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Abstract

Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory
proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are
collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an
important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic
supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate
can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3e on the spatial-partitioned
supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters
and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the
inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of
actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of
synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns
directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity
immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative
coupling between TCR clusters and viscoelastic actin network.
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Introduction

The formation of an immunological synapse, the intercellular

junction between T cells and antigen presenting cells (APCs),

involves formation of intermembrane protein complexes and

micrometer length scale lateral reorganization within the interface

[1,2,3]. For example, T cell receptor (TCR) engages the antigenic

peptide loaded major histocompatibility complex II (pMHC) on

the APC and forms sub-micrometer clusters during synapse

formation. TCR clusters recruit various cytoplasmic molecules,

such as LAT, Zap70, and SLP76, which carry out downstream T

cell signals [4,5,6,7]. Under sufficiently high antigen stimulation,

TCR clusters subsequently move inward to the center of the

junction, forming the central supramolecular adhesion complex

(c-SMAC). Physically interfering with their transport process has

been shown to affect both TCR-specific tyrosine phosphorylation

and intracellular calcium flux [8]. Thus forced movement of TCR

clusters, driven from within the cell or externally, can alter TCR

signaling behavior.

For decades, the dynamic actin network and related proteins

have been known to regulate various cellular processes, including

cell migration, membrane protrusion, focal adhesion [9,10], and

aspects of T cell immunological synapse formation. Previous live T

cell studies indicate that radial-symmetric actin filaments poly-

merize at the lamellipodia, subsequently flow back through the

lamella, and depolymerize further towards the center of synapses

[11,12,13]. Cortical actin centripetal retrograde flow provides an

obvious candidate to drive radial protein sorting, and biochemical

studies have shown that cytoskeletal drugs which disrupt actin

polymerization can effectively inhibit immunological synapse

formation [9,13,14]. Here, we utilize biophysical methods to

directly investigate the associations of cortical actin retrograde flow

and inward transport of TCR clusters.

Supported lipid bilayer membranes have been widely employed

to manipulate membrane organization while preserving two-

dimensional fluidity of the membrane [15,16,17]. Functional

proteins can be stably incorporated into supported membranes,

and these can form signaling interfaces with living cells.

Micropatterned hybrid live cell - supported membrane junctions

provide spatial control over the lateral transport of both

intracellular and intercellular signaling molecules [8,13,18,

19,20,21]. Specifically, micro- or nanofabricated metal lines on

glass substrates create barriers to lateral mobility in supported

membranes and passively restrict molecular transports. Physically

matching the metal line height to the supported membrane

thickness and passivating by casein incubation minimizes non-

specific interactions between the structured substrate and the

cell.
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Jurkat T cells transfected with EGFP-actin are triggered by

mobile anti-CD3e on supported membrane and utilized to

visualize dynamical actin flow network in hybrid immunological

synapses. Using this system, we are able to simultaneously visualize

the dynamical reorganization of both TCR clusters and actin

cytoskeleton in living Jurkat T cells. As ligated TCR clusters are

spatially confined by barriers, it allows us to study localized

biophysical interactions between actin centripetal retrograde flow

and TCR clusters. In this work, we primarily focus on TCR

coupling to actin network, and anti-CD3e/TCR ligations are the

only intermembrane linkages between T cell and supported

membranes. By analyzing translocation trajectories of both TCR

clusters and actin speckles, we demonstrate their non-static

associations in triggered T cell synapses.

The centralized movements of TCR clusters are attributed to

actin centripetal retrograde flows. Notably, modulations of actin

flow velocity in repatterned immunological synapses are observed.

We find that actin flow velocity distribution is significantly

decreased in proximity of confined TCR clusters and then

recovers to normal levels after traversing. The localized reduction

of actin flow velocity by TCR clusters would be expected from a

dissipative coupling [18] between TCR clusters and the viscoelas-

tic actin network [22,23,24,25,26]. In contrast, a more static

association between TCR and actin, as would be predicted if

strong TCR-adapter-actin binding interactions existed, would be

expected to result in trapped actin at fixed TCR clusters and flow

patterns around the fixed obstacles. The ability to spatially restrict

the movement of membrane-associated molecules creates more

possibilities to biophysically examine dynamic associations of

signaling molecules on the plasma membrane and cytoskeletal

networks in various cellular responses.

