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Controlling single-photon transport with three-level quantum dots in photonic crystals
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We investigate how to control single-photon transport along the photonic crystal waveguide with the recent
experimentally demonstrated artificial atoms [i.e., �-type quantum dots (QDs)] [S. G. Carter et al., Nat. Photon.
7, 329 (2013)] in an all-optical way. Adopting full quantum theory in real space, we analytically calculate the
transport coefficients of single photons scattered by a �-type QD embedded in single- and two-mode photonic
crystal cavities (PCCs), respectively. Our numerical results clearly show that the photonic transmission properties
can be exactly manipulated by adjusting the coupling strengths of waveguide-cavity and QD-cavity interactions.
Specifically, for the PCC with two degenerate orthogonal polarization modes coupled to a �-type QD with two
degenerate ground states, we find that the photonic transmission spectra show three Rabi-splitting dips and the
present system could serve as single-photon polarization beam splitters. The feasibility of our proposal with the
current photonic crystal technique is also discussed.
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I. INTRODUCTION

In recent years nanophotonics based on various artificial
quantum structures has become a hot topic of research,
wherein the interaction between strong confined light and
quantum systems [1] could be enhanced and controlled.
This progress provides a promising pathway towards optical
quantum-information processing with solid-state platforms
[2]. For example, a significantly strong interaction between an
atom and photons can be reached by embedding a quantum dot
(QD) (i.e., an artificial atom) in a photonic crystal cavity (PCC)
[3,4]. As a consequence, both the QD emission and the cavity
spectrum can be modified [5]. This indicates that embedding
a QD in a PCC offers an efficient approach to control the
spontaneous emission of the QD, whereby its emission rate can
be either suppressed or enhanced. This control is beneficial for
generating highly efficient single-photon sources, which take
a center role in optical quantum-information processing [6].

A typical application of nanophotonics is to control the
photonic transport along various optical waveguides at a
single-photon level. In fact, besides a small volume and
high-quality factor, the PCC can be conveniently coupled
to the photonic crystal waveguides in a chip [7,8]. In these
systems, strong coupling means that the majority of photons
spontaneously emitted from the cavity can be easily guided
into the waveguides. This introduces certain novel quantum
phenomena such as photon blockades [9], photon-photon cor-
relation [10], and frequency conversions [11,12]. Hopefully,
manipulating the artificial quantum structures embedded in the
cavity will provide more approaches to control the photonic
transport along the waveguides.

To date, most of the studies have focused on how the two-
level QD inside the PCC affects the photonic transport along
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a single waveguide [13–15]. However, three-level quantum
systems provide more manipulatable degrees of freedom
for implementing various optical quantum applications, e.g.,
optical quantum networks [16], single-photon sources [17],
polarization controllers of the photons [18], and all-optical
diodes [19]. In these systems, �-type atomic configurations,
i.e., two long-lived ground-state levels that can be opti-
cally excited to a common excited-state level, were usually
considered.

More interestingly, in a recent experiment Carter et al.
[20] realized an artificial �-type three-level atom (i.e., a QD)
embedded in a PCC. Such an artificial quantum structure
was controlled magnetically and its polarization-dependent
interaction with the PCC could be utilized to read out the
electronic spin qubits.

In this paper, we further demonstrate that the interactions
between a cavity-embedded QD and the PCC in the strong-
coupling regime can be utilized to control photonic transport
at a single-photon level. Previously, �-type three-level atoms
driven by classical light beams have been extensively uti-
lized to implement electromagnetically induced transparency
[16,17,19,21–23], which can also be used to design various
optical devices for controlling photonic transport. However,
these devices were operated at the classical level, as the applied
strong pulse contains many photons [24]. In the present work,
we prefer a full quantum proposal to control the transporting
photons at the single-photon level by using the cavity quantum
electrodynamical technique. As a consequence, the desirable
single-photon devices (without introducing any classical ele-
ments) work in the quantum mechanical regime.

