes
its bootstrap inference so different. The remedies to the bootstrap failure in the lit-
erature are summarized, and the nonparametric posterior interval is suggested by
some simulation studies.

1. INTRODUCTION

Since the pioneering work by Tong (1978, 1983), threshold models get much
popularity in current applied statistical and econometric practice. An encyclo-
pedic survey on this kind of models is available in Tong (1990) and a selective
review of the history of threshold models is given by Tong (2011); see also Lee
and Seo (2008) and Hansen (2011) for a summary of applications especially in
economics. However, it is also well understood that asymptotic distribution of
threshold estimators is typically nonstandard and hard to simulate. A common
antidote to inference when an estimator’s distribution is nonstandard is to turn to
the bootstrap. Validity of bootstrap inference for threshold regression is a long-
standing open question in the literature despite much anticipation. Gonzalo and
Wolf (2005) claim that “it is not known whether a bootstrap approach would
work (for threshold regression)”. This motivates them to use the subsampling in
construction of confidence intervals (CIs) for the threshold point. Footnote 3 in
Seo and Linton (2007) indicates that the bootstrap may be inconsistent in their
simulations, but no theoretical analysis is conducted.

It is well known that the nonparametric bootstrap introduced by Efron (1979)
can fail in many examples. Most of these examples are contributed by statisticians;
see Andrews (2000, p. 400) for a list of them.1 To our knowledge, there are also
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three examples contributed by econometricians: the case when a parameter is on
the boundary of the parameter space in Andrews (2000), the maximum score esti-
mator in Abrevaya and Huang (2005), and the matching estimator for the program
evaluation in Abadie and Imbens (2008).2 This paper will contribute another ex-
ample where the nonparametric bootstrap fails: the least squares estimator (LSE)
of the threshold point in discontinuous threshold regression.

The typical setup of threshold regression is

y =
{

x ′β1 +σ1ε,
x ′β2 +σ2ε,

q ≤ γ ;
q > γ ; (1)

where E [ε|x,q] = 0, q is the threshold variable used to split the sample and has
a density fq (·), x ∈ Rk , β ≡ (β ′

1,β
′
2)

′ ∈ R2k , and σ ≡ (σ1,σ2)
′ are threshold pa-

rameters on the mean and variance in the two regimes. We set E[ε2] = 1 as a
normalization of the error variance and allow for conditional heteroskedasticity.
All the other variables have the same definitions as in the linear regression frame-
work. Note that q can be an element of x , but to emphasize the special status of q
in (1), we write the covariates explicitly as (x ′,q)′. Define θ = (

β ′,γ
)′, which is

the parameter of interest in most applications. Usually, the nonregular parameter
γ is of main interest, since inference on the regular parameter β is standard. In
this paper, we take the framework of discontinuous threshold regression where(
β ′

1,σ1
)′ − (

β ′
2,σ2

)′ is a fixed constant. In this case, we show that the nonpara-
metric bootstrap (and various wild bootstraps) for γ fails, while the smoothed
bootstrap (when ε is independent of (x ′,q)′ which has a compact support) and the
parametric bootstrap are still valid.

There are some related results in the structural change literature. For example,
under the small-threshold-effect asymptotic structure of Hansen (2000), Antoch et
al. (1995) show that the nonparametric bootstrap is valid in the structural change
model. See also Hušková and Kirch (2008) for the validity of the block boot-
strap in the time series context. Extension of the arguments in these two papers to
threshold regression is straightforward. In a similar framework as considered in
this paper, Dümbgen (1991) finds that the nonparametric bootstrap has the correct
convergence rate n in the structural change model but does not prove its validity
before applying it to the famous Nile data. In this paper, we confirm that the non-
parametric bootstrap has the right convergence rate, and also show that it is not
valid for inference on the threshold point. In a class of parametric threshold mod-
els arising in survival analysis, Kosorok and Song (2007) suggest to use a form
of specialized parametric bootstrap to conduct inference on γ . Their procedure
tries to simulate the cadlag process in the asymptotic distribution of the thresh-
old estimator, so is very burdensome and imprecise as argued in Section 4.1 of
Yu (2008).3 In a simple nonparametric threshold model where the only covariate
is q and ε is independent of q, Gijbels et al. (2004) use a smoothed bootstrap
procedure to construct CIs for γ , but their proof of its validity is not complete.

In an independent work by Seijo and Sen (2011), the authors consider similar
problems as in this paper. Their discussion is restricted to a simplified threshold
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model where x = 1, σ1 = σ2, and ε is independent of q. This paper goes beyond
Seijo and Sen (2011) in two aspects. First, we emphasize that the threshold point is
a ”middle” boundary of q in discussing the bootstrap consistency. Inspired by the
literature on the bootstrap inconsistency in boundary estimation, we give a direct
proof that the conditional distribution of the nonparametric bootstrap estimator
does not have a weak limit in probability, while Seijo and Sen (2011) only provide
two indirect proofs of the nonparametric bootstrap failure. We also compare the
threshold point with two other boundaries and find that it is the very fact that the
threshold point is the boundary of a covariate that makes its bootstrap inference
so different. Due to the same reason as in the nonparametric bootstrap, various
wild bootstrap procedures are not valid either. Second, we prove the consistency
of the smoothed bootstrap in a more practical setup than that in Seijo and Sen
(2011). Also, we argue that the smoothed bootstrap is hard to apply in practice;
even when it can be applied, our simulation studies show that it is outperformed
by an alternative procedure proposed in Yu (2008). In summary, the results in
Seijo and Sen (2011) and those given in this paper are more complements than
substitutes.

The rest of this paper is organized as follows. In Section 2, we define our esti-
mator, review the bootstrap schemes of interest, and provide a general procedure
to check the bootstrap validity of M-estimators. In Section 3, we check the inva-
lidity of the nonparametric bootstrap and compare the threshold point with two
other boundaries. Section 4 summarizes the remedies of bootstrap failure in the
literature and compares the smoothed bootstrap and the nonparametric posterior
interval (NPI) in Yu (2008). Finally, Section 5 concludes. All proofs and lemmas
are left to Appendix A and B, respectively. To save space, we put part of the paper
in the supplementary materials.

Some notations are collected here for future reference. Any symbol with a su-
perscript ∗ means an object under the bootstrap probability measure instead of
under the outer measure as used in some other literature. For example, E∗ [·]
means the conditional expectation with respect to the bootstrap probability mea-
sure conditional on the original data;

∗� means weak convergence in probability.
ω represents an original sample path as in Andrews (2000). Q f = ∫

f d Q for any
probability measure Q. ‖·‖ is the Euclidean metric, and ‖·‖∞ is the sup-norm for
a function defined on Rd , 1 ≤ d < ∞. For any random vector x , fx (x) is the true
density function of x . � is always used for indicating the two regimes in (1), so is
not written out explicitly as ”� = 1,2” throughout the paper.

2. THE SETUP AND OVERVIEW OF PROCEDURES

2.1. The Least Squares Estimator

With an i.i.d. (independent and identically distributed) sample {wi }n
i=1, where

wi = (
yi , x ′

i ,qi
)′ , the LSE of γ is usually defined by a profiled procedure:

γ̂ = argmin
γ

Mn (γ ) ,
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where

Mn (γ ) ≡ min
β1,β2

1

n

n

∑
i=1

m(wi |θ),

with

m (w|θ) = (
y − x ′β11(q ≤ γ )− x ′β21(q > γ )

)2
. (2)

Usually, there is an interval of γ minimizing Mn (γ ). Most literature uses the left-
endpoint LSE (LLSE), while Yu (2008, 2012) shows that the middle-point LSE
(MLSE) is more efficient in most cases. Throughout this paper, we take the LLSE
as our estimator of γ and the discussions on the MLSE are put in the supplemen-
tary materials.

The estimation of β is invariant to the two estimators of γ . To express the β
estimator in matrix notation, define the n × 1 vectors Y and ε by stacking the
variables yi and εi , and the n × k matrices X , X≤γ , and X>γ by stacking the
vectors x ′

i , x ′
i 1(qi ≤ γ ), and x ′

i 1(qi > γ ). Let

(
β̂1 (γ )

β̂2 (γ )

)
= arg min

β1,β2

1

n

n

∑
i=1

m (wi |θ) =
⎛⎜⎝
(

X ′≤γ X≤γ

)−1
X ′≤γ Y(

X ′
>γ X>γ

)−1
X ′

>γ Y

⎞⎟⎠ ,

then the LSE of β is defined as β̂ =
(
β̂ ′

1

(
γ̂
)
, β̂ ′

2

(
γ̂
))′ ≡

(
β̂ ′

1, β̂
′
2

)′
. Given θ̂ ≡(

β̂ ′, γ̂
)′

, we can estimate σ by

σ̂ 2
1 = 1

n

n

∑
i=1

(
yi − x ′

i β̂1

)2
1
(
qi ≤ γ̂

)
and σ̂ 2

2 = 1

n

n

∑
i=1

(
yi − x ′

i β̂2

)2
1
(
qi > γ̂

)
.

The residuals

ε̂i = yi − x ′
i β̂1

σ̂1
1
(
qi ≤ γ̂

)+ yi − x ′
i β̂2

σ̂2
1
(
qi > γ̂

)
, i = 1, . . . ,n.

Under some regularity conditions specified in Section 3 below, β̂ −β0 and σ̂ −σ0
are both OP

(
n−1/2

)
, and γ̂ −γ0 is OP

(
n−1

)
.

2.2. The Bootstrap Schemes

Suppose we are interested in the distribution of some random variables
Rn ≡ Rn(wn, P), where wn ≡ {wi }n

i=1 is a random sample of size n from the
probability measure P . Suppose the distribution of Rn(wn, P) is continuous with
respect to P , then if we can find some resampling measure Pn which converges
to P under some metric, we expect the distribution of R∗

n ≡ Rn
(
w∗

n, Pn
)
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is close to that of Rn(wn, P), where w∗
n ≡ {

w∗
i

}n
i=1 is a random sample

of size n from the probability measure Pn . This is the main idea of the boot-

strap. In this paper, Rn(wn, P) =
(√

n
(
β̂ −β0

)′
,n
(
γ̂ −γ0

))′
and Rn

(
w∗

n, Pn
)=(√

n
(
β̂∗ −β0 (Pn)

)′
,n
(
γ̂ ∗ −γ0 (Pn)

))′
, where

(
β0 (Pn)

′ ,γ0 (Pn)
)′ = argmin

β,γ
Pn

m (w|θ),
(
β0

′,γ0
)′ = (

β0 (P)′ ,γ0 (P)
)′ is the true value of θ under P ,

(
β̂ ′, γ̂

)′ =(
β0 (Fn)′ ,γ0 (Fn)

)′ with Fn being the empirical measure of wn ={(
yi , x ′

i ,qi
)′}n

i=1 is the LSE defined in the last subsection, and
(
β̂∗′, γ̂ ∗)′

is the LSE using the bootstrap samples w∗
n = {(

y∗
i , x∗′

i ,q∗
i

)′}n
i=1, that is,(

β̂∗′, γ̂ ∗)′ = argmin
β,γ

P∗
n m (w|θ) ≡

(
β0
(

P∗
n

)′
,γ0

(
P∗

n

))′
(3)

with P∗
n being the empirical measure of w∗

n . Different bootstrap schemes are dis-
tinguished by different resampling probability measures Pn from which the boot-
strap samples w∗

n are drawn.
There are two sources of randomness in the bootstrap: one is the original data,

and the other is the resampling. For the original sample, take wi as from the prob-
ability space (	,A, P). For the resampling, suppose the randomness is defined
on a probability space (T ,B, P∗) which is independent of (	,A, P). So the joint
randomness is defined on the product probability space (	 × T ,A×B, Pr ) ≡
(	,A, P) × (T ,B, P∗), where Pr ≡ P × P∗ denotes the whole randomness in
the bootstrap. Denote the distribution of Rn(wn, P) as Hn(·) (or just Hn), the
conditional distribution of Rn

(
w∗

n, Pn
)

given wn as H∗
n (·; ω) (or just H∗

n (ω)), and
the distribution of Rn

(
w∗

n, Pn
)

under Pr as H
∗
n(·) (or just H

∗
n). Then the bootstrap

method can be described in the following three steps.

Step 1: Construct an estimator Pn of P from the data wn .
Step 2: Generate random samples w∗

n from Pn , and construct R∗
n .

Step 3: Approximate Hn(x) by H∗
n (x ; ω) ≡ P∗ (R∗

n ≤ x
)
.

For notational simplicity, we suppress the dependence of H∗
n on ω unless neces-

sary.
The consistency of the bootstrap is defined as follows. First note that a sequence

of random vector Xn converges weakly to a random vector X if

sup
h∈BL1

|E [h(Xn)]− E[h(X)]| → 0,

where BL1 ≡ {h| |h| ≤ 1, |h(x)−h(y)| ≤ ‖x − y‖ for all x, y} is the bounded
Lipschitz metric. In the bootstrap case, Rn

(
w∗

n, Pn
)

is (weakly) consistent to
Rn(wn, P) if for any ε > 0,

P

(
sup

h∈BL1

∣∣E∗ [h(Rn
(
w∗

n, Pn
)
)
]− E[h(Rn(wn, P))]

∣∣> ε

)
→ 0. (4)
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If Rn(wn, P) has a weak limit R which has the distribution H , then we denote
(4) as R∗

n
∗� R or H∗

n
∗� H . When the asymptotic distribution of Rn is contin-

uous, consistency of the bootstrap can take a simpler form. For example, since
the asymptotic distribution of γ̂ is continuous, consistency of the bootstrap is
equivalent to∣∣P∗ (n (γ̂ ∗ − γ̂

)≤ v
)− P

(
n
(
γ̂ −γ0

)≤ v
)∣∣ P−→ 0,

for any fixed value of v ∈ R by Pólya’s theorem.
In this paper, we concentrate on two bootstrap schemes in threshold regression.