Materials and Methods

Cell culture and reagents
Jurkat T cells are cultured in RPMI 1640 media and transfected

with EGFP actin as described in [13]. 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) and biotinylated phosphatidylethanol-

amine with a caproyl spacer (biotin-CAP-PE) are purchased from

Avanti (Alabaster, AL). Anti-CD3e (Hit3a) monoclonal antibody is

purchased from BD (San Diego, California) and then mono-

biotinylated following the previously described procedure [13].

Texas red-conjugated streptavidin is purchased from Invitrogen

(Carlsbad, CA).

Substrate fabrication
Glass substrates (#1 circular coverslip, Fisher Scientific,

Pittsburgh, PA) are cleaned by sonication in isopropyl alcohol

and water mixture (1:1 volume), followed by piranha acid wash

(3:1 sulfuric acid and hydrogen peroxide) for 5 minutes. S1805

positive resist (Microchem, Newton, MA) is spun on substrates,

exposed with UV light through designed photomasks, and

developed. Next, 5 nm of chromium layer is deposited by an

electron-beam thermal evaporator and patterned by a lift-off

process in acetone in a sonication bath. Before usage, patterned

substrates are treated with piranha to maintain hydrophilicity,

washed thoroughly in deionized water, and dried under nitrogen

gas.

Supported membrane preparation
Small lipid vesicles (SUVs) with DOPC and 0.02 mole percent

of biotin-CAP-PE are prepared as described [13]. SUVs are

diluted into phosphate buffered saline solution and exposed to a

hydrophilic patterned glass substrate to form a supported lipid

bilayer membrane. Casein (Fisher Scientific, Pittsburgh, PA) is

then used for blocking non-specific binding. Texas-Red strepta-

vidin and monobiotinylated anti-CD3e antibody are sequentially

introduced and conjugated with biotinylated lipids in micropat-

terned supported membrane. Excess Anti-CD3e is washed out

before adding cells.

Imaging
Two-color time-lapsed confocal microscopy is performed on a

Nikon TE2000U inverted microscope with Yokogawa CSU22

spinning disk confocal scanner unit. Samples are excited by Ar

(488 nm) and Ar/Kr (568 nm) lasers, and fluorescence images are

captured by Photometrics Cascade II EMCCD camera via

acquisition software mManager. Fluorescence images are taken

within 10 minute after cell landing. All experiments are conducted

in a controlled temperature (37uC) and humidity chamber

equipped on the microscope.

Tracking algorithms
Time-lapsed images of TCR cluster movement and actin

centripetal retrograde flow are analyzed by Particle Tracker in

ImageJ and custom code in Matlab. Actin speckles tracked in each

frame are performed in two stages, (1) identifying the location of

actin speckles; (2) creating the trajectories of actin speckles in the

consecutive frames. Images are first convolved with a Gaussian

filter to remove the signal noise. The possible locations of actin

speckles are detected by searching local maxima of intensity across

the cell. Multiple local maxima are usually observed in single actin

speckle. To further select and refine the position of significant

speckles, the vector fields of image intensity gradient are created.

The location of significant speckle is identified at the position with

low intensity gradient. We utilize gradient vector flow algorithm to

obtain the smooth vector field of gray level images [18,27,28]. By

detecting the gradient of intensity, the variation of background

intensity across the cell would not affect the process of searching

speckles. The insignificant objects are successfully removed by

applying this routine.

After detection of speckle positions, the motions of speckles are

tracked. The tracks are generated by linking nearest neighbor

speckles between consecutive frames if the distance between two

positions is less than the moving tolerance of speckle motions. The

average size of speckles is used as the moving tolerance. The

appearance, disappearance, merging, and splitting events of speckles

are monitored. If the speckles at time t cannot be linked to any

position at time t+1, the speckles are considered as disappearance at

time t+1. On the other hand, new trajectories are classified if speckles

at time t+1 are not linked to any position at time t. Merging and

splitting events sometimes are observed in the area with dense actin

meshwork. If multiple speckles at time t are linked to the same speckle

at time t+1, the merging events are recorded. On the contrary, the

splitting events are monitored if multiple speckles at time t+1 are

linked to the same speckle at time t+1. All the trajectory information is

stored in the array for velocity computation. More than 25000 track

information could be analyzed in a single synapse. By selection of

regions of interest, localized velocity and angular histograms of actin

speckles are calculated from identified tracks. Averages of radial and

angular velocity distribution are calculated accordingly with their

standard error of mean.