This paper is organized as follows. In Sec. II we adopt
a real-space Hamiltonian and discuss how the scattering
of a single-mode PCC with a �-type three-level QD in-
fluences single-photon transport along a photonic crystal
waveguide (Fig. 1). We present the equations of motion
for the single-photon transportation and then analyze their
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FIG. 1. (Color online) Schematic of single photons being trans-
ported along a photonic crystal waveguide scattered by a single-mode
PCC. (a) A �-type three-level QD (represented by a black point) is
embedded in a PCC (represented by the green brackets). The photons,
shown as wiggly waves, propagate in each direction of the waveguide.
(b) The PCC mode couples to the |1〉-|3〉 transition of the �-type QD,
while the |2〉-|3〉 transition of the QD couples to the waveguide.
(c) Alternatively, the PCC mode couples to the |2〉-|3〉 transition of
the QD, but the |1〉-|3〉 transition of the QD couples to the waveguide.
The electron depicted by a small red dot is assumed initially at the
state |1〉.

properties by a numerical method for various atom-cavity
coupling configurations. In Sec. III we further investigate
the transport of single photons scattered by a bimodal cavity
interacting with a �-type three-level QD [Fig. 4(b)]. We find
that photonic transport can be controlled by adjusting the
coupling strength between the PPC and the QD and that
between the PPC and the waveguide. Specifically, for the
degenerate �-type three-level QD (i.e., two ground states are
degenerate) with two polarization transitions [Fig. 4(c)], the
incident polarization photon can be output at two different
polarizations with controllable probabilities. This suggests
that the atomic configurations proposed here could serve as
quantum polarization beam splitters. Finally, in Sec. IV we
summarize our work and discuss its feasibility in terms of the
present photonic crystal technique.

II. SINGLE-PHOTON SCATTERING BY A SINGLE-MODE
CAVITY CONTAINING A �-TYPE QD

We consider transporting photons scattered by a single-
mode cavity with a QD. The relevant configuration is shown in
Fig. 1(a), where the input single photons are transported along
a photonic crystal waveguide scattered by a PCC containing a
�-type QD. The waveguide is realized by deleting a row of air
pillars in the photonic crystal and the PCC can be formed by
introducing air pillar defects. As reported in Ref. [20], a �-type
InAs QD with a controllable electron number is obtained by
applying a transverse magnetic field to split its energy levels.

A. Single-mode cavity coupling to the |1〉-|3〉 transition

As shown in Fig. 1(b), the |1〉-|3〉 transition of the QD
couples to the single-mode cavity and the photon emission by
the |3〉→|2〉 transition is directly coupled to the waveguide. In
this case the system can be described suitably by a Dick-type

Hamiltonian (in real space with � = 1) [25–27]

H = Hp + Hq + Hc + Hcp + Hcq + Hpq. (1)

Here Hp, Hq , and Hc are the free transporting photonic, the
free �-type QD, and the single-mode PCC Hamiltonians,
respectively; Hcp and Hcq describe the interactions between
the cavity mode and transporting photon along the waveguide
and the QD, respectively; and Hpq refers to the interaction
between the waveguide photon and the |2〉-|3〉 transition
of the QD.

The free photonic Hamiltonian Hp in Eq. (1) reads

Hp =
∫

dx

[
C

†
R1(x)

(
− iVg

∂

∂x

)
CR1(x)

+C
†
L1(x)iVg

∂

∂x
CL1(x) + C

†
R2(x)

(
− iVg

∂

∂x

)
CR2(x)

+C
†
L2(x)iVg

∂

∂x
CL2(x)

]
. (2)

Here Vg is the group velocity of the photon and C
†
R1(2)(x) and

CR1(2)(x) are the creation and annihilation operators for a right-
moving photon at position x with frequency ω13 (ω23), while
C

†
L1(2)(x) and CL1(2)(x) describe the left-moving photons. The

free �-type QD can be described by the Hamiltonian

Hq = ω1a
†
1a1 + ω2a

†
2a2 +

(
ω3 − i

1

τa

)
a
†
3a3, (3)

where a
†
i and ai (i = 1,2,3) are the relevant creation and

annihilation operators, respectively, ωi is the frequency of the
energy level, a

†
i ai = ni is the occupation number operator of

the state |i〉, and 1/τa is the dissipation rate of the �-type QD
(due to coupling to the reservoir) [26]. The Hamiltonian for
the single-mode cavity photon reads