Other schemes such as the parametric bootstrap and various wild bootstraps are
described in the supplementary materials.

Nonparametric or Standard Bootstrap: Pn = Fn . This scheme is shown to be
inconsistent for γ .

As will be shown in Section 3, the main reason for the nonparametric bootstrap
failure is the discreteness generated from the bootstrap sampling on the local data
around γ0. To break such discreteness, we can smooth the data in the neighbor-
hood of q = γ0. Such a procedure is termed as the smoothed bootstrap by Efron
(1979). In regular cases where the nonparametric bootstrap is valid, the smoothed
bootstrap may have some refinements, e.g., in quantile estimation as shown in
Silverman and Young (1987) and Hall et al. (1989).

Smoothed Bootstrap: Pn is the probability measure constructed as follows.
First, estimate the joint density of w ≡ (

ε, x ′,q
)′ from

{
ŵi
}n

i=1 ≡{(
ε̂i , x ′

i ,qi
)′}n

i=1 by some nonparametric techniques such as kernel

smoothing; denote the estimate as f̂ (w). Second, the distribution of w∗
i is

derived from

y∗
i =

{
x∗′

i β̂1 + σ̂1ε
∗
i ,

x∗′
i β̂2 + σ̂2ε

∗
i ,

q∗
i ≤ γ̂ ;

q∗
i > γ̂ ; (5)

where w∗
i ≡ (

ε∗
i , x∗′

i ,q∗
i

)′ has the density f̂ (w). Here, we must use the
joint distribution of w to maintain the correlation structure among ε, x ,
and q . When ε is independent of x and q, we can simulate (x∗′

i ,q∗
i )′

from f̂ (x,q) and ε∗
i from Pε

n , where Pε
n is the empirical distribution of{

ε̂i
}n

i=1, then generate y∗
i by (5).

Other popular resampling schemes used in threshold regression include the m
out of n (moon) bootstrap and the subsampling. The validity of the subsampling
is proved in Gonzalo and Wolf (2005) where they even offer consistent infer-
ence on γ in the more general case when the (dis)continuity of the model is
unknown; Seijo and Sen (2011) prove the validity of the moon bootstrap in a
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simple threshold model, and their proof can be extended to the general model by
some technical complication. We do not consider these two methods in this paper
for two reasons. First, while their validity only requires m/n → 0 and the continu-
ity of the asymptotic distribution, selection of m and the associated bias problem
in threshold models (see Section 4.2 of Yu, 2008) are quite tricky.4 Second, they
perform well in coverage in the simulations of Gonzalo and Wolf (2005), but do
not in Yu (2008) and Seijo and Sen (2011), so their performance may depend on
specific scenarios. Also, since m must be large enough (m → ∞) to get a good
approximation to the asymptotic distribution, n must be reasonably large to make
the performance acceptable given that m/n → 0.

2.3. Checking the Bootstrap Validity in M-Estimation

We now discuss how to check the validity of a bootstrap procedure in a general M-
estimation based on the recent econometric and statistical literature. LetM be a
collection of probability measures onRd that includes all probability measures we
need. Suppose under Pr , H

∗
n ≡ ∫

	 H∗
n (ω)P(dω) converges weakly to a random

measure H
∗ ≡ ∫

	 H∗(ω)P(dω), where H∗(ω) ∈M is the weak limit of H∗
n (ω)

if exists.5 Strong bootstrap consistency requires that H∗(ω) = H a.s. P , while
weak consistency only requires a weaker version of H∗(ω) = H as defined in (4).
So, roughly speaking, bootstrap consistency requires H∗(ω) = H in some sense,
which implies that H

∗
is the point mass H inM.

From Theorem 2.2 in Kosorok (2008), if the bootstrap is valid, H
∗

is an inde-

pendent copy of H ; that is, H
∗ d= H and H

∗
and H are independent. Accordingly,

we can check the validity of a bootstrap procedure in the following three steps.

Step 1: check whether H
∗

exists. If not, then the bootstrap cannot be valid.

Step 2: check whether H
∗ d= H . Usually, we need only check some of its im-

plications. For example, suppose Rn = an
(
θ̂ − θ0

)
and R∗

n = an
(
θ̂∗ − θ̂

)
, where

an is the convergence rate, θ̂∗ is the bootstrap estimator, and θ̂ is the original esti-
mator. Under Pr , an

(
θ̂∗ −θ0

)= an
(
θ̂∗ − θ̂

)+an
(
θ̂ −θ0

)≡ H
∗
n + Hn� H

∗ + H ,
where� signifies the weak convergence under Pr . If H

∗
and H are independent,

H
∗ + H has double variance of H when H

∗ d= H . The bootstrap is obviously
invalid if this condition fails. For most examples of bootstrap invalidity, this step
is enough; see, e.g., the nonregular M-estimators with convex objective functions
in Bose and Chatterjee (2001), the maximum score estimator in Abrevaya and
Huang (2005), the Grenander estimator in Kosorok (2008) and Sen et al. (2010),
and the LSE of the threshold point in threshold regression in Seijo and Sen (2011)
and this paper.6

Step 3: check whether H
∗

and H are independent. For most bootstrap proce-
dures, H∗

n is invariant under permutations of the original data; from the Hewitt–
Savage zero–one law (see page 496 of Billingsley, 1995), H∗

n (ω) will be invariant
of ω as n → ∞ if it indeed converges. So if H

∗
and H are dependent, H∗

n (ω)
cannot even have a weak limit. This procedure is first used in Sen et al. (2010)
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FIGURE 1. Dependence of the component measure
(

Z∗ − Z
) |D(·) on D(·).

to check that the bootstrap Grenander estimator has no weak limit in probability.
Usually, we can draw the scatter plot of H

∗
vs. H , calculate their linear correla-

tion, and test whether this correlation is zero; see, e.g., Figure 1 and calculations
in Sen et al. (2010). Further, since H

∗
can often be expressed as a mixture of com-

ponent measures H∗(ω)7, we can check whether H∗(ω) is invariant of ω to shed
more light on the causes for this correlation. For this, some graphical checking
may be helpful; see Figure 1 and 4 in Section 3.

The intuitive procedure in Step 3 cannot substitute rigorous mathematical
proof. We divide such proof into three levels from the easier to the more ad-
vanced. For this purpose, suppose Rn = an

(
θ̂ − θ0

)
and Rn = an

(
θ̂∗ − θ̂

)
as in

step 2, and

an
(
θ̂ −θ0

)= argmax
u

Gn(u)+oP (1), an
(
θ̂∗−θ0

)= argmax
u

G∗
n(u)+oPr (1).

In level one, the localized objective function G∗
n(·) does not have the weak limit

G∗(·; ω), and Gn(·) does not have the weak limit G(·; ω) conditional on ω. If not,
then by the argmax continuous mapping theorem,

an

(
θ̂∗ − θ̂

) ∗� argmax
u

G∗(u; ω)− argmax
u

G(u; ω) ≡ H∗(ω).

Now, the component measure analysis will show that H∗(ω) depends on ω, which
contradicts the Hewitt-Savage zero-one law. In level two, G∗

n(·) and Gn(·) do
not have any weak limit conditional on ω. The analysis in this level can be very
difficult; see, e.g., Sen et al. (2010) and Seijo and Sen (2011). In level three,

an

(
θ̂∗ − θ̂

)
does not have any weak limit conditional on ω. Note that level two
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does not imply level three. In this paper, we give nonexistence proofs in level
three for two examples: the LSE of the threshold point in threshold regression in
Section 3.1 and the boundary estimator of Andrews (2000) in Section 3.3.

To further check how H
∗

and H are correlated in Step 3, we first consider a
benchmark (regular) model to see why they are not correlated. For regular param-
eters such as β in (1), the weak limit of the associated localized objective function
in the (nonparametric) bootstrap usually takes the form

−1

2
u′V u +u′W +u′W ∗ (6)

under Pr , where u is the local parameter, W and W ∗ are independent of each
other and have the same normal distribution, and V is positive definite. The
asymptotic distribution H is determined by the maximizer of − 1

2 u′V u + u′W ,
i.e., V −1W . H

∗
is determined by the difference between the maximizers of

− 1
2 u′V u + u′W + u′W ∗ and − 1

2 u′V u + u′W , i.e., V −1 (W + W ∗) − V −1W =
V −1W ∗, which has the same distribution as and is independent of V −1W . To
achieve this desired property, (6) should have three key features. First, the cen-
tering process − 1

2 u′V u takes a quadratic form. Second, the randomness in the
original data (u′W ) and that in the bootstrap (u′W ∗) are separable. Third, u′W
and u′W ∗ take the linear form of u. Violation of any of the three features can in-
validate the bootstrap.8 For example, in the bootstrap of nonregular M-estimators
with convex objective functions, the first feature is violated while the second and
third hold; in bootstrapping the maximum score estimator, the third feature fails
while the first and the second hold;9 in bootstrapping the LSE of the threshold
point in threshold regression, none of the three features holds.

If we pass all the three steps, it is more likely that the bootstrap is valid.
Arcones and Giné (1992) show the bootstrap validity for regular parametric
M-estimators. Recently, Cheng and Huang (2010) provide a general method to
prove the bootstrap validity for regular semiparametric M-estimators. In both
cases, the bootstrap validity essentially relies on representing the localized ob-
jective function as (6) such that the M-estimator is actually a Z -estimator; see
Wellner and Zhan (1996) for further discussions. When usual bootstraps, such
as the nonparametric bootstrap and the multiplier bootstrap, fail, common so-
lutions to recover the bootstrap validity include the smoothed bootstrap and
the moon bootstrap (or subsampling). For example, Sen et al. (2010) suggest to
use the moon bootstrap, and Kosorok (2008) and Sen et al. (2010) suggest to use
the smoothed bootstrap to get valid inference for the Grenander estimator; for the
general cube root estimators, Delgado et al. (2001) suggest to use the subsam-
pling (especially in hypothesis testing), Lee and Pun (2006) suggest to use the
moon bootstrap, and Léger and MacGibbon (2006) suggest to use the smoothed
bootstrap (especially for Chernoff’s modal estimator when the unidimensional
distribution is symmetric). For the nonregular M-estimators with convex objec-
tive functions, Bose and Chatterjee (2001) suggest to use the moon bootstrap. In
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threshold regression, Seijo and Sen (2011) suggest to use the smoothed bootstrap,
while we suggest to use the NPI as will be discussed in Section 4.

3. INVALIDITY OF THE NONPARAMETRIC BOOTSTRAP

Before a formal discussion of the bootstrap failure, we will first specify some reg-
ularity conditions and review the main asymptotic results in threshold regression.
Throughout the following discussion, we maintain the assumption that the data
are i.i.d. sampled and the mean independence assumption E[ε|x,q] = 0 holds.

Assumption D.

1. wi ∈W≡ R×X×Q⊂ Rk+2, β� ∈ B� ⊂ Rk , 0 < σ� ∈ 	� ⊂ R, 	� is com-
pact, γ ∈ � = [γ ,γ ] which is compact, β1,0 
= β2,0, and σ1,0 
= σ2,0, where

= is an element by element operation.

2. E
[
xx ′]> E

[
xx ′1(q ≤ γ )

]
> 0 for all γ ∈ �.

3. E
[
xx ′|q = γ

]
> 0 for γ in an open neighborhood of γ0.

4. fq(γ ) is continuous, and 0 < f
q

≤ fq(γ ) ≤ f q < ∞ for γ ∈ �.

5. E[ε4] < ∞, and E[‖x‖4] < ∞.
6. E

[‖x‖2
∣∣q = γ

]
< ∞ and E[‖xε‖|q = γ ] < ∞ for γ in an open neighbor-

hood of γ0.
7. The conditional distribution of (x ′,ε)′ given qi = γ is continuous in γ for γ

in a neighborhood of γ0.
8. z1i and z2i have absolutely continuous distributions, where z�i follows the

conditional distribution of z�i given qi = γ0, and

z1i ≡ 2x ′
i

(
β1,0 −β2,0

)
σ1,0εi + (

β1,0 −β2,0
)′

xi x ′
i

(
β1,0 −β2,0

)
,

z2i ≡ −2x ′
i

(
β1,0 −β2,0

)
σ2,0εi + (

β1,0 −β2,0
)′

xi x ′
i

(
β1,0 −β2,0

)
.