Results

Spatial mutations
To generate spatial mutations, hybrid live T cell – supported

membrane synapses are reconstructed over patterned glass

Cortical Actin Flow in T Cells
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substrates (Fig. 1). Parallel chromium lines of 0.5–1 mm in width,

5 nm in height, and 3–4 mm pitch are microfabricated on glass

coverslips. Monobiotinylated anti-CD3e is uniformly and stably

linked to a supported lipid bilayer via biotin-streptavidin linkage.

Live Jurkat T cells transfected with EGFP-actin are introduced

after the supported membrane and anti-CD3e are deposited. TCR

on T cell membrane engages with mobile anti-CD3e on supported

membrane, form submicrometer-sized clusters with other signaling

molecules, and then move towards the center of the synapse. Total

26 individual cells are examined. Microfabricated chromium stripe

patterns partition the supported membrane and physically limit

lateral translocation of ligated TCR clusters (Fig. 2 and Movie S1).

Using spinning-disk fluorescence confocal microcopy, live actin

centripetal retrograde flow is imaged (for the first time, to our

knowledge) in micropatterned hybrid immunological synapses.

The confined TCR clusters along stripe patterns allow us to study

their mechanical coupling with actin cytoskeleton.

Association of TCR clusters and actin centripetal flow
Previously, we have reported potential transient linkages

between TCR clusters and cortical actin flow that collectively

give rise to a frictional drag force to drive TCR cluster movement.

Unlike distinct TCR tracks, actin networks are visualized in the

present study as moving speckles. Low concentrations of EGFP-

actin monomers generate heterogeneous labeling of actin

filaments, which provides image constrast sufficient to track flows.

With the ability to visualize actin dynamics using fluorescence

confocal microscopy, we confirm that TCR clusters and actin

centripetal retrograde flow concurrently move inward to the

center of the synapse. As cortical actin constantly polymerizes at

the lamellipodia, flows towards the center of synapses, and

becomes depolymerized, TCR movement is directed by contin-

uous actin flow in a non-static manner. Synchronized particle

Figure 1. Experimental schematic. Monobiotinylated anti-CD3e is
attached to supported lipid membrane via biotin-streptavidin linkage.
Jurkat T cell forms immunological synapses as TCR on T cell membrane
engages with mobile anti-CD3e on supported membrane. Microfabri-
cated chromium stripes (0.5–1 mm in width, 5 nm in height, and 3–
4 mm pitch) on glass substrates serve as diffusion barriers of TCR/anti-
CD3e clusters and limit the inward translocation of ligated TCR clusters.
The confined TCR clusters along stripe patterns allow us to study their
mechanical coupling with active transport mediated by cortical
cytoskeleton.
doi:10.1371/journal.pone.0011878.g001

Figure 2. Spatially-mutated hybrid immunological synapse. (A)
Fluorescence image shows that T cell with EGFP-actin (green) engages
with micro-patterned substrates and triggers synapse formations. The
spacing between each chromium stripe is 2 mm. Anti-CD3e conjugated
with Texas-Red streptavidin (red) is ligated with TCR on T cell
membrane and forms submicrometer-sized clusters. (B) Inward
movement of TCR clusters, a close-up view from the boxed region in
(A). TCR clusters are nucleated and brought inwards from the periphery
of the cell where the lamellipodium protrusions actively scan supported
membrane surface. Diffusion barriers on supported membrane locally
retain TCR clusters. See Movie S1 for detail demonstration. (C) Time-
series images showing the single track from one group of TCR clusters,
a close-up view from the boxed region in (B). Directional inward
movement of TCR clusters suggests the underlying active transport
process driven by actin centripetal retrograde networks. Scale bar 5 mm.
doi:10.1371/journal.pone.0011878.g002

Cortical Actin Flow in T Cells
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tracking of both TCR clusters and actin speckles shows that TCR

clusters followed actin flow (Fig. 3 and Movie S2). From stage 0 to

1 (t = 0 to 9 sec), 1 to 2 (t = 10 to 24 sec), and 2 to 3 (t = 25 to

33 sec), cortical actin centripetal flow dynamically changes its

direction and simultaneously regulates TCR cluster translocation

with corresponding direction (Fig. 3B1, 3C1, 3D1). More

specifically, we calculate the angle of movement based on the

starting point along each track within the same stage. Angle

histograms of each trajectory indicate that TCR and actin move

simultaneously in nearly identical directions (Fig. 3B2, 3C2, 3D2).

Kymographs of both TCR and actin tracks also reveal their

spatial-temporal correlations. At each time point, intensity profiles

(plotted in x-axis) along the track are assembled along y-axis in

time-descending order (Fig. S1). This graphical representation also

confirms the dynamic associations of TCR clusters and steady-

streaming actin flow.