Hc =
(

ωc1 − i
1

τc

)
c
†
1c1, (4)

where c
†
1 and c1 are the creation and annihilation operators

of the cavity mode, respectively, ωc1 is the corresponding
frequency of the cavity mode, and 1/τc is the dissipation rate
of the single-mode cavity. The interaction term describing the
scattering process between the waveguide and the cavity is
given by

Hcp =
∫

dx δ(x)V1[C†
R1(x)c1 + c

†
1CR1(x)

+C
†
L1(x)c1 + c

†
1CL1(x)], (5)

where V1 is the coupling strength between the cavity mode
and the photons being transported along the waveguide and
δ(x) means that the cavity is located at x = 0. The interaction
between the �-type QD and the cavity takes the form

Hcq = g1[c1a
†
3a1 + c

†
1a

†
1a3], (6)

where g1 is the coupling strength between the cavity mode and
the |1〉-|3〉 transition dipole moment of the �-type QD. Finally,
the coupling between the photons along the waveguide and the
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|2〉-|3〉 dipole of the �-type QD reads

Hpq =
∫

dx δ(x)Vx[C†
R2(x)a†

2a3 + CR2(x)a†
3a2

+C
†
L2(x)a†

2a3 + CL2(x)a†
3a2], (7)

wherein the photon emission from |3〉 to |2〉 is directly coupled
to the waveguide with the strength Vx .

We concentrate on the single-photon transportation of
constant frequency and suppose that the �-type QD is
originally prepared in the state |1〉 for convenience. The most
general interacting eigenstate for the H in Eq. (1) takes the
form

|�〉 =
∫

dx[φR1(x)C†
R1(x)a†

1|0〉 + φL1(x)C†
L1(x)a†

1|0〉

+φR2(x)C†
R2(x)a†

2|0〉 + φL2(x)C†
L2(x)a†

2|0〉]
+ e3a

†
3|0〉 + ec1c

†
1a

†
1|0〉, (8)

where φR1(x), φL1(x), φR2(x), and φL2(x) are the probability
amplitudes of the right- or left-moving photon, corresponding
to the �-type QD finally returning to the state |1〉 or |2〉. Also,
e3 is the excitation amplitude of the QD in the state |3〉 and ec1 is
the excitation amplitude of the single-mode cavity. In Eq. (8),
|0〉 refers to the so-called ground state, wherein there is no
photon in either the waveguide or the cavity and the electron
of the �-type QD is in the state |1〉. The spatial dependence of
the amplitudes in Eq. (8) can be expressed as

φR1(x) = eik1x[θ (−x) + t1θ (x)],

φL1(x) = e−ik1xr1θ (−x),

φR2(x) = eik2xt2θ (x),

φL2(x) = e−ik2xr2θ (−x),

(9)

where k1 = ω/Vg , k2 = (ω − ω12)/Vg , and T1 = |t1|2 (R1 =
|r1|2) and T2 = |t2|2 (R2 = |r2|2) give the probabilities of an
input photon with frequency ω being transmitted (reflected),
leaving the �-type QD to return to the state |1〉 or |2〉,
respectively.

From the eigenvalue equation

H |�〉 = ω|�〉, (10)

we obtain

−iVg

∂

∂x
φR1(x) + ω1φR1(x) + V1δ(x)ec1 = ωφR1(x),

iVg

∂

∂x
φL1(x) + ω1φL1(x) + V1δ(x)ec1 = ωφL1(x),

−iVg

∂

∂x
φR2(x) + ω2φR2(x) + Vxδ(x)e3 = ωφR2(x),

iVg

∂

∂x
φL2(x) + ω2φL2(x) + Vxδ(x)e3 = ωφL2(x),

ω1ec1 +
(

ωc1 − i
1

τc

)
ec1 + V1

∫
dx δ(x)φR1(x)

+V1

∫
dx δ(x)φL1(x) + g1e3 = ωec1,

(
ω3 − i

1

τa

)
e3 + Vx

∫
dx δ(x)φR2(x)