Assumption D is very standard and roughly a subset of Assumption 1 in
Hansen (2000) except D7 and D8. Specifically, D1 does not require B� to be com-
pact, and D2 excludes the possibility that γ0 is on the boundary of q’s support.
D4 requires a positive and finite fq (·) in the neighborhood of γ0; see Yu and Zhao
(2009) for relaxing this assumption. D7 states that the threshold effect is cap-
tured completely by the changes in mean and variance; the distribution of (x ′,ε)′
keeps stable in the neighborhood of qi = γ0. This assumption corresponds to that
D(γ ) = E

[
xi x ′

i |qi = γ
]

and V (γ ) = E
[
xi x ′

iε
2
i |qi = γ

]
are continuous at γ = γ0

in Hansen (2000)’s Assumption 1. It implies that the conditional distribution of
z�i in D8 given qi = γ is continuous in γ for γ in a neighborhood of γ0. z1i rep-
resents the effect on the objective function when the threshold point is displaced
on the left of γ0, and z2i represents the converse case. The absolute continuity of
the distribution of z�i guarantees that the localized objective function has a unique
minimizer and allows for some discrete covariates in x . See Section 3.1 of Hansen
(2000) for more discussions on Assumption D.
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From Chan (1993) or Yu (2012), under Assumption D,

√
n
(
β̂1 −β1,0

)
d−→ Zβ1 ∼ E

[
xx ′1(q ≤ γ0)

]−1 · N
(
0, E

[
xx ′σ 2

1,0ε
21(q ≤ γ0)

])
,

√
n
(
β̂2 −β2,0

)
d−→ Zβ2 ∼ E

[
xx ′1(q > γ0)

]−1 · N
(

0, E
[
xx ′σ 2

2,0ε
21(q > γ0)

])
,

and

n
(
γ̂ −γ0

) d−→ argmin
v

D (v) ≡ Zγ , (7)

with

D (v) =

⎧⎪⎪⎨⎪⎪⎩
N1(|v|)

∑
i=1

z1i , if v ≤ 0;
N2(v)

∑
i=1

z2i , if v > 0.

Here, Zβ1 , Zβ2 , {z1i , z2i }i≥1, N1(·), and N2(·) are independent of each other,
and N� (·) is a Poisson process with intensity fq(γ0). Since D (v) is the cadlag
step version of a two-sided compound Poisson process with D(0) = 0, there is
a random interval [M−, M+) minimizing D (v). Since the left endpoint of the
minimizing interval is taken as the LSE, Zγ = M−. The asymptotic distribution
of β̂ is the same as that in the case when γ0 is known, and the asymptotic distribu-
tion of γ̂ is the same as that in the case when β0 is known. As shown in Yu (2008,
2012), this is mainly because γ is a ”middle” boundary of q, so only the local
information around γ0 is useful in the estimation of γ0. For example, z�i follows a
distribution conditional on q in the neighborhood of γ0, and the intensity of N� (·)
is fq(γ0). The distribution of Zγ is continuous, and the explicit form of its density
is derived in Appendix D of Yu (2012).

3.1. The Nonparametric Bootstrap

In this bootstrap scheme, the empirical bootstrap measure in (3) is

P∗
n = 1

n

n

∑
i=1

δw∗
i
= 1

n

n

∑
i=1

Mniδwi ,

where Mni is the number of times that wi is drawn from the original sample, and
Mn ≡ (Mn1, . . . , Mnn) follows the multinomial distribution with parameters n and
cell probabilities all equal to 1

n (and independent of the original data {wi }n
i=1).

Note that Mni ’s are dependent of each other, since the sum of Mni must be n, but
they become independent as n goes to infinity. In other words, Poissonization is
possible,10 i.e., Mn1, . . . , Mnn can be approximated by MNn ,1, . . . , MNn ,n , which
are i.i.d. Poisson variables with mean 1, where Nn is a Poisson random variable
with mean n and independent of the original observations. Poissonization makes
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the bootstrap sampling as if independent draws were conducted on each data
point, which greatly simplifies the derivation of the asymptotic bootstrap distribu-
tion. From Lemma 1 in Appendix B, Mni can indeed be substituted by MNni with-
out affecting the asymptotic properties of P∗

n . Define h = (
u′

1,u′
2,v

)′ ≡ (
u′,v

)′
as the local parameter for θ , then uniformly for h in a compact set,

n Pn

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
= u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E
[
xi x ′

i 1(qi > γ0)
]

u2

−Wn (u)+ Dn (v)+oP (1) ,

n P∗
n

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
= u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E
[
xi x ′

i 1(qi > γ0)
]

u2

−Wn (u)− W ∗
n (u)+ D∗

n (v)+oPr (1) ,

where

Dn (v) =
n

∑
i=1

[
m
(
wi |γ0 + v

n

)
−m (wi |γ0)

]
=

n

∑
i=1

z1i 1
(
γ0 + v

n
< qi ≤ γ0

)
+

n

∑
i=1

z2i 1
(
γ0 < qi ≤ γ0 + v

n

)
,

D∗
n (v) =

n

∑
i=1

MNn ,i

[
m
(
wi |γ0 + v

n

)
−m (wi |γ0)

]
=

n

∑
i=1

MNn ,i z1i 1
(
γ0 + v

n
< qi ≤ γ0

)
+

n

∑
i=1

MNn ,i z2i 1
(
γ0 < qi ≤ γ0 + v

n

)
,

Wn (u) = W1n (u1)+ W2n (u2) , W ∗
n (u) = W ∗

1n (u1)+ W ∗
2n (u2) ,

with

m (w|γ ) = (
y − x ′β1,01(q ≤ γ )− x ′β2,01(q > γ )

)2
,

W1n (u1) = u′
1

(
2σ1,0√

n

n

∑
i=1

xiεi 1(qi ≤ γ0)

)
,

W ∗
1n (u1) = u′

1

(
2σ1,0√

n

n

∑
i=1

(
MNn ,i −1

)
xiεi 1(qi ≤ γ0)

)
,

W2n (u2) = u′
2

(
2σ2,0√

n

n

∑
i=1

xiεi 1(qi > γ0)

)
,

W ∗
2n (u2) = u′

2

(
2σ2,0√

n

n

∑
i=1

(
MNn ,i −1

)
xiεi 1(qi > γ0)

)
.

Corresponding to the local data usage in Dn(v) (which is transferred to D(v)
asymptotically),essentially only the bootstrap sampling on finite data points
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around γ0 is relevant in D∗
n (v). In contrast, W ∗

1n (u1) and W ∗
2n (u2) take an

average form, which makes their asymptotic properties very different from
those of D∗

n (v). The following Theorem 1 gives the joint weak limit of(
Wn (u) ,W ∗

n (u) , Dn (v) , D∗
n (v)

)
under Pr , which is Step 1 in Section 2.3 and

is critical in checking the bootstrap validity in Theorem 2.

THEOREM 1. Under Assumption D,(
Wn (u) ,W ∗

n (u) , Dn (v) , D∗
n (v)

)
�
(
W (u) ,W ∗ (u) , D (v) , D∗ (v)

)
on any compact set, where� signifies the weak convergence under Pr ,

W (u) = 2u′
1W1 +2u′

2W2, W ∗ (u) = 2u′
1W ∗

1 +2u′
2W ∗

2 ,

with W1 and W ∗
1 following the same distribution N

(
0, E

[
x2σ 2

1,0ε
21(q ≤ γ0)

])
,

W2 and W ∗
2 following the same distribution N

(
0, E

[
x2σ 2

2,0ε
21(q > γ0)

])
, and

(D (v) , D∗ (v)) being a bivariate vector of compound Poisson processes. D (v) is
the same as that in (7), and

D∗ (v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1(|v|)

∑
i=1

N∗
i−z1i , if v ≤ 0;

N2(v)

∑
i=1

N∗
i+z2i , if v > 0;

≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N1(|v|)

∑
i=1

z∗
1i , if v ≤ 0;

N2(v)

∑
i=1

z∗
2i , if v > 0;

with
{

N∗
i−, N∗

i+
}

i≥1 being independent standard Poisson variables.11 Further-

more, W1, W2, W ∗
1 , W ∗

2 , {z1i , z2i }i≥1,
{

N∗
i−, N∗

i+
}

i≥1, N1(·), and N2(·) are inde-
pendent of each other.

D∗ (v) is called a multiplier compound Poisson process, which is highly cor-
related with D (v), since {z1i , z2i }i≥1, N1(·), and N2(·) are the same as those
in D(v). The randomness in {z1i , z2i }i≥1, N1(·), and N2(·) is introduced by the
original data, so the randomness introduced by the bootstrap appears only in{

N∗
i−, N∗

i+
}

i≥1. Since E
[
N∗

i−
] = E

[
N∗

i+
] = 1 for any i , the average jump size

of z∗
1i and z∗

2i in D∗ (v) is the same as z1i and z2i in D(v). But the distribution of
z∗

1i and z∗
2i instead of their mean determines the jumps in D∗ (v). The distribution

of z∗
1i is

Pr
(
z∗

1i ≤ x
)=

{
∑∞

k=1 Pr
(

N∗
i− = k, z1i ≤ x

k

)
e−1 +∑∞

k=1 Pr
(

N∗
i− = k, z1i ≤ x

k

) if x < 0;
if x ≥ 0;

=
⎧⎨⎩∑∞

k=1
e−1

k! 
1
( x

k

)
,

e−1 +∑∞
k=1

e−1

k! 
1
( x

k

)
,

if x < 0;
if x ≥ 0;

where 
1 (·) is the cumulative distribution function of z1i . The distribution of z∗
2i

can be similarly derived. Since there is a point mass e−1 at zero in the distribution
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of z∗
1i and z∗

2i , the sample path of D∗ (v) is very different from that of D(v). When
N∗

i− (N∗
i+) is equal to zero, the i th and (i − 1)th jump on v ≤ 0 (v > 0) in D(v)

are combined into one jump. When N∗
i− (N∗

i+) is greater than 1, the i th jump on
v ≤ 0 (v > 0) in D(v) is magnified.

Although D∗
n(v) converges weakly under Pr , Lemma 4.2 of Seijo and Sen

(2011) shows that the conditional weak limit of D∗
n(v) does not exist. Espe-

cially, the conditional weak limit of D∗
n(v) cannot be D∗ (v) conditional on D(v).

Otherwise, by the argmax continuous mapping theorem, the conditional weak
limit of n

(
γ̂ ∗ −γ0

)
would be the conditional distribution of argmin

v
D∗ (v) ≡ Z∗

γ

given D(v), which critically depends on D(v). This, however, cannot happen by
the Hewitt-Savage zero-one law. Such analyses correspond to level two and level
one of the nonexistence proof in Section 2.3, respectively. The following theorem
states the asymptotic bootstrap distributions of β̂∗ and γ̂ ∗. Particularly, we show
that the conditional weak limit of n

(
γ̂ ∗ − γ̂

)
does not exist, which corresponds

to level three of the nonexistence proof in Section 2.3.

THEOREM 2. Under Assumption D,

(i)
√

n
(
β̂∗ − β̂

) ∗� Z∗
β as n → ∞, where Z∗

β has the same distribution as Zβ ≡(
Z ′

β1
Z ′

β2

)′
and is independent of Zβ .

(ii) (
n
(
γ̂ −γ0

)
,n
(
γ̂ ∗ −γ0

))
�
(

Zγ , Z∗
γ

)
as n → ∞,

so

n
(
γ̂ ∗ − γ̂

)
� Z∗

γ − Zγ as n → ∞,

and Z∗
γ − Zγ is independent of Z∗

β .

(iii) n
(
γ̂ ∗ − γ̂

)
does not converge in distribution in P probability as n → ∞.

When γ0 is known, the validity of the nonparametric bootstrap for β is a
standard result. When γ0 is unknown, (i) shows that the nonparametric boot-
strap for β is still valid and the asymptotic bootstrap distribution is the same
as that in the case when γ0 is known. As argued in Section 2.3, the valid-
ity of the bootstrap for β is due to the special form of the weak limit of

n P∗
n

(
m
(
·
∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
as a function of u.

From (ii), n
(
γ̂ ∗ − γ̂

) d−→ Z∗
γ − Zγ as n → ∞ in Pr probability. If we denote

the component measure as
(

Z∗
γ − Zγ

)
|D (·), then the distribution of Z∗

γ − Zγ is

the average of all these component measures when D (·) is sampled according to
the probability P . The distribution of Z∗

γ under Pr can be derived by the simula-
tion method proposed in Appendix D of Yu (2012), with caution that two jumps
in D∗ (v) can be combined into one when N∗

i± equal zero. This distribution is ex-
pected to be continuous but more spreading than Zγ as N∗

i± can take values other



690 PING YU

than 1. Since D(v) and D∗ (v) are highly correlated, Z∗
γ and Zγ are highly cor-

related under Pr . In fact, their correlation is so strong that there is a point mass at
zero in the distribution of Z∗

γ − Zγ , although Z∗
γ and Zγ are both continuous; see

the example in the next subsection for more details on Z∗
γ − Zγ . Another result in

(ii) is that Z∗
γ − Zγ is independent of Z∗

β , which is similar to the asymptotic dis-
tribution in (7). This is because the bootstrap samplings for inference on β and γ
use information independently. The randomness introduced by the bootstrap in

β̂∗ takes an average form; see, e.g., the term 1√
n

n
∑

i=1

(
MNn ,i −1

)
xiεi 1(qi ≤ γ0)

in W ∗
1n (u1). Accordingly, the bootstrap sampling on a single data point does not

contribute much to the asymptotic bootstrap distribution. This ”global” sampling
on the original data averages out the effect of

{
MNn ,i

}n
i=1 and makes the boot-

strap distribution for β asymptotically normal. In contrast, only ”local” sampling
on the data around γ0 is informative for inference on the threshold point as shown
in D∗

n above. This is why N∗
i± appear in D∗ (v), but not in W ∗ (u). See Yu (2008)

for more discussions on the independence between the local information and the
global information.12

To understand (iii), more discussions on the component measure will be help-
ful. Since the randomness in

(
Z∗

γ − Zγ

)|D (·) comes only from N∗
i±, it is dis-

crete and critically depends on D (·). The magnitude of the point masses depends
on {z1i , z2i }i≥1, and their locations depend on N�(·). Since Zγ is fixed conditional
on D (·), the distribution of

(
Z∗

γ − Zγ

)|D (·) is just a location shift of Z∗
γ |D (·).

If Z∗
γ equals Zγ with a positive probability for a given D (·), then

(
Z∗

γ − Zγ

)|D (·)
has a point mass at zero; see the example in the next subsection for more descrip-
tions on this.