Actin velocity analysis in spatially mutated synapses
In spatially mutated synapses, we find both the cortical actin

centripetal flow and TCR clusters can be reorganized (Fig. 4A and

Movie S3). Microfabricated substrates locally restrict TCR clusters

translocation (Fig. 4A inset) and show no direct perturbations to

unligated molecules, as the height of chromium stripes on glass

substrates is designed to match the thickness of the lipid bilayer

(about 5 nm). Using flow-based tracking algorithms, actin speckles

are effectively identified and connected as individual tracks.

Centripetal velocity of actin flow is measured from adjacent points

in each track. Over 25000 tracking data of EGFP-actin in time-

Figure 3. Dynamic association of TCR clusters and cortical actin flows. Confocal images of TCR clusters (A) and EGFP-actin speckles (B1, C1,
D1) at the lamella in hybrid immunological synapse. Using particle tracking algorithms, the red track in (A) and white track in (B1, C1, D1) represents
the translocation trajectories of TCR clusters and EGFP-actin speckles, respectively. TCR clusters behave non-diffusive motion and follow the
directions of actin centripetal retrograde flow. From stage 0 to 1 (t = 0 to 9 sec), 1 to 2 (t = 10 to 24 sec), and 2 to 3 (t = 25 to 33 sec), cortical actin
retrograde flow dynamically changes its direction and simultaneously regulates TCR cluster translocations with corresponding direction. (B2, C2, D2)
Angle histograms of actin flow direction in different stages. Angle of movement is derived based on the starting point along each track. The
histograms suggest that TCR and actin move in nearly identical directions within the same stage. See Movie S2 for detail demonstration. Scale bar
1 mm.
doi:10.1371/journal.pone.0011878.g003
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lapsed confocal images are calculated. A color-coded velocity map

demonstrates that cortical actin flow velocity is spatially modulated

where confined TCR clusters are located (Fig. 4B). Centripetal

actin flow velocity we measure is widely spread (Fig 4C, left chart)

and ranges as fast as 360 nm/s with mean velocity 88.260.6 nm/s

(n = 25083, all errors are standard error of mean unless otherwise

noted). Negative centripetal velocity calculated from tracking

algorithms generally results from intrinsic density fluctuation of

actin speckles. Centripetal velocity distribution of actin retrograde

flow plotted with normalized radial positions also indicates general

decay of flow velocity as actin moves further toward the center of

synapse (Fig. 4C, right chart).

Decrease of actin velocity when passing confined TCR
clusters

Detailed investigation of cortical actin flow dynamics reveals

slower actin flow over confined TCR clusters whereas it stays the

same level elsewhere. To perform localized velocity analysis, we

examine actin velocity distributions in selected regions within the

lamella in spatially-mutated immunological synapses (Fig. 5A and

5B). In particular, we choose two adjacent regions along a single

chromium line, one with confined TCR clusters (region 1 in

Fig. 5B) and one without (region 2 in Fig. 5B). Each selected region

contributes more than 150 individual tracking information, and

the statistical distribution of actin velocity shows that actin flow in

region 1 of Fig. 5B (with confined TCR clusters) is slower, with the

mean value of 5864.9 nm/s (SEM, n = 166, Fig. 5C). Conversely,

actin flow in region 2 of Fig. 5B (without TCR clusters

accumulation) is faster, with the average velocity of 8866.5 nm/

s (SEM, n = 269, Fig. 5C). Angular velocity distribution (inset of

Fig. 5C) suggests rather unidirectional actin flow in selection

regions. The micropatterned substrate itself has no apparent

influences on actin flow dynamics (Fig. S2), but TCR clusters

retained by microfabricated chromium stripes notably changes

local actin flow profiles. Hence, we directly observe the drag

between the flowing actin network and the fixed TCR clusters.