+Vx

∫
dx δ(x)φL2(x) + g1ec1 = ωec3 (11)

for various unknown coefficients t1, r1, t2, r2, ec1, and e3.
Integrating these equations, we get

t1 =
(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

)(
ω − ωc1 + i 1

τc

) − g2
1(

ω − ωc1 + i 1
τc

+ i
V 2

1
Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

,

r1 =
V 2

1
iVg

(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

)
(
ω − ωc1 + i 1

τc
+ i

V 2
1

Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

,

t2 =
g1V1Vx

iVg(
ω − ωc1 + i 1

τc
+ i

V 2
1

Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

,

r2 =
g1V1Vx

iVg(
ω − ωc1 + i 1

τc
+ i

V 2
1

Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

,

ec1 =
V1

(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

)
(
ω − ωc1 + i 1

τc
+ i

V 2
1

Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

,

e3 = V1g1(
ω − ωc1 + i 1

τc
+ i

V 2
1

Vg

)(
ω − ω13 + i 1

τa
+ i

V 2
x

Vg

) − g2
1

.

(12)

Figure 2 presents the transmission spectra (T1 = |t1|2) of
the incident photons. There � = ω − ω13 is the frequency
detuning between the incident photon and that of the |1〉-|3〉
transition of the QD. The QD-cavity coupling strength g1, the
dissipation rates 1/τa and 1/τc, and the decay rates V 2

1 /Vg and
V 2

x /Vg have the same unit as frequency [26]. For simplicity, the
group velocity of the photon is chosen as Vg = 1 for numerical
investigation [28]. First, we consider the nondissipative case
(i.e., 1/τa = 1/τc = 0). It is seen from Fig. 2(a) that, for the
coupling strengths V1 = Vx = 1, the transmission probability
of the resonant photon is zero if the cavity is weakly coupled
to the QD, i.e., g1 � V 2

1 /Vg . This indicates that the resonant
photons are totally reflected by an empty cavity (side coupled
to the waveguide) [28]. We also note from the Fig. 2(a)
that, for sufficiently strong coupling strength (between the
cavity and the QD) the transmission spectra split into two
Rabi-like dips. These two symmetric splitting dips are due
to the discrete nature of the coherent exchange of energies
between the QD and the quantized cavity mode. In particular,
in an ultrastrong-coupling regime with g1 = 25 � V 2

1 /Vg , the
resonant photon transmits the cavity completely (i.e., T1 = 1,
R1 = T2 = R2 = 0). It is also shown that the maximal and
minimal values of the transmission probabilities depend on
the coupling strength between the cavity and the waveguide.
Figure 2(b) shows that the transmission probability of a
resonant photon (i.e., ω = ω13) can be changed from 1 to
0 by tuning the cavity-waveguide coupling strength V1. This
is contrast to the previous results [shown also in Fig. 2(c)] for
a two-level atom interacting with a single-mode cavity [26],
where the coupling strength V only affects the spectra width
of the photonic transmission. This is because, for the present
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FIG. 2. (Color online) Transmission spectra of a PCC with a
single mode coupled to the |1〉-|3〉 transition of the �-type QD
(a)–(c) without and (d) with dissipation. The parameters g1, 1/τa ,
1/τc, V 2

1 /Vg , and V 2
x /Vg are all in the unit of frequency and

Vg = 1 is fixed to calculate the transmission spectra. The energy
levels of the �-type QD are ω13 = 5 and ω23=3. (a) Transmission
probabilities of incident photons with frequency ω for different
QD-cavity coupling strengths g1, with the cavity mode resonant
with the |1〉-|3〉 transition of the � QD (i.e., ωc1 = ω13 = 5).
Other parameters are chosen as V1 = Vx = 1 and � = ω − ω13.
(b) Transmission coefficient T1 for different waveguide-cavity cou-
pling strengths V1, with Vx = 1, ωc1 = ω13 = 5, and g1 = 1. (c) Rabi
splittings of a two-level QD coupled to the single-mode cavity vs
different waveguide-cavity coupling strengths V . Here |g〉 (|e〉) is
the ground (exited) state of the two-level QD, g = 1 is the coupling
strength between the two-level QD and the cavity, and ωeg = ωe − ωg .
(d) Photonic transmission spectra influenced by dissipation, with
typically g1 = 1 and V1 = Vx = 1.

�-type QD, there exist two transition paths from the excited
state |3〉 to the states |2〉 and |1〉, respectively. This is shown
in the inset of Fig. 2(b), wherein T2 = R2 > 0 as � = 0.