In the supplementary materials, we show that the wild bootstrap, bootstrapping
residuals, and the parametric wild bootstrap are all invalid due to the same reason
as in the nonparametric bootstrap, namely, only the bootstrap sampling in the
neighborhood of γ0 is informative to the inference on γ . We further construct
a set A with P(A) > 0 such that for each ω ∈ A, the conditional weak limit of
n
(
γ̂ ∗ − γ̂

)
does not exist.

3.2. A Numerical Example

We pause here to provide more intuitions on the asymptotic bootstrap distributions
in Theorem 2 using a concrete example. Suppose the population model is

y = 1(q ≤ γ )+ ε, q ∼ U [0,1], (8)

where ε ∼ N (0,1) is independent of q, and γ0 = 1/2 is the only parameter
of interest. From (7), the asymptotic distribution of the LSE is argmin

v
D (v),

where in D (v), z1i = 1 + 2ε−
i and z2i = 1 − 2ε+

i with ε−
i and ε+

i following the
same distribution as ε, and N1 (·) and N2 (·) are standard Poisson processes. The
D∗(v) in the asymptotic bootstrap distribution of the LSE is given in Theorem 1
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with z1i and z2i being replaced by the specific form here. To simplify nota-
tions, Z∗ and Z without subscripts are used for Z∗

γ and Zγ in the following
discussion.

We first check Step 2 in Section 2.3. By the algorithms in Appendix D of Yu
(2012), we have V ar(Z∗) = 110.72, which is more than double of V ar(Z) =
31.44, so the nonparametric bootstrap cannot be consistent. A similar result can
be found in Table 1 of Seijo and Sen (2011). From this result, we expect Z∗ − Z
to have a thicker tail than Z . To study the distribution of Z∗ − Z , we need to first
study the component measure (Z∗ − Z) |D(·). Such a measure can be thought as
an approximation of the finite-sample distribution of n

(
γ̂ ∗ − γ̂

)
conditional on

an original sample path, the weak limit of which does not exist by Theorem 2.
Figure 1 shows the dependence of (Z∗ − Z) |D(·) on D(·). For comparison, the

density of Z is also dotted in Figure 1, which is very different from (Z∗ − Z) |D(·)
in all cases. Our first impression of (Z∗ − Z) |D(·) is that its distribution is dis-
crete, which can also be seen from the finite distribution of n

(
γ̂ ∗ − γ̂

)
in Figure 1

of Seijo and Sen (2011). The distribution of (Z∗ − Z) |D(·) has three main char-
acteristics. First, the largest point mass is at zero in all cases and depends on D(·).
Second, large point masses often happen at deeply negative jumps, and at the left
of them there are decaying point masses. Third, there are not many point masses
in the right neighborhood of 0. This phenomenon is due to the fact that the LLSE
is taken as the estimator; when the MLSE is used, this will not happen. The dis-
tributions of Z , Z∗, and Z∗ − Z under Pr are shown in Figure 2. As expected,
the distribution of Z∗ has a thicker tail than Z . The distribution of Z∗ − Z is ap-
proximated by 1 million simulated draws. The striking feature of this distribution
is that there is a point mass at zero. Also, the distribution of Z∗ − Z shows that
there is not much density in the right neighborhood of zero, which can be derived
from the third point above.

Although Figure 1 and Figure 2 show that the nonparametric bootstrap is
not valid, it is still useful in constructing CIs for γ if its quantiles are close to
the asymptotic counterparts. In Table 1 and Figure 3, some simulation results
are reported for this example based on (Z∗ − Z)|D(·) and Z∗ − Z , where an

FIGURE 2. Comparison of asymptotic distributions under Pr .
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TABLE 1. Characterizations of quantiles and coverages in the bootstrap

2.5% Quantile 97.5% Quantile Coverage

Asymptotic −12.83 11.74 95.00%
Min −64.68 0 15.49%
Max −0.02 73.00 99.99%
Average −14.55 13.62 84.93%
Average bootstrap −21.86 21.44 99.01%

FIGURE 3. Distributions of 2.5% and 97.5% quantiles and coverage.

equal-tailed 95% coverage CI is used as the bootstrap CI. The numbers associ-
ated with “Asymptotic” are the benchmark for bootstrap inference. In Table 1,
“Average” means the average of quantiles and coverage among all sample paths
of D (·). The coverage 84.93% is less than the target 95%, which confirms the
simulation results in Seo and Linton (2007) and Seijo and Sen (2011) that the
bootstrap has an undercover problem. From Table 1 and Figure 3, the 2.5% and
97.5% quantiles of the component measure depend heavily on the original sam-
ples, and the same happens to coverage. In Table 1, the items associated with
“Average” are different from those associated with “Average Bootstrap,” because
the two operations of taking a quantile and taking an average of distributions can-
not be exchanged. By comparing the quantiles under “Asymptotic” and “Average
Bootstrap”, we conclude that Z∗ − Z has a thicker tail than Z as previously pre-
dicted. In Figure 3, there is a large point mass at zero in the distribution of the
97.5% quantile. This is not surprising according to Figure 1 where the probability
in (Z∗ − Z) |D(·) on the positive axis is small for the three representative sample
paths of D (·). In the distribution of coverage, an interesting phenomenon is that
there is a hump between 0.6 and 0.7. In summary, Table 1 and Figure 3 suggest
that we cannot use the bootstrap CI as the set estimator of the threshold point.
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3.3. Comparison with Two Other Boundaries

We now compare the threshold point with two other boundaries in the literature.
The first one is discussed in Andrews (2000), where {Xi }n

i=1 is a sequence of
i.i.d.N (μ,1) random variables with μ ∈ R+ ≡ {z : z ≥ 0}. A natural estimator of
μ is μ̂n = max

{
Xn,0

}
which is also the MLE of μ, where Xn = 1

n ∑n
i=1 Xi . The

second one is the conventional boundary in the error term discussed in Hirano and
Porter (2003) and Chernozhukov and Hong (2004): yi = g(xi ,β)+ εi , where the
conditional density f (ε|x ; α) has a jump at ε = 0, and the notations are similarly
defined as in threshold regression. Only parametric models are considered here,
so natural estimators of β are the MLE and the Bayes estimator.

The boundary estimator in Andrews (2000) is an example of nondifferen-
tiable functions of the empirical; see, e.g., Example 6 of Bickel et al. (1997).
We first check the bootstrap validity using the procedure in Section 2.3. When
μ = 0,

√
n
(

X
∗
n − Xn

)
and

√
nXn are asymptotically independent N (0,1) under

Pr , where X
∗
n = n−1 ∑n

i=1 X∗
i with X∗

i following the empirical measure Fn of
{Xi }n

i=1. Denote the limit variables as Z∗ and Z , respectively, then the asymptotic
distribution of the average bootstrap estimator of μ at 0 is as follows:

√
n
(
μ̂∗

n − μ̂n
) = √

n
(

max
{

X
∗
n,0

}
−max

{
Xn,0

})
�max

{
Z + Z∗,0

}−max{Z ,0} ≡ Z∗
0 . (9)

While conditional on ω,
√

n
(
μ̂∗

n − μ̂n
)

has no weak limit just as in bootstrapping
the threshold point. To understand this result, observe that

√
nX

∗
n does not have

a weak limit when conditional on ω, since
√

nX
∗
n = √

n
(

X
∗
n − Xn

)+√
nXn and√

nXn has no limit, although
√

n
(

X
∗
n − Xn

)
has a weak limit by the multiplier

central limit theorem (Lemma 2.9.5 of Van der Vaart and Wellner, 1996). Thus

√
n
(
μ̂∗

n − μ̂n
)=

{√
n
(

X
∗
n − Xn

)−√
nX

∗
n1
(

X
∗
n < 0

)
,√

nX
∗
n1
(

X
∗
n ≥ 0

)
,

Xn ≥ 0,

Xn < 0,

has no conditional weak limit; see Example 3.8 of Shao and Tu (1995) for related
discussions.

As in bootstrapping the threshold point, the asymptotic average bootstrap dis-
tribution (9) can be treated as the average of the conditional distributions of Z∗

0
given Z for all realizations of Z . Note that the component measure

Z∗
0 |Z =

{
max{Z∗,−Z} ,

Z +max{Z∗,−Z} ,
if Z ≥ 0,
if Z < 0,

also depends on the original sampling path, although only through an asymptot-
ically sufficient statistic Xn . This point is shown in Figure 4 where Z∗

0 |Z varies
when Z changes. When Z > 0, there is a point mass at −Z , and when Z < 0,
there is a point mass at 0. The point masses are increasing when Z gets smaller.
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FIGURE 4. Z∗
0 |Z , max{Z ,0}, max

{
Z + Z∗,0

}
and Z∗

0 in Andrews (2000).

Z∗
0 |Z matches the asymptotic distribution only when Z = 0. The asymptotic av-

erage bootstrap distribution is also shown in Figure 4, where there is also a point

mass at zero as in the example of Section 3.2. When μ > 0,
√

n
(

Xn −μ
) d−→ Z ,

so
√

nXn
d−→ ∞. This corresponds to Z = ∞ in (9), so the bootstrap is valid if

μ > 0. Because the bootstrap validity requires that the asymptotic bootstrap distri-
bution matches the asymptotic distribution for all parameter values, the bootstrap
fails in this case. The above argument provides an alternative way to show the
bootstrap failure in Andrews (2000).

The reasons for the bootstrap failure in Andrews (2000) and threshold regres-
sion are different. In Andrews (2000), 0 is on the boundary of the parameter space,
but it is still in the interior of the sample space. In contrast, in threshold regression,
γ is the boundary of the sample space and is in the interior of the parameter space.
Checking the three sufficient conditions for the bootstrap validity given on page
1209 in Bickel and Freedman (1981), the uniformity condition (6.1b) fails in the
bootstrap of γ , while in the bootstrap of μ, the continuity condition (6.1c) fails.
In Andrews (2000), even the parametric bootstrap fails at μ = 0, but the para-
metric bootstrap works in threshold regression as mentioned in Section 3.4 of Yu
(2012). In the former case, the continuity condition (6.1c) still fails, but in the
later case, the uniformity condition (6.1b) holds; see the arguments in Counter-
example 2 of Bickel and Freedman (1981) for more details.

In the conventional boundary estimation, Chernozhukov and Hong (2004) show
that the parametric wild bootstrap is valid in their Remark 3.6, but as mentioned
at the end of Section 3.1 it fails in threshold regression. This difference can
be explained as follows. We know the parametric bootstrap is valid, because it
maintains the probability structure around the boundary. In Chernozhukov and
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TABLE 2. Three boundaries, validity of the bootstraps, and reasons for bootstrap
failure

Chernozhukov and
Andrews (2000) Hong (2004) Threshold regression

Parameter of interest μ = 0 β γ
Boundary of what space? Parameter space Sample space Sample space

(error term) (covariate)
Parametric bootstrap Invalid Valid Valid
(Parametric) wild bootstrap - Valid Invalid
Nonparametric bootstrap Invalid - Invalid
Reason for bootstrap failure Continuity - Uniformity

Hong (2004), the boundary parameters appear in the conditional distribution of y
given x , and there is no boundary parameter in the distribution of x , so simulating
from f (ε|x ; α̂) in their setup is enough to mimic the original probability struc-
ture around the boundary. In threshold regression, however, γ is a boundary of q.
To keep the probability structure around γ , we must simulate also from f (x,q).
The discussion above is summarized in Table 2. The subsampling and the moon
bootstrap are valid in all cases, so are omitted from the table.

4. REMEDIES OF THE BOOTSTRAP FAILURE

From Section 3, the nonparametric bootstrap and various wild bootstrap schemes
are inconsistent for inference on the threshold point in discontinuous threshold
regression. The parametric bootstrap is valid, but not feasible in most cases due
to the need to specify a complete likelihood. Additionally, inference based on the
asymptotic distribution (7) is difficult. In this section, we briefly review alternative
inferring approaches that have been proposed in the literature; see Yu (2008) for
more detailed descriptions.

4.1. Smoothed Bootstrap and Other Remedies

Five remedies are potentially useful. The first one is suggested in Hansen (2000)
who uses a framework with an asymptotically diminishing threshold effect in
mean and proves that the CI constructed by inverting the likelihood ratio statistic
is asymptotically valid.13 The second one is the subsampling method of Gonzalo
and Wolf (2005) or the moon bootstrap of Seijo and Sen (2011) as mentioned in
Section 2.2. The third one is proposed in Seo and Linton (2007), which is based on
the smoothed least squares estimation in our framework. The drawbacks of this
method are that the convergence rate is less than n and a smoothing parameter
needs to be specified in practice. The fourth one is suggested by Yu (2008) who
uses the nonparametric posterior to construct CIs for γ in the present framework.
This method is described in the supplementary materials.
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At last, Seijo and Sen (2011) suggest to use the smoothed bootstrap to cure the
bootstrap failure. They show the bootstrap validity in a simple threshold model
without nonconstant covariates in x . When there are nonconstant covariates in
x , their proof can be extended to the case with q being independent of all other
covariates (and ε). However, in practice, this extension is not applicable, since it
is not very reasonable to assume that q is independent of all other components
of the model.14 When there is correlation between q and other covariates, the
smoothed bootstrap is hard to apply even if ε is assumed to be independent of
(x ′,q)′. There are two reasons. First, we must maintain the correlation structure
between q and x to make the smoothed bootstrap valid, so we must simulate from
the joint distribution of (x ′,q)′. When the dimension of (x ′,q)′ is large, we will
suffer from the curse of dimensionality in estimating the joint density f (x,q).
Second, when there are complicated structures in the joint distribution of (x ′,q)′
such as discreteness or boundaries, a globally consistent estimator of f (x,q) is
hard to construct and simulate from.