Actin flow regains velocity after passing confined TCR
clusters

Next, we analyze three adjacent regions within the lamella

along the direction of actin retrograde flow (Fig. 6A and 6B). Only

Figure 4. Actin velocity analysis in spatial mutated synapses. T
cells with EGFP-actin are imaged by spinning disk confocal microscope
while forming immunological synapses on micro-partitioned supported
membranes. (A) Maximum intensity projection of EGFP-actin signals
(green) over 100-second period. Cortical actin actively polymerizes at
the lamellipodia and flows toward the center of synapse. See Movie S3
for detail demonstration. Inset: Fluorescence image of reorganized anti-
CD3e clusters (red). White stripes represent microfabricated diffusion
barriers (3 mm line spacing) which laterally confine TCR clusters. (B)
Actin velocity map in spatial-mutated synapse. Actin speckles are
identified and linked using flow-based particle tracking algorithms.
Actin flow velocity is calculated between adjacent points in each track.
Color-coded velocity map shows that actin centripetal retrograde
networks are locally modulated by retained TCR clusters. Negative radial
velocity calculated from tracking algorithms generally contributes from
intrinsic density fluctuation of actin speckles. (C) More than 25000
tracking information are analyzed, and mean velocity is 88.260.6 nm/s
(SEM, n = 25083). Normalized histogram of entire measured actin
centripetal velocity (left chart, purple) reveals wide spread of actin
velocity. Spatial distributions of actin velocity are plotted with
normalized radial positions (right chart, green). This also indicates
general decay of flow velocity as actin moves further inwards. Scale bar
5 mm.
doi:10.1371/journal.pone.0011878.g004

Cortical Actin Flow in T Cells
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one of the selected regions is in position with the confined TCR

clusters (region 2 in Fig. 6B). Actin speckles flow inward and

sequentially travel through region 1, 2 and 3 (Fig. 6B), and each

region contains more than 150 individual tracking information.

Localized actin velocity analysis in these three regions reveals

differential velocity distributions along centripetal retrograde flow.

Average velocities of actin flow in region 1 and 2 (Fig. 6B) are

measured as 7965.6 nm/s and 3864.4 nm/s, respectively (SEM,

n = 261 and 365, Fig. 6C). This velocity decline confirms our

previous observation since region 2 (Fig. 6B) colocalized with

confined TCR clusters. Notably, after passing confined TCR

clusters in region 2, actin flow in region 3 regains the velocity, with

the mean value of 7166.3 nm/s (SEM, n = 167). The recovery of

the actin velocity suggests impermanent and weak interactions

between TCR clusters and the cortical actin network. The small

velocity difference between region 1 and 3 results from the general

actin velocity decay and depolymerization as it travels towards the

center of synapses (Fig. 4D).

Discussion

Based on our observations, a frictional coupling mechanism of

TCR clusters and viscoelastic cortical actin network is proposed

(Fig. 7). Previously, the dissipative coupling between TCR clusters

and cytoskeletal network has been introduced [18]. Specifically,

analysis of the deflections of TCR clusters motion by substrate-

imposed barriers reveals a cosine scaling of the speed, with a

deflection angle and no elastic memory of trajectory. Taken

together these observations demonstrated that TCR clusters are

not elastically coupled to the cytoskeleton, which itself does have

an elastic component [22,23,24,25,26]. Here we directly demon-

strate that actin centripetal retrograde flow serves as a mechanical

driving force to transport TCR clusters. During the synapse

formation, cortical actin continuously polymerizes in the lamelli-

podium at the periphery of the synapse and then actively moves

inwards. TCR clusters that nucleate at the lamellipodium are

found to be transiently associated with actin speckles and follow

the direction of proximal actin centripetal flows.

Detailed analysis of actin speckles movement with micro-

partitioned synapses enables us to investigate the spatial-temporal

modulation of actin centripetal retrograde flow. Microfabricated

chromium metal lines on the glass are around 5 nm in height

(notionally lower than anti-CD3e on lipid bilayer in height) and

are passivated by casein incubation. These physical barriers of

TCR cluster restrict translocations in immunological synapse and

show no apparent effect on actin flow dynamics (region 2 in Fig. 5B

and Fig. S2). Physically confined TCR clusters which consist of

hundreds of TCR and associated adaptor proteins cooperatively

contribute frictional drag onto adjacent actin retrograde flows

[19,29,30]. This collective dissipative interaction effectively results

in temporary decreases of actin flow velocity in the vicinity of

confined TCR clusters.

The observation of actin flow velocity recovery after passing

confined TCR clusters also implies viscoelastic properties of actin

flow network. Theoretical optical slice thickness of spinning disk

confocal microscopy is calculated from the equation [31],

daxial&
1:4:n

NA2
l

In our experiment setup, EGFP emission wavelength

lem = 509 nm, refractive index of aqueous media n = 1.33, and

lens numerical aperture NA = 1.40, the axial resolution is

approximately 484 nm. The thin confocal volume provided by

spinning disk microscopy allows us to observe local remodeling of

cortical actin networks. As negative velocities in the actin flow

analysis are often contributed from density fluctuations of actin

speckles within the confocal volume, the fast-moving actin speckles

at spatially repatterned TCR clusters suggest structural mismatch

of elastic and multilayered actin network (Fig. 5C and Fig. 6C).