Next, we investigate the effects of dissipation. Figure 2(d)
shows the following. (i) If the dissipation of the QD is

sufficiently strong, the Rabi splitting in the transmission
spectra disappears. Physically, the dissipation of the QD
implies that the photon leakage (outside the waveguide)
suppresses the coherent exchange of energies between the QD
and the cavity photons. As a consequence, the coherent Rabi
oscillations between them are destroyed. (ii) The influence
from the dissipation of the PCC is relatively weak; it just affects
the minimal values of the transmission spectrum, wherein the
coherent Rabi splitting is still revealed clearly. This is because
the dissipation of the PCC does not influence the phase relation
between the PCC and the QD [26].

Given that the same considerations have also been included
in the other situations and similar results are obtained, we
conclude safely that the dissipation of the devices investigated
here is not dominant and thus could be neglected for simplicity
in the rest of the present work.

B. Single-mode cavity coupling to the |2〉-|3〉 transition

Similarly, the transport features of the incident photon
coupled with the |1〉-|3〉 transition of the �-type QD, shown
in Fig. 1(c), can be found. In this case, the cavity mode
is directly coupled to the |2〉-|3〉 transition of the QD with
ωc2 = ω23. Indeed, based on the same process demonstrated in
the previous section, the corresponding photonic transporting
parameters can be calculated as

t1 =
(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2(
ω − ω13 + i

V 2
y

Vg

)(
ω − ωc2 + i

V 2
2

Vg

) − g2
2

,

r1 =
V 2

y

iVg

(
ω − ωc2 + i

V 2
2

Vg

)
(
ω − ω13 + i

V 2
y

Vg

)(
ω − ωc2 + i

V 2
2

Vg

) − g2
2

,

t2 =
g2VyV2

iVg(
ω − ω13 + i

V 2
y

Vg

)(
ω − ωc2 + i

V 2
2

Vg

) − g2
2

,

r2 =
g2VyV2

iVg(
ω − ω13 + i

V 2
y

Vg

)(
ω − ωc2 + i

V 2
2

Vg

) − g2
2

.

(13)

FIG. 3. (Color online) Transmission probabilities of the PCC
with the single-cavity mode coupling to the |2〉-|3〉 transition, with
ωc2 = ω23 = 3, Vy = V2 = 1, and ω13 = 5. The asymmetric curves of
T1 are different from those in Fig. 2(a), which results from the energy
detuning between the cavity mode and the transition frequency of the
|1〉-|3〉 transition, i.e., ωc2 �= ω13.
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FIG. 4. (Color online) (a) Incident single photons along the
photonic crystal waveguide scattered by a bimodal PCC with a
�-type QD. (b) A PCC with two modes coupled to the |1〉-|3〉 and
|2〉-|3〉 transitions of a �-type QD, respectively. (c) A PCC with two
orthogonal polarization modes coupled to a �-type QD with two
degenerate ground states |H 〉 and |V 〉. Here |E〉 refers to the excited
state. The electron depicted by a small red dot is assumed initially at
state |1〉 or |H 〉.
Here Vy refers to the coupling strength between the transport-
ing photon (along the waveguide) and the |1〉-|3〉 transition of
the QD, V2 is the coupling strength between the cavity and
the waveguide, and g2 is the interaction strength between the
cavity and the |2〉-|3〉 transition of the QD.

As plotted in Fig. 3, resonant photons with ω = ω13 can
also be modulated by the cavity-waveguide coupling strength
g2. Also, with g2 increasing the transmission spectra of the
incident photons with different frequencies reveal asymmetri-
cal splitting curves. This asymmetric feature results from the
frequency detuning between the cavity mode frequency ωc2

and the QD transition frequency ω13.