The validity of the smoothed bootstrap in the simple threshold model is quite
understandable. We know the bootstrap can work, because Pn can mimic P . From
Assumption D4, fq(·) is continuous in a neighborhood of γ0, while in the empir-
ical measure Fn , the distribution of q is discrete. This is the main reason why the
nonparametric bootstrap fails. To mimic the continuity of fq(·), we must provide
a consistent estimator of fq(·) at least in the neighborhood of γ0, which is ex-
actly what the smoothed bootstrap does in the simple threshold model. In fact, the
smoothed bootstrap has already been used as a remedy of the bootstrap failure in
the (covariate) boundary estimation; see, e.g., Section 2.4 of Bickel et al. (1997).
In what follows, we prove the smoothed bootstrap validity in a more applicable
setup than that in Seijo and Sen (2011). First, we specify some extra assumptions
above Assumption D.

Assumption E.

1. The support of (x ′,q)′ is compact, and f (x,q) is bounded on its support.
2. ε is independent of (x ′,q)′ and has a continuous distribution.

3. There is an estimator f̂ (x,q) such that
∥∥∥ f̂ (x,q)− f (x,q)

∥∥∥∞
a.s.−→ 0.

4. The parameter space B� is compact.

Assumption E1 does not exclude the dependence between q and x . Also, we as-
sume (x ′,q)′ is bounded and independent of ε. This assumption can avoid tech-
nical difficulties in our proof. E3 is a high-level assumption, which is a standard
result in nonparametric estimation; see, e.g., Silverman (1978) or Hansen (2008)
for the kernel smoothing estimator of f̂ (x,q).

THEOREM 3. Under Assumptions D and E, the smoothed bootstrap is valid
for both β and γ ; that is,

√
n
(
β̂∗ − β̂

) ∗� Z∗
β as n → ∞, where Z∗

β has the same

distribution as Zβ , and n
(
γ̂ ∗ − γ̂

) ∗� Z∗
γ as n → ∞, where Z∗

γ has the same
distribution as Zγ .
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As the conditional weak limit of n
(
γ̂ ∗ − γ̂

)
does not depend on the original

sample path, the Hewitt-Savage zero-one law is not violated. Since Z∗
γ

d= Zγ ,
the smoothed bootstrap is valid. The proof of Theorem 3, which is an extension
of Theorem 1 and 2 to triangular arrays, is put in the supplementary materials.

When ε is independent of (x ′,q)′, the NPI does not suffer from the two draw-
backs of the smoothed bootstrap mentioned above, since we need only estimate
fε (·). In this case, the simulation studies in Yu (2008) show that the NPI performs
the best among all the remedies aforementioned, including the smoothed boot-
strap. Since Seijo and Sen (2011) suggest the smoothed bootstrap as the solution
to bootstrap failure, we will concentrate on the NPI and the smoothed bootstrap
in the simulation studies below, considering more general setups than those in
Yu (2008) and Seijo and Sen (2011).

4.2. Simulation Results

We will consider four DGPs in our simulation. More specifically, in DGP1,
y = β1,01(q ≤ γ0) + β2,01(q > γ0) + ε, where

(
β1,0,β2,0,γ0

) = (−1,1,0),
q and ε are independent, q ∼ N (0,2), and ε ∼ N (0,1). This is the first DGP
considered in Seijo and Sen (2011). DGP2 is the same as DGP1 except that
ε = ε

√
0.1+0.2 |q|+0.3q2, where ε ∼ N (0,1) and is independent of q. Here,

the correlation between q and ε is only through heteroskedasticity. In DGP3,
y = (1 q)β1,01(q ≤ γ0) + (1 q)β2,01(q > γ0) + ε, where β1,0 = (−1 −1)′,
β2,0 = (1 1)′, γ0 = 0, ε and q are independent, q ∼ N (0,2), and ε ∼ N (0,1).
In DGP4, y = (1 x)β1,01(q ≤ γ0) + (1 x)β2,01(q > γ0) + ε, where β1,0 =
(−1 −1)′, β2,0 = (1 1)′, γ0 = 0, ε and (x,q)′ are independent, ε ∼ N (0,1), and

(x,q)′ ∼ N

((
0
0

)
,

(
2 1.4

1.4 2

))
.

In applying the smoothed bootstrap (SB) and the NPI, we need to estimate the
densities of qi (SB of DGP1 and DGP3), ε̂i (NPI of DGP1, DGP3, and DGP4),
(xi ,qi )

′ (SB of DGP4), and (qi , ε̂i )
′ (SB and NPI of DGP2). For this purpose,

we use the Mablab functions kde.m and kde2d.m provided by Zdravko Botev. In
these functions, the bandwidths are selected adaptively; see Botev et al. (2010).
In the smoothed bootstrap, we need to simulate random samples from the kernel
density estimators; such a procedure can be found in Section 6.4.1 of Silverman
(1986). For each of these DGPs, we consider 1000 random samples of size n =
50,200,500. For each sample, we take 1000 SB replicates to approximate the
bootstrap distribution. In the NPI, we use the slicesample procedure in Matlab to
draw a Markov chain from the posterior; we use the MLSE as the starting value,
and draw 1000 samples from the posterior after discarding the first 200 “burn-in”
draws.

The simulation results of the SB and the NPI are summarized in Table 3.
In DGP1, there are two rows associated with SB-LLSE (ET). The second row
is copied from Seijo and Sen (2011) where the rule-of-thumb (ROT) bandwidth
of Silverman (1986) is used. All other rows are based on the adaptive bandwidth
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TABLE 3. Performance of SB and NPI: coverage and average length of the nom-
inal 95% confidence intervals for γ (based on 1000 repetitions)

n → 50 200 500

CIs↓ Cov and Leng(×10−1) → Coverage Length Coverage Length Coverage Length

DGP1
SB-LLSE (ET) 0.956 7.321 0.950 1.609 0.953 0.625

0.94 9.4 0.95 1.9 0.95 0.7
SB-LLSE (S) 0.961 7.753 0.950 1.700 0.957 0.661
SB-MLSE (ET) 0.955 6.862 0.953 1.510 0.954 0.586
SB-MLSE (S) 0.957 6.834 0.953 1.506 0.955 0.584
NPI 0.942 3.650 0.959 0.874 0.948 0.340

DGP2
SB-LLSE (ET) 0.985 11.791 0.986 0.994 0.977 0.280
SB-LLSE (S) 0.989 14.772 0.975 1.170 0.968 0.445
SB-MLSE (ET) 0.989 11.264 0.980 0.841 0.965 0.243
SB-MLSE (S) 0.999 13.376 0.980 0.684 0.963 0.242
NPI 0.949 1.471 0.951 0.329 0.948 0.128

DGP3
SB-LLSE (ET) 0.885 15.048 0.974 1.926 0.952 0.640
SB-LLSE (S) 0.966 18.795 0.980 1.962 0.956 0.678
SB-MLSE (ET) 0.897 14.006 0.975 1.788 0.953 0.603
SB-MLSE (S) 0.958 16.502 0.972 1.711 0.956 0.599
NPI 0.840 6.323 0.944 0.925 0.951 0.347

DGP4
SB-LLSE (ET) 0.948 6.116 0.944 1.487 0.951 0.595
SB-LLSE (S) 0.955 6.647 0.956 1.591 0.948 0.633
SB-MLSE (ET) 0.945 5.627 0.947 1.381 0.947 0.557
SB-MLSE (S) 0.939 5.602 0.949 1.373 0.952 0.554
NPI 0.938 3.269 0.942 0.762 0.945 0.303

Note 1: In DGP1, the second row associated with SB-LLSE (ET) contains the simulation results in Seijo and Sen
(2011) and the first row contains our results.
Note 2: ET for equal-tailed CIs and S for symmetric CIs.

of Botev et al. (2010). From Table 3, a few results of interest are summarized as
follows. First, the NPI dominates the SB interval when the sample size is reason-
ably large.15 In all cases except DGP3 with n = 50, the NPI coverage is close to
the target 95%, and the length is about one half of the SB interval. In DGP1 and
DGP4, the coverage of the SB interval is perfect, but for the equal-tailed inter-
vals of DGP3 with n = 50, there is an undercover problem, and in DGP3 with
n = 200 and DGP2, there is an obvious overcovering. Second, the correlation be-
tween q and ε provides information about γ0, since most CIs in DGP2 are shorter
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than those in DGP1. Comparing the CIs in DGP1 and DGP4 suggests that extra
covariates also provide some information, although not as much as in DGP2. Also
note that while the asymptotic distribution in DGP3 is the same as in DGP1, the
finite-sample distribution seems less efficient. Third, the SB intervals based on
the MLSE are better than those based on the LLSE: similar coverage but shorter
length. This is due to the fact that the MLSE is more efficient than the LLSE in
our setups. Also, since the distribution of the MLSE is more symmetric than that
of the LLSE, the performance of the equal-tailed SB intervals based on the LLSE
is better than that of the symmetric intervals, while for the SB intervals based on
the MLSE, the converse statement is more suitable. Fourth, by comparing the two
SB equal-tailed intervals based on the LLSE in DGP1, we can see that the adap-
tive selection of bandwidth can shorten the CIs without affecting their coverage.
Fifth, except the case n = 50 in DGP2 and DGP3, the length of the CIs matches
the prediction from the asymptotic arguments: the convergence rate of the γ es-
timators is n. For example, the length when n = 50 is about four times of when
n = 200, which in turn is about 2.5 times of when n = 500. To avoid the curse of
dimensionality, Section 7 of Seijo and Sen (2011) suggests to simulate only from
the marginal density estimate of q in the smoothed bootstrap, but if q is not in-
dependent of ε or is correlated with other covariates, there is the misspecification
problem. The simulation studies on DGP2 and DGP4 (where the misspecification
problem is present) in the supplementary materials show that the SB procedure is
not reliable under misspecification.

A rough picture from these simulation results is that the SB works well in
coverage but not as well in length. The length of the CIs is very important in
threshold regression, since it indicates how much data cannot be classified into
the two regimes. In practice, some CIs are too long to be useful as most data
are covered by the CIs; see the application in Yu (2008) for a concrete example.
Based on the simulations, our suggestions are: (a) use the NPI to construct a CI
for the threshold point and (b) if the smoothed bootstrap based on the LSE is
used, the MLSE and adaptive bandwidths are preferable to the LLSE and the
ROT bandwidths.

5. CONCLUSION

In this paper, we develop a general procedure to check the validity of the boot-
strap in M-estimation. Based on this procedure, we show that the nonparamet-
ric bootstrap is inconsistent for inference on the threshold point in discontinuous
threshold regression. It is found that its conditional weak limit does not even ex-
ist. By comparing with two other boundaries in the literature, we show that it is
because the threshold point is a boundary of the covariate that its bootstrap infer-
ence is so different. We also summarize the remedies of the bootstrap failure in
the literature. Especially, we show that the smoothed bootstrap is valid in a more
practical environment than that in Seijo and Sen (2011). Moreover, our simulation
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studies suggest that the smoothed bootstrap interval is outperformed by another
confidence interval—the nonparametric posterior interval.

NOTES

1. See also, e.g., Horowitz (2001, Ch. 52), Bickel et al. (1997), and Beran (1997).
2. Another example is Romano and Shaikh (2008) which is intimately connected with Andrews

(2000).
3. See also Li and Ling (2012) for an alternative simulator in threshold autoregressive (TAR)

models.
4. See Chapter 9 of Politis et al. (1999) and Remark 1 in Section 4 of Lee and Pun (2006) for a

summary of m selection. However, it seems that none of the existing methods are universally satisfac-
tory.

5. See page 1961 of Sen et al. (2010) for a rigorous statement about the existence of H∗. H∗ can
be treated as the asymptotic distribution in an average bootstrap procedure: first running the bootstrap
for each sample path, and then averaging the bootstrap distribution for all sample paths.

6. Abadie and Imbens (2008) use a similar procedure to prove the invalidity of the bootstrap for
inference of the matching estimator, although it is not an M-estimator. For regular parameters, such
an average bootstrap procedure has never been considered, since H∗(ω) is the same for almost all ω

and H∗ d= H automatically holds.
7. Note that H∗(ω) cannot be thought as the weak limit of H∗

n (ω) if this weak limit does not exist
at all.

8. There are of course other features. For example, u is unrestricted or the true parameter is in the
interior of the parameter space. In the example of Andrews (2000), although the localized process
takes the form of (6), u is restricted to be positive. This restriction invalidates the bootstrap; see the
analysis in Section 3.3 for more details.

9. Note that Ẑ∗ in Figure 1 of Abrevaya and Huang (2005) is the unconditional distribution of Ẑ∗
rather than the conditional distribution given ω. Actually, as mentioned at the end of Sen et al. (2010),
their simulation studies show that Ẑ∗ is highly correlated with Z∗, which indicates that Ẑ∗(ω) may not
exist. A corollary is that the corrected confidence intervals based on Table 1 of Abrevaya and Huang
(2005) are not reliable. The problem in their proof is that when applying their Theorem 3 to prove
the conditional version of Ẑ∗ (their (16)), they have only checked conditions (ii) and (iii) without
checking condition (i). However, as implied in the proof of Theorem 2 in Appendix A, condition (i)
would fail in their case.