Proximal layers of actin flow network adjacent to confined TCR

clusters are locally retained, and the bulk actin retrograde flows

Figure 5. Decrease of actin velocity when passing confined TCR
clusters. (A and B) Maximum intensity projections of confined TCR
clustered (red) and EGFP-actin signals (green) over 45-second period.
Region 1 and 2 are located in the lamella and have nearly identical
radial distance to the center of synapse. TCR clusters in region 1 are
spatially retained and accumulated against the chromium line
perpendicular to actin flow. In region 2, no TCR buildup is observed
along the same chromium line. (C) Actin velocity distributions inside
region 1 and 2. More than 150 track information is analyzed in each
region. Statistical distribution of radial actin velocity showed that actin
flow in region 1 is slower, with the mean value of 5864.9 nm/s (SEM,
n = 166). In opposition, actin flow in region 2 is faster, with the average
velocity of 8866.5 nm/s (SEM, n = 269), and is closely comparable to the
mean velocity value of bulk actin retrograde flow (Fig. 4D). This side-by-
side comparison suggests that micropatterned substrates itself had no
apparent influences on actin flow dynamics, but TCR clusters retained
by microfabricated chromium lines does notably change local actin flow
profiles. Scale bar 1 mm.
doi:10.1371/journal.pone.0011878.g005

Cortical Actin Flow in T Cells
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above continuously move inward. After traversing, slow-moving

actin speckles rejoin overall actin retrograde network, possibly

through nonmuscle myosin IIA linkage [32,33] and then regain

flow velocity.

While actin retrograde flow collectively directs the inward

movement of TCR clusters, laterally-restricted TCR clusters

(immobile) are also able to modulate the velocity distributions of

consequent cortical actin flow via the frictional coupling model

described above. We consider that these observations can be

general biophysical phenomena in active molecular sorting on

cellular membranes. Our results reveal the potential mechanism of

force feedback interactions between signaling molecules on cellular

membrane and viscoelastic cytoskeletal networks. Various biolog-

ical events involve physical reorganization of molecules to amplify

Figure 6. Actin flow regains velocity after passing confined TCR
clusters. (A and B) Maximum intensity projections of confined TCR
clustered (red) and EGFP-actin signals (green) over 45-second period.
Actin speckles flow inwards and sequentially traveled through region 1,
2 and 3 consecutively within the lamella. TCR clusters in region 2 are
spatially confined and accumulated against the chromium line
perpendicular to actin flow while there are no TCR clusters
accumulations in region 1 and 3. (C) Actin velocity distributions
compared in those 3 regions. Each region includes more than 150
individual actin track information. Average radial velocity of actin flow
in region 1, 2 and 3 are measured as 7965.6, 3864.4, and 7166.3 nm/s,
respectively (SEM, n = 261, 365, 167). The velocity decrease between

region 1 and 2 confirms our previous result. Actin retains the velocity
after passing region 2 where confined TCR clusters locate. The velocity
recovery between region 2 and 3 suggests impermanent interactions
between TCR clusters and cortical actin network. Scale bar 1 mm.
doi:10.1371/journal.pone.0011878.g006

Figure 7. Frictional coupling model of TCR translocation and
actin flow in immunological synapses. While the inward translo-
cations of TCR clusters are dynamically directed by cortical actin
centripetal retrograde networks, confined TCR clusters are also able to
spatially modulate the velocity distributions of consequent cortical
actin flow. Our results reveal the potential mechanism of force feedback
interactions between signaling molecules on cellular membrane and
cytoskeleton networks.
doi:10.1371/journal.pone.0011878.g007

Cortical Actin Flow in T Cells
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the signal and trigger the downstream pathways. Spatial

partitioning of supported membrane provides a unique method

to investigate intercellular molecule sorting and signaling by

selectively introducing geometrical constraints to targeted intra-

cellular membrane components. The ability to mechanically

manipulate biophysical interactions between fluid plasma mem-

branes (two-dimensional setting) and dynamical cytosolic protein

assembly (three-dimensional environment) create more possibilities

to study the underlying mechanism of mechano-transduction in

living cells.

Supporting Information

Figure S1 Association of TCR clusters and cortical actin flows.