III. SINGLE-PHOTON SCATTERING BY A TWO-MODE
CAVITY CONTAINING A QD

The above investigation for the single-mode cavity can be
naturally generalized to the situation for a two-mode cavity. In
fact, atomic systems interacting with multiple cavity modes
might reveal much more novel effects. For example, it is
predicted that photon blockade effects can be induced in
a photonic molecule (i.e., a pair of coupled cavities with
high-quality factors) [29]. However, the suggested scheme

requires both individual addressability of each cavity and
a large coupling strength between the two cavities. These
requirements are not easily satisfied for the usual PCCs
coupled via spatial proximity. Although two individual cavities
coupled to the same waveguide [30] are introduced to mitigate
the above limitation, they introduce an additional complexity
for engineering the cavity-waveguide couplings. In order
to overcome such a difficulty of strongly coupled cavities,
Majumdar et al. [31] considered a bimodal cavity interacting
with a two-level QD for generating strong sub-Poissonian
photons. Based on this idea, we investigate in this section how
to control the transportation more robustly by using artificial
atoms coupled to a bimodal cavity.

A. Bimodal PCC with different cavity modes coupled to the QD

We now consider the �-type QD coupled to two nonde-
generate cavity modes [see Fig. 4(b)]. The Hamiltonian of the
present system can be easily written as

H =
∫

dx
∑
j=1,2

[
C

†
Rj (x)

(
− iVg

∂

∂x

)
CRj (x)

+C
†
Lj (x)iVg

∂

∂x
CLj (x)

]

+
∫

dx δ(x)
m=R,L∑
j=1,2

Vj [C†
mj (x)cj + c

†
jCmj (x)]

+
∑

j=1,2,3

ωja
†
j aj +

∑
j=1,2

ωcj c
†
j cj

+
∑
j=1,2

gj [cja
†
3aj + c

†
j a

†
j a3]. (14)

Again, the eigenstate of this Hamiltonian can be expressed as

|�〉 =
∫

dx[φR1(x)C†
R1(x)a†

1|0〉 + φL1(x)C†
L1(x)a†

1|0〉

+φR2(x)C†
R2(x)a†

2|0〉 + φL2(x)C†
L2(x)a†

2|0〉]
+ e3a

†
3|0〉 + ec1c

†
1a

†
1|0〉 + ec2c

†
2a

†
2|0〉, (15)

where ec1 and ec2 are the excitation amplitudes of the cavity
with modes 1 and 2, respectively. With the same procedures in
Sec. II, the above coefficients can be determined as

t1 =
(ω − ωc1)

[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

] − g2
1

(
ω − ωc2 + i

V 2
2

Vg

)
(
ω − ωc1 + i

V 2
1

Vg

)[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

] − g2
1

(
ω − ωc2 + i

V 2
2

Vg

) ,

r1 =
V 2

1
iVg

[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

]
(
ω − ωc1 + i

V 2
1

Vg

)[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

] − g2
1

(
ω − ωc2 + i

V 2
2

Vg

) ,

(16)

t2 =
V1V2g1g2

iVg(
ω − ωc1 + i

V 2
1

Vg

)[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

] − g2
1

(
ω − ωc2 + i

V 2
2

Vg

) ,

r2 =
V1V2g1g2

iVg(
ω − ωc1 + i

V 2
1

Vg

)[(
ω − ωc2 + i

V 2
2

Vg

)
(ω − ω13) − g2

2

] − g2
1

(
ω − ωc2 + i

V 2
2

Vg

) .
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FIG. 5. (Color online) Transmission spectra of the incident photon along the waveguide scattered by the bimodal PCC. (a) Plot of T1 vs
different QD-cavity coupling strengths g1 and g2. The bimodal PCC is resonant with the two dipoles of the �-type QD respectively, i.e.,
ωc1 = ω13 = 5 and ωc2 = ω23 = 3. (b) Rabi splitting of photons with different frequencies when only mode 1 is resonant with the |1〉-|3〉
transition of the �-type QD. (c) Rabi splitting of photons with only mode 2 resonant with the |1〉-|3〉 transition of the �-type QD. The coupling
strengths are chosen as g1 = g2 = 1, V1 = V2 = 0.3, and ω23 = 3 in (b) and (c).