10. See Kac (1949) and Klaassen and Wellner (1992) for an introduction of Poissonization.

11. From the proof in Appendix B,
{

N∗
i−, N∗

i+
}

i≥1
is just

{
MNn ,i

}
i≥1.

12. Such a difference in information usage implies another difference between the bootstrap for β

and γ : for β, the exchangeably weighted bootstraps discussed in Praestgaard and Wellner (1993) are
first-order equivalent, but they are not equivalent for γ . For example, if the Bayesian bootstrap of

Rubin (1981) is used, then
√

n
(
β̂∗ − β̂

)
has the same conditional weak limit as in Theorem 2, but the

distribution of
{

N∗
i−, N∗

i+
}

i≥1
in D∗ (v) changes to a mixture Poisson distribution with the mixture

measure following the standard exponential.
13. As mentioned in the introduction, the nonparametric bootstrap is also valid in this framework.

But it is not a practical choice as there is no way to tell a real dataset following the framework of
Hansen (2000) or that used in this paper. Note also that Theorem 3 in Hansen (2000) guarantees that
the CI there is at least conservative in a dominating case of our framework.

14. The only exception is the structural change model in time series where q is the time index and
follows the uniform distribution on [0,1]. But we should definitely take into account the dependence
structure in this case which complicates the bootstrap validity proof.
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15. Any judgement must be based on some criterion. In CI construction, a natural loss function is

lb (γ,a) = 1(γ /∈ a)+b · leb (a) .

where a is a measurable set in R, and leb(a) is the Lebesgue measure of a; that is, the loss function
gives some punishment on the uncovering of γ and also on the length of the CI. Unless one puts
tremendous losses on uncovering, the NPI should be preferable to the SB interval.
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APPENDIX A: Proofs

First, some notations are collected for reference in all lemmas and proofs. The letter C
is used as a generic positive constant, which need not be the same from line to line. Pn ,
P∗

n , P∗, and Pr are understood in the nonparametric bootstrap context.

θ� = (
β ′

�,σ�
)′ . m (w|θ) = (

y − x ′β11(q ≤ γ )− x ′β21(q > γ )
)2

.

Mn (θ) = Pn (m (·|θ)) , M (θ) = P (m (·|θ)) , Gnm = √
n (Mn − M) .

z1

(
w|θ2, θ̃1

)
=
(
β̃1 −β2

)′
xx ′(β̃1 −β2

)
+2σ̃1

(
β̃1 −β2

)
xε, so z1i = z1

(
wi |θ2,0,θ1,0

)
.

z2

(
w|θ1, θ̃2

)
=
(
β̃2 −β1

)′
xx ′(β̃2 −β1

)
+2σ̃2

(
β̃2 −β1

)
xε, so z2i = z2

(
wi |θ1,0,θ2,0

)
.

The following formulas are used repetitively in the following analysis:

m (w|θ) = (
x ′ (β1,0 −β1

)+σ1,0ε
)2 1(qi ≤ γ ∧γ0)+ (

x ′ (β2,0 −β2
)+σ2,0ε

)2

×1(qi > γ ∨γ0)+ (
x ′ (β1,0 −β2

)+σ1,0ε
)2 1(γ ∧γ0 < qi ≤ γ0)

+(x ′ (β2,0 −β1
)+σ2,0ε

)2 1(γ0 < q ≤ γ ∨γ0),

so

m (w|θ)−m (w|θ0) =
[(

β1,0 −β1
)′

xx ′ (β1,0 −β1
)+2σ1,0

(
β1,0 −β1

)′
xε
]

1(q ≤ γ ∧γ0)

+
[(

β2,0 −β2
)′

xx ′ (β2,0 −β2
)+2σ2,0

(
β2,0 −β2

)′
xε
]

1(q > γ ∨γ0)

+ z1
(
w|θ2,θ1,0

)
1(γ ∧γ0 < q ≤ γ0)+ z2

(
w|θ1,θ2,0

)
1(γ0 < q ≤ γ ∨γ0)

≡ T
(
w|θ1,θ1,0

)
1(q ≤ γ ∧γ0)+ T

(
w|θ2,θ2,0

)
1(q > γ ∨γ0)

+ z1
(
w|θ2,θ1,0

)
1(γ ∧γ0 < q ≤ γ0)+ z2

(
w|θ1,θ2,0

)
1(γ0 < q ≤ γ ∨γ0)

≡ A (w|θ)+ B (w|θ)+C (w|θ)+ D (w|θ) .
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Proof of Theorem 1. This proof includes two parts: (i) the finite-dimensional limit
distributions of

(
Wn (u) ,W∗

n (u) , Dn (v) , D∗
n (v)

)
are the same as specified in the theorem

and (ii) the process
(
Wn (u) ,W∗

n (u) , Dn (v) , D∗
n (v)

)
is stochastically equicontinuous.

Part (i): We only prove the result for a fixed h, or the Cramér-Wold device can be used.
Define

T1i = 1√
n

xi εi 1(qi ≤ γ0) ≡ 1√
n

S1i , T2i = 1√
n

xi εi 1(qi > γ0) ≡ 1√
n

S2i ,

T3i = z1i 1
(
γ0 + v1

n
< qi ≤ γ0

)
, T4i = z2i 1

(
γ0 < qi ≤ γ0 + v2

n

)
,

where v1 ≤ 0 and v2 > 0. Since

exp
{√−1t11T3i

}
= 1+1

(
γ0 + v1

n
< qi ≤ γ0

)[
exp

{√−1t11z1i

}
−1

]
,

exp
{√−1t12T4i

}
= 1+1

(
γ0 < qi ≤ γ0 + v2

n

)[
exp

{√−1t12z2i

}
−1

]
,

exp
{√−1t21 MNn ,i T3i

}
= 1+1

(
γ0 + v1

n
< qi ≤ γ0

)[
exp

{√−1t21 MNn ,i z1i

}
−1

]
,

exp
{√−1t22 MNn ,i T4i

}
= 1+1

(
γ0 < qi ≤ γ0 + v2

n

)[
exp

{√−1t22 MNn ,i z2i

}
−1

]
,

it follows

Pr

(
exp

{√−1

[
s′
11T1i + s′

12T2i + s′
21

(
MNn ,i −1

)
T1i + s′

22

(
MNn ,i −1

)
T2i

+t11T3i + t12T4i + t21 MNn ,i T3i + t22 MNn ,i T4i

]})
= Pr

(
exp

{√−1s′T R
i /

√
n
})

+ v1

n
fq (γ0) Pr

×
(

exp
{√−1s′T R

i /
√

n
} [

exp
{√−1t11z1i

}
−1

]∣∣∣qi = γ0−
)

+ v2

n
fq (γ0) Pr

(
exp

{√−1s′T R
i /

√
n
} [

exp
{√−1t12z2i

}
−1

]∣∣∣qi = γ0+
)

+ v1

n
fq (γ0) Pr

(
exp

{√−1s′T R
i /

√
n
} [

exp
{√−1t21 MNn ,i z1i

}
−1

]∣∣∣
× qi = γ0 −

)
+ v2

n
fq (γ0) Pr

(
exp

{√−1s′T R
i /

√
n
} [

exp
{√−1t22 MNn ,i z2i

}
−1

]∣∣∣
× qi = γ0+)+o

(
1

n

)
= 1+ 1

n

[
−1

2
s′J s + fq (γ0)v1

(
Pr

[{
exp

{√−1t1z1i

}}∣∣∣qi = γ0−
]
−1

)
+ fq (γ0)v2

(
Pr

[{
exp

{√−1t2z2i

}}∣∣∣qi = γ0+
]
−1

)
+ fq (γ0)v1

(
Pr

[{
exp

{√−1t1 MNn ,i z1i

}}∣∣∣qi = γ0−
]
−1

)
+ fq (γ0)v2

(
Pr

[{
exp

{√−1t2 MNn ,i z2i

}}∣∣∣qi = γ0+
]
−1

)]
+o

(
1

n

)
,
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where s = (
s′
11 s′

12 s′
21 s′

22
)′, T R

i = (
S′

1i S′
2i

(
MNn ,i −1

)
S′

1i

(
MNn ,i −1

)
S′

2i

)′, o (1)
in the first equality is a quantity going to zero uniformly over i = 1, · · · ,n from Assump-

tion D4, the last equality is from the Taylor expansion of exp
{√−1s′T R

i /
√

n
}

, and

J = Pr

(
T R

i T R′
i

)
= diag

{
E
[
xx ′ε21(q ≤ γ0)

]
, E
[
xx ′ε21(q > γ0)

]
,

× E
[
xx ′ε21(q ≤ γ0)

]
, E
[
xx ′ε21(q > γ0)

]}
.

So

Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
√−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
n
∑

i=1
T1i + s12

n
∑

i=1
T2i + s21

n
∑

i=1

(
MNn ,i −1

)
T1i

+s22
n
∑

i=1

(
MNn ,i −1

)
T2i

+ t11
n
∑

i=1
T3i + t12

n
∑

i=1
T4i + t21

n
∑

i=1
MNn ,i T3i

+t22
n
∑

i=1
MNn ,i T4i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

n

∏
i=1

Pr

(
exp

{√−1
[
s′T R

i /
√

n + t11T3i + t12T4i + t21 MNn ,i T3i + t22 MNn ,i T4i

]})
→ exp

{
−1

2
s′J s + fq (γ0)v1

(
Pr

[{
exp

{√−1t11z1i

}}∣∣∣qi = γ0−
]
−1

)
+ fq (γ0)v2

(
Pr

[{
exp

{√−1t12z2i

}}∣∣∣qi = γ0+
]
−1

)
+ fq (γ0)v1

(
Pr

[{
exp

{√−1t21 MNn ,i z1i

}}∣∣∣qi = γ0−
]
−1

)
+ fq (γ0)v2

(
Pr

[{
exp

{√−1t22 MNn ,i z2i

}}∣∣∣qi = γ0+
]
−1

)}
,

which matches the characteristic function of
(
W (u) ,W∗ (u) , D (v) , D∗ (v)

)
, and the

result of interest follows. Here, note that
{

N∗
i−, N∗

i+
}

i≥1
is just

{
MNn ,i

}
i≥1. Under As-

sumption D7, conditioning on qi = γ0− and qi = γ0+ can be replaced by conditioning
on qi = γ0. Also, the conditional distribution of MNn ,i z�i given qi = γ0 is the same as
MNn ,i z�i , since

{
MNn ,i

}
i≥1 is independent of the original data.

Part (ii): The stochastic equicontinuity of Wn (u) and W∗
n (u) can be trivially proved,

since they are linear functions of u. Now, we concentrate on Dn (v) and D∗
n (v). For this

purpose, a condition called Aldous’s (1978) condition is sufficient; see Theorem 16 on
Page 134 of Pollard (1984). Without loss of generality, we prove the result only for v > 0.
Suppose 0 < v1 < v2 are stopping times in a compact set, then for any ε > 0,

P

(
sup

|v2−v1|<δ
|Dn(v2)− Dn(v1)| > ε

)
(1)≤ P

(
n

∑
i=1

|z2i | · sup
|v2−v1|<δ

1
(
γ0 + v1

n
< qi ≤ γ0 + v2

n

)
> ε

)
(2)≤

n

∑
i=1

P

[
|z2i | sup

|v2−v1|<δ
1
(
γ0 + v1

n
< qi ≤ γ0 + v2

n

)]/
ε

(3)≤ Cδ

ε
,
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where (1) is obvious, (2) is from Markov’s inequality, and C in (3) can take
f q sup

γ0<γ≤γ0+ε
E
[ |z2i ||qi = γ

]
< ∞ from Assumptions D4 and D6. Similarly,

Pr

(
sup

|v2−v1|<δ

∣∣D∗
n (v2)− D∗

n (v1)
∣∣> ε

)

≤ Pr

(
n

∑
i=1

∣∣MNn ,i z2i
∣∣ · sup

|v2−v1|<δ
1
(
γ0 + v1

n
< qi ≤ γ0 + v2

n

)
> ε

)

≤
n

∑
i=1

Pr

[∣∣MNn ,i z2i
∣∣ sup
|v2−v1|<δ

1
(
γ0 + v1

n
< qi ≤ γ0 + v2

n

)]
/ε ≤ Cδ

ε
,

where C can take f q sup
γ0<γ≤γ0+ε

Pr
[ ∣∣MNn ,i z2i

∣∣∣∣qi = γ
] = f q sup

γ0<γ≤γ0+ε
E
[ |z2i ||qi

= γ ] < ∞. n

Proof of Theorem 2. First, we consider the weak convergence under Pr by applying
Lemma 5. Here,

Un + Dn = n Pn

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
,

U∗
n + D∗

n = n P∗
n

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
,

and d = 2k. From Theorem 1,(
Un (u)+ Dn (v)

U∗
n (u)+ D∗

n (v)

)
� u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E

[
xi x ′

i 1(qi > γ0)
]

×u2 −2u′
1W1 −2u′

2W2 +
(

D(v)

−2u′
1W∗

1 −2u′
2W∗

2 + D∗(v)

)
≡
(

U (u)+ D (v)

U∗ (u)+ D∗ (v)

)
,

and from Lemma 4,

(
sn
tn

)
=
⎛⎜⎝√

n

(
β̂1 −β1,0

β̂2 −β2,0

)
n
(
γ̂ −γ0

)
⎞⎟⎠= OP (1) ,

(
s∗
n

t∗n

)
=
⎛⎜⎝√

n

(
β̂∗

1 −β1,0

β̂∗
2 −β2,0

)
n
(
γ̂ ∗ −γ0

)
⎞⎟⎠= OPr (1) .