(A and B) Confocal time-series images of TCR clusters (A) and

EGFP-actin speckles (B) at the lamella in hybrid immunological

synapse. Using particle tracking algorithms, the red track in (A)

and white track in (B) represents the translocation path of TCR

clusters and EGFP-actin speckles, respectively. TCR clusters

behave non-diffusive motion and temporally moved along actin

centripetal retrograde flow. Steady-streaming actin speckles

continuously flow through and collectively direct TCR cluster

translocations in a non-static manner. (C) Kymographs (time-

space plot) of TCR clusters (top and red channel in the composite)

and actin speckles (middle and green channel in the composite). At

each time point, intensity profiles (plotted in x-axis) along the track

are assembled along y-axis in time-descending order. This

graphical representation reveals the spatial-tempo correlations of

TCR clusters/actin speckles and confirms our previous observa-

tions. (D and E) Angle histograms of TCR cluster (red, n = 40) and

actin speckle (green, n = 285) tracks, respectively. Angle of

movement is derived based on the starting point along each track.

The histograms suggest that TCR and actin move in nearly

identical directions. Scale bar 1 mm.

Found at: doi:10.1371/journal.pone.0011878.s001 (0.64 MB TIF)

Figure S2 Physical barriers on supported membrane without

anti-CD3e have no effects on changing actin dynamics. (A)

Maximum projection of time-lapse images of EGFP-actin in the

Jurkat T cell. (B) Supported membranes coated with labeled

streptavidin, but without anti-CD3e. (C) Kymograph along the

yellow line in (A) indicates similar actin flow dynamics on both

patterned and unpatterned area. The artificial effect from thin

metal lines is minor and negligible.

Found at: doi:10.1371/journal.pone.0011878.s002 (0.29 MB TIF)

Movie S1 TCR clusters are translocated as the actin centripetal

retrograde network constantly flows from the periphery to the

center of the synapse. Actin network is visualized by GFP-actin

fusion protein, and TCR clusters are labeled by the anti-CD3e on

the supported lipid bilayer. Microfabricated substrate with

chromium lines serves as diffusion barriers to physically restrict

the lateral transport of TCR clusters. The spacing between each

chromium stripe is 2 mm. The acquisition rate is 1 frame per

second.

Found at: doi:10.1371/journal.pone.0011878.s003 (1.78 MB

MOV)

Movie S2 The transport of TCR clusters is directed by actin

centripetal flow. Fluorescence speckles of GFP-actin and anti-

TCR clusters are imaged by spinning-disc confocal microscopy.

TCR clusters correspondingly change the direction of inward

movement as actin centripetal flow remodels from the periphery to

the center of the synapse. The scale bar is 1 mm, and the

acquisition rate is 1 frame per second.

Found at: doi:10.1371/journal.pone.0011878.s004 (2.31 MB

MOV)

Movie S3 Actin centripetal retrograde flow in the spatially

mutated immunological synapse. GFP-actin expressing Jurkat T

cell forms the synapse over micro-patterned supported lipid bilayer

(Fig. 4A inset). GFP-actin speckles are visualized by spinning-disc

confocal microscopy. The scale bar is 4 mm, and the acquisition

rate is 1 frame per second.

Found at: doi:10.1371/journal.pone.0011878.s005 (8.11 MB

MOV)

Author Contributions

Conceived and designed the experiments: ChY RDV JTG. Performed the

experiments: ChY YK. Analyzed the data: ChY HJW. Contributed

reagents/materials/analysis tools: ChY HJW YK. Wrote the paper: ChY

JTG.

References

1. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-

dimensional segregation of supramolecular activation clusters in T cells. Nature

395: 82–86.

2. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, et al. (1999) The
immunological synapse: a molecular machine controlling T cell activation.

Science 285: 221–227.

3. Krummel MF, Davis MM (2002) Dynamics of the immunological synapse:
finding, establishing and solidifying a connection. Current Opinion in

Immunology 14: 66–74.

4. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-

Tane A, et al. (2005) Newly generated T cell receptor microclusters initiate and
sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:

1253–1262.

5. Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, et al. (2002) T
cell receptor ligation induces the formation of dynamically regulated signaling

assemblies. J Cell Biol 158: 1263–1275.

6. Barda-Saad M, Braiman A, Titerence R, Bunnell SC, Barr VA, et al. (2005)
Dynamic molecular interactions linking the T cell antigen receptor to the actin

cytoskeleton. Nature Immunology 6: 80–89.