αn = α∗
n = 0 in this model. So from Lemma 5,( (

s′
n, tn

)′(
s∗′
n , t∗n

)′
)
�
( (

s′, t
)′(

s∗′, t∗
)′
)

,

where

s = arg min
u1,u2

U (u) =
(

E
[
xi x ′

i 1(qi ≤ γ0)
]−1 W1

E
[
xi x ′

i 1(qi > γ0)
]−1 W2

)
, t = argmin

v
D(v),

s∗ = arg min
u1,u2

U∗ (u) =
(

E
[
xi x ′

i 1(qi ≤ γ0)
]−1 (W1 + W∗

1

)
E
[
xi x ′

i 1(qi > γ0)
]−1 (W2 + W∗

2

)) , t∗ = argmin
v

D∗(v).
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By the continuous mapping theorem,(
s∗′
n , t∗n

)′ − (
s′
n, tn

)′� (
s∗′, t∗

)′ − (
s′, t

)′
=

⎛⎜⎜⎝
E
[
xi x ′

i 1(qi ≤ γ0)
]−1 (W1 + W∗

1

)− E
[
xi x ′

i 1(qi ≤ γ0)
]−1 W1

E
[
xi x ′

i 1(qi > γ0)
]−1 (W2 + W∗

2

)− E
[
xi x ′

i 1(qi > γ0)
]−1 W2

argmin
v

D∗ (v)− argmin
v

D (v)

⎞⎟⎟⎠

=

⎛⎜⎜⎝
E
[
xi x ′

i 1(qi ≤ γ0)
]−1 W∗

1

E
[
xi x ′

i 1(qi > γ0)
]−1 W∗

2
argmin

v
D∗ (v)− argmin

v
D (v)

⎞⎟⎟⎠ .

Lemma 5 cannot be applied with respect to the probability measure P∗ in P probability.
(ii) and (iii) are satisfied, but (i) is not. This remarkable result is first observed by Seijo
and Sen (2011) for

(
t∗n , tn

)′ in a simple threshold model; see their Lemma 4.2. But as
they mentioned on page 1592, (i), (ii), and (iii) are only sufficient conditions to find the
conditional weak limit of the bootstrap estimator. Nonexistence of the conditional weak
limit of the localized process does not imply the nonexistence of the conditional weak limit
of the bootstrap estimator. Here, we first show that even for

(
s∗′
n ,s′

n
)′, condition (i) fails.

So the intuitive derivation of the asymptotic bootstrap distribution for regular parameters in
Section 2.3 or on page 1182 of Abrevaya and Huang (2005) is only valid under Pr but not
under P∗ in P probability. An appropriate adaptation of the arguments here can be used to
show that the result (16) in Theorem 2 of Abrevaya and Huang (2005) may not hold, since
condition (i) in their Theorem 3 does not hold.

We apply Lemma 3.2 of Sen et al. (2010)16 to show that condition (i) of Lemma 5 fails
for

(
s∗′
n ,s′

n
)′ under P∗ in P probability. It is enough to show that U∗

n (u) does not have a
conditional weak limit for a fixed u. In Sen et al. (2010)’s notations, Yn = Wn (u), and Zn =
W∗

n (u). Let Kn and Ln be the conditional distribution functions of Yn + Zn and Zn given

the original data, respectively. From the multiplier central limit theorem, d(Ln, L)
P−→ 0,

where L follows the same distribution as W (u) so is nondegenerate. If d(Kn, K )
P−→ 0 for

some distribution function K , then Lemma 3.2 of Sen et al. (2010) claims that there must

be a random variable Y for which Yn
P−→ Y . Since Yn is invariant to permutations of the

original data, from the Hewitt–Savage zero–one law, Y must be a constant P almost surely.

But Yn
d−→ W (u) which is not a constant. This contradiction implies that d(Kn, K )

P−→ 0
cannot hold; in other words, U∗

n (u) does not have a conditional weak limit. This argument
can also serve as a proof that

√
nX∗

n in Section 3.3 does not have a conditional weak
limit.

Although Lemma 5 cannot be applied, we can still show that the bootstrap estimator β̂∗
is consistent by a straightforward argument. From Lemma 1 and Lemma 2,

√
n
(
β̂∗ − β̂

)
= s∗

n − sn =
(

E
[
xi x ′

i 1(qi ≤ γ0)
]−1 W∗

1n

E
[
xi x ′

i 1(qi > γ0)
]−1 W∗

2n

)
+�n

where �n = oP∗(1) in P probability. By the multiplier central limit theorem,√
n
(
β̂∗ − β̂

) ∗� Z∗
β . Since the distribution of Z∗

β is invariant to the original data, Z∗
β

is independent of Zβ .
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Next, we give a direct proof that n(γ̂ ∗ − γ̂ ) does not have a weak limit in P prob-
ability. The proof idea is inspired by the counter-example 2 (page 1210) of Bickel and
Freedman (1981). Suppose n(γ̂ ∗ − γ̂ ) has a conditional weak limit, then this condi-
tional weak limit must be the same as argmin

v
D∗

n (v) − argmin
v

Dn(v) by Lemma 1. To

simplify notations, we still use t∗n and tn for the minimizers of D∗
n (v) and Dn(v),

and γ̂ ∗ and γ̂ for the minimizers of P∗
n m(w|γ ) and Pnm(w|γ ); that is, t∗n − tn =

n
(
γ̂ ∗ − γ̂

)
. Conditional on ω, {qi , z1i , z2i }n

i=1 in Dn(·) and D∗
n (·) are fixed. So γ̂ ∗

must equal q( j) for some j and γ̂ must equal q(k) for some k, where q(i) is the
i th order statistics of {qi }n

i=1, i = 1, · · · ,n, and the j,k in γ̂ ∗ and γ̂ may depend
on ω. A key observation is that for almost every ω, lim

n→∞P∗ (γ̂ ∗ 
= γ̂
)

> 0. This

can be seen from the following arguments. If γ̂ = q(k), then for whatever values the
other MNn ,i ’s may take, γ̂ ∗ 
= γ̂ as long as MNn ,k−1 = 0, since we are using the
LLSE. As a result, lim

n→∞P∗ (γ̂ ∗ 
= γ̂
) ≥ P∗ (MNn ,k−1 = 0

) = e−1 > 0. Given ω, if

the limit conditional distribution of n(γ̂ ∗ − γ̂ ) exists, then there must exist points masses{
pn

1 , · · · , pn
k−1, pn

k+1, · · · , pn
n

}
such that lim

n→∞
n
∑

j=1, j 
=k
pn

j 1
(
n
∣∣q( j) −q(k)

∣∣≥ x
)

exists

for almost every x > 0, where pn
j , j = 1, · · · ,k − 1,k + 1, · · · ,n, is the probability of

obtaining γ̂ ∗ = q( j). Since lim
n→∞ n

∣∣q( j) −q(k)

∣∣ = ∞ and lim
n→∞

n
∣∣q( j) −q(k)

∣∣ = 0 P

almost surely for any j 
= k, lim
n→∞

n
∑

j=1, j 
=k
pn

j 1
(
n
∣∣q( j) −q(k)

∣∣≥ x
)= lim

n→∞
n
∑

j=1, j 
=k
pn

j ≥

e−1 > 0 and lim
n→∞

n
∑

j=1, j 
=k
pn

j 1
(
n
∣∣q( j) −q(k)

∣∣≥ x
) = 0 P almost surely. As a result,

lim
n→∞

n
∑

j=1, j 
=k
pn

j 1
(
n
∣∣q( j) −q(k)

∣∣≥ x
)

does not converge P almost surely. This implies

that n(γ̂ ∗ − γ̂ ) cannot have a conditional weak limit. n

APPENDIX B: Lemmas

LEMMA 1. Under Assumption D, uniformly for h in any compact set of R2k+1,

n Pn

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
= u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E

[
xi x ′

i 1(qi > γ0)
]

u2 − Wn (u)

+ Dn (v)+oP (1) ,

and

n P∗
n

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
= u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E

[
xi x ′

i 1(qi > γ0)
]

u2 − Wn (u)− W∗
n (u)

+D∗
n (v)+oPr (1) ,

where Wn (u), W∗
n (u), Dn (v), and D∗

n (v) are specified in Section 3.1.
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Proof. This proof is inspired by Klaassen and Wellner (1992) and Chapter 3.6 of Van der
Vaart and Wellner (1996). First,

n Pn

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
=

n

∑
i=1

(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)

×1
(

qi ≤ γ0 ∧γ0 + v

n

)
+

n

∑
i=1

(
u′

2
xi x ′

i
n

u2 −u′
2
σ2,0√

n
xi εi

)
1(qi > γ0 ∨γ0 + v

n
)

+
n

∑
i=1

[(
β1,0 −β2,0 − u2√

n

)′
xi x ′

i

(
β1,0 −β2,0 − u2√

n

)
+2x ′

i

(
β1,0 −β2,0 − u2√

n

)
σ1,0εi

]
1
(
γ0 + v

n
< qi ≤ γ0

)
+

n

∑
i=1

[(
β1,0 + u1√

n
−β2,0

)′
xi x ′

i

(
β1,0 + u1√

n
−β2,0

)
−2x ′

i

(
β1,0 + u1√

n
−β2,0

)
σ2,0εi

]
1
(
γ0 < qi ≤ γ0 + v

n

)
= u′

1 E
[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E

[
xi x ′

i 1(qi > γ0)
]

u2 − Wn (u)+ Dn (v)+oP (1) ,

where oP (1) is from Assumptions D4 and D5. Second,

n P∗
n

(
m

(
·
∣∣∣∣β0 + u√

n
,γ0 + v

n

)
−m (· |β0,γ0 )

)
=

n

∑
i=1

Mni

(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)
1
(

qi ≤ γ0 ∧γ0 + v

n

)
+

n

∑
i=1

Mni

(
u′

2
xi x ′

i
n

u2 −u′
2
σ2,0√

n
xi εi

)
1
(

qi > γ0 ∨γ0 + v

n

)
+

n

∑
i=1

Mni

[(
β1,0 −β2,0 − u2√

n

)′
xi x ′

i

(
β1,0 −β2,0 − u2√

n

)
+ 2x ′

i

(
β1,0 −β2,0 − u2√

n

)
σ1,0εi

]
1
(
γ0 + v

n
< qi ≤ γ0

)
+

n

∑
i=1

Mni

[(
β1,0 + u1√

n
−β2,0

)′
xi x ′

i

(
β1,0 + u1√

n
−β2,0

)
−2x ′

i

(
β1,0 + u1√

n
−β2,0

)
σ2,0εi

]
1
(
γ0 < qi ≤ γ0 + v

n

)
≡ T 1+ T 2+ T 3+ T 4 =

n

∑
i=1

(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)
1(qi ≤ γ0)

+
n

∑
i=1

(
u′

2
xi x ′

i
n

u2 −u′
2
σ2,0√

n
xi εi

)
1(qi > γ0)− W∗

n (u)+ D∗
n (v)+oPr (1)

= u′
1 E

[
xi x ′

i 1(qi ≤ γ0)
]

u1 +u′
2 E

[
xi x ′

i 1(qi > γ0)
]

u2 − Wn (u)− W∗
n (u)

+D∗
n (v)+oPr (1) ,

and oPr (1) here need some explanation. Poissonization is key in the following discussion.
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Note that
(

MNn ,1, · · · , MNn ,n
) = Nn

∑
j=1

1j ≡ Nn
∑

j=1

(
11 j , · · · ,1nj

)
, where

(
11 j , · · · ,1nj

)
follows the multinomial distribution with parameters 1 and cell probabilities all equal to 1

n .

So conditional on Nn = k,
{∣∣MNn ,i − Mni

∣∣}n
i=1

d= {∣∣M|Nn−n|,i
∣∣}n

i=1. By the analysis in
Theorem 3 of Klaassen and Wellner (1992) or Theorem 3.6.2 in Van der Vaart and Wellner
(1996),

P∗
(

max
1≤i≤n

∣∣MNn ,i − Mni
∣∣> 2

)
= O

(
n−1/2

)
. (10)

Define I j
n = {

i :
∣∣MNn ,i − Mni

∣∣≥ j
}

, j = 1,2, · · · , then #I j
n ≤ |Nn −n| = OP∗

(√
n
)
.

Thus,
n

∑
i=1

(
MNn ,i − Mni

)(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)
1
(

qi ≤ γ0 ∧γ0 + v

n

)

= sign(Nn −n)
2

∑
j=1

⎡⎣#I j
n

n
u′

1

⎛⎝ 1

#I j
n

∑
i∈I j

n

xi x ′
i 1
(

qi ≤ γ0 ∧γ0 + v

n

)⎞⎠u1

−#I j
n√
n

2σ1,0u′
1

1

#I j
n

∑
i∈I j

n

xi εi 1
(

qi ≤ γ0 ∧γ0 + v

n

)⎤⎦+oPr (1)

= oPr (1) ,

where the oPr (1) in the first equality is from (10), and the last equality is from #I j
n =

OP∗
(√

n
)

and a multiplier Glivenko-Cantelli theorem (see, e.g., Lemma 3.6.16 of Van
der Vaart and Wellner, 1996). Now,

n

∑
i=1

MNn ,i

(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)
1
(
γ0 ∧γ0 + v

n
< qi ≤ γ0

)
= oPr (1)

from Assumption D4. So

T 1 =
n

∑
i=1

MNn ,i

(
u′

1
xi x ′

i
n

u1 −u′
1

2σ1,0√
n

xi εi

)
1(qi ≤ γ0)+oPr (1)

= u′
1 E

[
xi x ′

i 1(qi ≤ γ0)
]

u1 −u′
1

(
2σ1,0√

n

n

∑
i=1

MNn ,i xi εi 1(qi ≤ γ0)

)
+oPr (1) .