7. Nguyen K, Sylvain NR, Bunnell SC (2008) T cell costimulation via the integrin

VLA-4 inhibits the actin-dependent centralization of signaling microclusters
containing the adaptor SLP-76. Immunity 28: 810–821.

8. Mossman KD, Campi G, Groves JT, Dustin ML (2005) Altered TCR signaling

from geometrically repatterned immunological synapses. Science 310:
1191–1193.

9. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide

complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp

Med 202: 1031–1036.

10. Billadeau DD, Nolz JC, Gomez TS (2007) Regulation of T-cell activation by the

cytoskeleton. Nature Reviews Immunology 7: 131–143.

11. Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE (2001) Dynamic

actin polymerization drives T cell receptor-induced spreading: a role for the
signal transduction adaptor LAT. Immunity 14: 315–329.

12. Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma
membrane microdomains created by protein-protein networks that exclude or

trap signaling molecules in T cells. Cell 121: 937–950.

13. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD (2007) Mechanisms

for segregating T cell receptor and adhesion molecules during immunological
synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A 104:

20296–20301.

14. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-

proximal signals are sustained in peripheral microclusters and terminated in
the central supramolecular activation cluster. Immunity 25: 117–

127.

15. Groves JT, Boxer SG (2002) Micropattern Formation in Supported Lipid

Membranes. Accounts of Chemical Research 35: 149–157.

16. Groves JT, Ulman N, Boxer SG (1997) Micropatterning Fluid Lipid Bilayers on

Solid Supports. pp 651–653.

17. Parthasarathy R, Yu C-h, Groves JT (2006) Curvature-Modulated Phase

Separation in Lipid Bilayer Membranes. Langmuir 22: 5095–5099.

18. DeMond AL, Mossman KD, Starr T, Dustin ML, Groves JT (2008) T cell
receptor microcluster transport through molecular mazes reveals mechanism of

translocation. Biophysical Journal 94: 3286–3292.

19. Hartman NC, Nye JA, Groves JT (2009) Cluster size regulates protein sorting in

the immunological synapse. Proc Natl Acad Sci U S A 106: 12729–

12734.

Cortical Actin Flow in T Cells

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11878



20. Salaita K, Nair PM, Petit RS, Neve RM, Das D, et al. Restriction of receptor

movement alters cellular response: physical force sensing by EphA2. Science
327: 1380–1385.

21. Manz BN, Groves JT. Spatial organization and signal transduction at

intercellular junctions. Nat Rev Mol Cell Biol 11: 342–352.
22. Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of

actin networks. Nature 445: 295–298.
23. Claessens MMAE, Tharmann R, Kroy K, Bausch AR (2006) Microstructure

and viscoelasticity of confined semiflexible polymer networks. Nat Phys 2:

186–189.
24. Kim T, Hwang W, Lee H, Kamm RD (2009) Computational analysis of

viscoelastic properties of crosslinked actin networks. PLoS Comput Biol 5:
e1000439.

25. Rubinstein B, Fournier MF, Jacobson K, Verkhovsky AB, Mogilner A (2009)
Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys J 97:

1853–1863.

26. Uhde J, Ter-Oganessian N, Pink DA, Sackmann E, Boulbitch A (2005)
Viscoelasticity of entangled actin networks studied by long-pulse magnetic bead

microrheometry. Phys Rev E Stat Nonlin Soft Matter Phys 72: 061916.

27. Xu C, Prince JL (1998) Generalized gradient vector flow external forces for

active contours. Signal Processing 71: 131–139.

28. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans

Image Process 7: 359–369.

29. Brown CM, Hebert B, Kolin DL, Zareno J, Whitmore L, et al. (2006) Probing

the integrin-actin linkage using high-resolution protein velocity mapping. . pp

5204–5214.

30. Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM (2007)

Differential transmission of actin motion within focal adhesions. Science 315:

111–115.

31. Jonkman JE, Stelzer EH (2002) Confocal and two-photon microscopy :

foundations, applications, and advances; Diaspro A, ed. New York: Wiley-Liss.

pp 101–125.

32. Cai Y, Biais N, Giannone G, Tanase M, Jiang G, et al. (2006) Nonmuscle

myosin IIA-dependent force inhibits cell spreading and drives F-actin flow.

Biophys J 91: 3907–3920.

33. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-

bundle turnover in neuronal growth cones. Nat Cell Biol 8: 215–226.

Cortical Actin Flow in T Cells

PLoS ONE | www.plosone.org 9 July 2010 | Volume 5 | Issue 7 | e11878