Similarly, we could prove the result for T 2.
As to T 3 and T 4, note that

n

∑
i=1

(
MNn ,i − Mni

)[(
β1,0 −β2,0 − u2√

n

)′
xi x ′

i

(
β1,0 −β2,0 − u2√

n

)
+2x ′

i

(
β1,0 −β2,0 − u2√

n

)
σ1,0εi

]
1
(
γ0 + v

n
< qi ≤ γ0

)
= sign(Nn −n)

2

∑
j=1

1

#I j
n

∑
i∈I j

n

[(
β1,0 −β2,0 − u2√

n

)′
xi x ′

i

(
β1,0 −β2,0 − u2√

n

)

+ 2x ′
i εi

(
β1,0 −β2,0 − u2√

n

)
σ1,0

](
#I j

n ·1
(
γ0 + v

n
< qi ≤ γ0

))
= oPr (1) ,
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where the last equality is from the fact that #I j
n ·1

(
γ0 + v

n < qi ≤ γ0
)= oPr (1) uniformly

for i ∈ I j
n . So it is easy to see that

T 3+ T 4 =
n

∑
i=1

MNn ,i

[(
β1,0 −β2,0

)′ xi x ′
i
(
β1,0 −β2,0

)+2x ′
i
(
β1,0 −β2,0

)
σ1,0εi

]
×1

(
γ0 + v

n
< qi ≤ γ0

)
+

n

∑
i=1

MNn ,i

[(
β1,0 −β2,0

)′ xi x ′
i
(
β1,0 −β2,0

)
−2x ′

i
(
β1,0 −β2,0

)
σ2,0εi

]
1
(
γ0 < qi ≤ γ0 + v

n

)
+oPr (1)

= D∗
n (v)+oPr (1) . n

The following lemma appears in Wellner and Zhan (1996) and is used in Abrevaya and
Huang (2005); see also Lemma 3 of Cheng and Huang (2010). It states relationships among
the probability measures P , P∗, and Pr in terms of op (·) and Op (·). Given a real-valued
function �n defined on the product probability space (	×T ,A×B, Pr ), we say that �n
is of an order oP∗(1) in P probability if for any ε,δ > 0,

P
(

P∗ (|�n | > ε) > δ
)→ 0 as n → ∞,

and that �n is of an order OP∗(1) in P probability if for any δ > 0, there exists a 0 < M <
∞ such that

P
(

P∗ (|�n | ≥ M) > δ
)→ 0 as n → ∞.

LEMMA 2. (i) If �n is defined only on the probability space (	,A, P) and �n =
oP (1) (OP (1)), then �n = oPr (1)

(
OPr (1)

)
; (ii) If �n = oPr (1)

(
OPr (1)

)
, then �n =

oP∗ (1) (OP∗ (1)) in P probability.

LEMMA 3. Under Assumption D, both θ̂ and θ̂∗ are consistent in Pr probability.

Proof. The proof idea follows from Lemma A.5 of Hansen (2000), so omitted here. n

LEMMA 4. Under Assumption D, γ̂ = γ0 + OP

(
1
n

)
, γ̂ ∗ = γ0 + OPr

(
1
n

)
, β̂ = β0 +

OP

(
1√
n

)
, and β̂∗ = β0 + OPr

(
1√
n

)
.

Proof. We will first prove γ̂ = γ0 + OP

(
1
n

)
. In this process, Corollary 3.2.6 of Van der

Vaart and Wellner (1996) is used. We then prove γ̂ ∗ = γ0 + OPr

(
1
n

)
by applying the proof

idea of Theorem 3.2.5 in Van der Vaart and Wellner (1996), which is also used in Lemma 3
of Abrevaya and Huang (2005).

First, M (θ) − M (θ0) ≥ Cd2 (θ,θ0) with d (θ,θ0) = ‖β −β0‖ + √|γ −γ0| for θ in a
neighborhood of θ0.

M (θ)− M (θ0)

= E
[
T
(
w|θ1,θ1,0

)
1(q ≤ γ ∧γ0)

]+ E
[
T
(
w|θ2,θ2,0

)
1(q > γ ∨γ0)

]
+E

[
z1
(
w|θ2,θ1,0

)
1(γ ∧γ0 < q ≤ γ0)

]+ E
[
z2
(
w|θ1,θ2,0

)
1(γ0 < q ≤ γ ∨γ0)

]
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= (
β1,0 −β1

)′ E
[
xx ′1(q ≤ γ ∧γ0)

](
β1,0 −β1

)+ (
β2,0 −β2

)′
×E

[
xx ′1(q > γ ∨γ0)

](
β2,0 −β2

)+ (
β1,0 −β2

)′ E
[
xx ′1(γ ∧γ0 < q ≤ γ0)

]
×(β1,0 −β2

)+ (
β2,0 −β1

)′ E
[
xx ′1(γ0 < q ≤ γ ∨γ0)

](
β2,0 −β1

)
≥ C

(∥∥β1,0 −β1
∥∥2 +∥∥β2,0 −β2

∥∥2 +|γ −γ0|
)

,

where the last inequality is from Assumptions D1–D4.

Second, E

[
sup

d(θ,θ0)<δ
|Gn (m (w|θ)−m (w|θ0))|

]
≤ Cδ for any sufficiently small δ.

Since
{

T
(
w|θ1,θ1,0

)
: d (θ,θ0) < δ

}
is a finite-dimensional vector space of functions

and {1(q ≤ γ ∧γ0) : d (θ,θ0) < δ} is a VC subgraph class of functions by Lemma 2.4 of
Pakes and Pollard (1989), {A (w|θ) : d (θ,θ0) < δ} is VC subgraph by Lemma 2.14 (ii) of
Pakes and Pollard (1989). Similarly, {B (w|θ) : d (θ,θ0) < δ}, {C (w|θ) : d (θ,θ0) < δ},
and {D (w|θ) : d (θ,θ0) < δ} are VC subgraph. From Theorem 2.14.2 of Van der Vaart
and Wellner (1996),

E

[
sup

d(θ,θ0)<δ
|Gn (m (w|θ)−m (w|θ0))|

]
≤ C

√
P F2,

where F is the envelope of {m (w|θ)−m (w|θ0) : d (θ,θ0) < δ} and can take the form
of, e.g.,

F =
(
δ2 ‖x‖2 +2σ1,0δ ‖xε‖

)
sup

d(θ,θ0)<δ
1(q ≤ γ ∧γ0)+

(
δ2 ‖x‖2 +2σ2,0δ ‖xε‖

)
× sup

d(θ,θ0)<δ
1(q > γ ∨γ0)

+ sup
d(θ,θ0)<δ

(∥∥β1,0 −β2
∥∥2 ‖x‖2 +2σ1,0

∥∥β1,0 −β2
∥∥‖xε‖

)
1(γ ∧γ0 < q ≤ γ0)

+ sup
d(θ,θ0)<δ

(∥∥β2,0 −β1
∥∥2 ‖x‖2 +2σ2,0

∥∥β2,0 −β1
∥∥‖xε‖

)
1(γ0 < q ≤ γ ∨γ0) .

By Assumptions D4 and D5,
√

P F2 ≤ Cδ for δ < 1. So φ (δ) = δ in Corollary 3.2.6
of Van der Vaart and Wellner (1996) and δ/δα is decreasing for all 1 < α < 2. Since

r2
nφ
(

1
rn

)
= rn ,

√
nd
(
θ̂ − θ0

)= OP (1). By the definition of d, the result follows.

Now, we prove γ̂ ∗ = γ0 + OPr

(
1
n

)
. For each n, the parameter space (minus the point θ0)

can be partitioned into the ”shells” Sj,n =
{
θ : 2 j−1 < rnd (θ,θ0) ≤ 2 j

}
with rn = √

n

and j ranging over the integers. Given an integer J ,

Pr

(
rnd

(
θ̂∗,θ0

)
> 2J

)
≤ ∑

j≥J,2 j ≤ηrn

Pr

(
inf

θ∈Sj,n

(
P∗

n m (w|θ)− P∗
n m (w|θ0)

)≤ 0

)

+Pr

(
2d
(
θ̂∗,θ0

)
≥ η

)
.

The second term converges to zero as n → ∞ for every η > 0 by the consistency of θ̂∗, so
we can concentrate on the first term. Note that

P∗
n m (w|θ)− P∗

n m (w|θ0) = (
P∗

n − Pn
)
(m (w|θ)−m (w|θ0))+ (Pn − P)(m (w|θ)

−m (w|θ0))+ P (m (w|θ)−m (w|θ0)) .
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From the first step in the first part of our proof, P (m (w|θ)−m (w|θ0)) ≥ Cd2 (θ,θ0) for θ
in a neighborhood of θ0. By choosing η small enough, this result holds for d (θ,θ0) ≤ η, so

Pr

(
inf

θ∈Sj,n

(
P∗

n m (w|θ)− P∗
n m (w|θ0)

)≤ 0

)

≤ Pr

(
sup

θ∈Sj,n

∣∣(P∗
n − Pn

)
(m (w|θ)−m (w|θ0))

∣∣≥ C

2

22 j−2

r2
n

)

+ Pr

(
sup

θ∈Sj,n

|(Pn − P)(m (w|θ)−m (w|θ0))| ≥ C

2

22 j−2

r2
n

)
.

From the second step in the first part of our proof, where δ < η, and Markov’s inequality,

Pr

(
sup

θ∈Sj,n

|(Pn − P)(m (w|θ)−m (w|θ0))| ≥ C

2

22 j−2

r2
n

)
≤ C

2 j
√

nrn

/
C

2

22 j−2

r2
n

= C
rn√
n2 j .

Conditioning on {wi }n
i=1,

P∗ sup
d(θ,θ0)<δ

∣∣√n
(

P∗
n − Pn

)
(m (w|θ)−m (w|θ0))

∣∣≤ C
√

Pn F2

by the maximal inequality, where C can be chosen uniformly for any sample path of the
original data, since the class of function {m (w|θ)−m (w|θ0) : d (θ,θ0) < δ} is VC sub-
graph; see Theorem 3 of Léger and MacGibbon (2006). So

Pr sup
d(θ,θ0)<δ

∣∣√n
(

P∗
n − Pn

)
(m (w|θ)−m (w|θ0))

∣∣
= P P∗ sup

d(θ,θ0)<δ

∣∣√n
(

P∗
n − Pn

)
(m (w|θ)−m (w|θ0))

∣∣
≤ C P

√
Pn F2 ≤ C

√
P Pn F2 = C

√
P F2 ≤ Cδ,

where the second to last inequality is from Jensen’s inequality. Consequently,

Pr

(
sup

θ∈Sj,n

∣∣(P∗
n − Pn

)
(m (w|θ)−m (w|θ0))

∣∣≥ C

2

22 j−2

r2
n

)
≤ C

rn√
n2 j .

In summary, Pr

(
rnd

(
θ̂∗,θ0

)
> 2J

)
is bounded by C ∑

j≥J

rn√
n2 j , which can be made

arbitrarily small by letting J large enough, since by definition rn = √
n. n

The following Lemma is an extension of Theorem 6.1 of Huang and Wellner (1995),
which is an extension of the argmax continuous mapping theorem. As in Kim and Pollard

(1990), define Bloc

(
Rd
)

as the space of all locally bounded real functions onRd , endowed

with the uniform metric on compacta. The space Cmin

(
Rd
)

is defined as the subset of

continuous functions x (·) ∈ Bloc

(
Rd
)

for which (i) x(t) → ∞ as ‖t‖ → ∞ and (ii) x(t)
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achieves its minimum at a unique point in Rd . B′
loc (R) is the same as Bloc (R) except

being endowed with the Skorohod metric on compacta. The space Dmin (R) is defined as
the subset of cadlag functions x (·) ∈ B′

loc (R) for which the conditions (i) and (ii) in the
definition of Cmin (R) are satisfied.

LEMMA 5. Suppose
(
Un,U∗

n
)

are random maps onto Bloc(R
d ) × Bloc(R

d ), and(
Dn, D∗

n
)

are random maps onto B′
loc (R)×B′

loc (R). Let (sn, tn) and
(
s∗
n , t∗n

)
be random

maps onto Rd+1 ×Rd+1 such that:

(i)
(
Un + Dn,U∗

n + D∗
n
)
�
(
U + D,U∗ + D∗), where � signifies the weak conver-

gence under some probability measure P,

P
((

U,U∗) ∈ Cmin

(
Rd
)

×Cmin

(
Rd
))

= 1

and

P
((

D, D∗) ∈ Dmin (R)×Dmin (R)
)= 1;

(ii) (sn, tn) and
(
s∗
n , t∗n

)
are uniquely defined and both OP (1) ;

(iii) Un (sn) + Dn (tn) ≤ inf
u

Un (u) + inf
v

Dn (v) + αn and U∗
n
(
s∗
n
)+ D∗

n
(
t∗n
) ≤ inf

u
U∗

n (u)+ inf
v

D∗
n (v)+α∗

n , where αn and α∗
n are both oP (1) .

Then
(
(sn, tn) ,

(
s∗
n , t∗n

))
�
(

argmin
u,v

U (u)+ D (v) ,argmin
u,v

U∗(u)+ D∗ (v)

)
.

Proof. The proof follows from Theorem 6.1 of Huang and Wellner (1995) by invok-
ing Dudley’s representation theorem. The only difference is that the metric on Dmin (R)

is the Skorohod metric on compacta and the product metric is used on Cmin

(
Rd
)

×Dmin (R). n