With the above analytic results, we now numerically discuss
how photonic transport is influenced by the two-mode PCC. In
Fig. 5(a) the spectra of the resonantly transported photon with
ω = ω13 is studied in detail. We can see that the transmission
properties can be controlled by asymmetrically tuning the
�-type QD-cavity coupling strengths g1 and g2. Another
demonstration is that the �-type QD inside the PCC can be
utilized to control the transportation of the resonant photons.
As a consequence, this system could serve as an all-optical
switch. Figures 5(b) and 5(c) show that when the mode of
the cavity is resonant with the |1〉-|3〉 transition of the �-type
QD, Rabi splitting appears again. Note that these splittings
are like the situation with the two-level atom coupled to two
interacting cavity modes [29]. Therefore, the interaction of
the two-independent cavity modes with different frequencies
could be induced via their interaction commonly with a �-type
QD. Consequently, the transport of the incident photons can
be manipulated by changing the coupling strengths V1(2) and
g1(2) or applying the magnetic field to tune the energies of the
�-type QD (for a resonant interaction with the cavity) [32].

B. Single-photon scattering by a cavity with two orthogonal
polarization modes coupled to a degenerate QD

In this section we study specifically the effects of a �-type
QD with two degenerate ground states coupled to the PCC
with two orthogonal polarization modes [see Fig. 4(c)]. In
particular, the photon density of states in the PCC is very
different from that in free space and is polarization dependent
[20]. Suppose that the two transitions correspond to dipole
couplings with two orthogonal polarization modes of the PCC,
H and V , respectively. Here the labels H and V are used for
convenience and do not necessarily imply the horizontal and
vertical polarizations, respectively (they may refer to the left
and right circularly polarized modes allowed by the dipole
selection rule). Recent studies in experiments [33] and theories
[34] demonstrated that the cavities with degenerate right- and
left-hand circularly polarized modes are available.

With the same procedure, the corresponding transport
parameters of H and V polarized photons can be obtained
consequently as

TH =
∣∣∣∣∣∣

(ω − ωc)
[(

ω − ωc + i
V 2

H

Vg

)
(ω − ωq) − g2

H − g2
V

] − i
g2

V V 2
H

Vg(
ω − ωc + i

V 2
V

Vg

)[(
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V 2
H

Vg

)
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H
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V

(
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V 2
H
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∣∣∣∣∣∣
2

,
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V 2
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iVg
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V 2
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(
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V 2
V
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)[(
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H
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V

(
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2

,

(17)

TV =
∣∣∣∣∣∣

VV VH gV gH

iVg(
ω − ωc + i

V 2
V

Vg

)[(
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)
(ω − ωq) − g2
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,

RV =
∣∣∣∣∣∣

VV VH gV gH

iVg(
ω − ωc + i

V 2
V

Vg

)[(
ω − ωc + i

V 2
H

Vg

)
(ω − ωq) − g2

H

] − g2
V

(
ω − ωc + i

V 2
H

Vg

)
∣∣∣∣∣∣
2

,

wherein ωc(q) is the frequency of the PCC (QD) and
gH (V ) and VH (V ) are the cavity-QD coupling strength and

cavity-waveguide coupling strength of the H (V ) polarization,
respectively. From Fig. 6(a), we can see that TH reveals
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FIG. 6. (Color online) Transporting properties of an H polariza-
tion photon scattered by a cavity with two orthogonal polarization
modes coupled to a �-type QD with degenerate ground states. The
parameters are chosen as ωc = ωq = 9, gV = gH = 5, � = ω − ωq ,
and VH = VV = V . The transmission spectra split into three dips
indicates that there are energy exchanges between the PCC and the
�-type QD.

three splitting dips. This is in contrast to the two-dip case
for the two-level QD coupling to the cavity [shown in
Fig. 2(c)]. These three dips are also induced by the vacuum-
field Rabi splittings resulting from the discrete nature of
the coherent energy exchange between the �-type QD and
the cavity. Typically, the resonant photon (� = 0) has the
same transmission probabilities, i.e., TH = RH = 0.25. This
is the same as the situation for mode degenerate waveguides
[35] and for two separated waveguides [36] coupled to a
single two-level atom with symmetric coupling strengths.
Simultaneously, these resonant probabilities are independent
of waveguide-cavity interactions, which is contrast to the case
of the single-mode cavity [shown in Fig. 2(b)]. The reason for
maximal transmission probabilities independent of V can be
clarified by comparing the above four parameters in Eq. (17).
Indeed, when g1 = g2, ω = ωHE , and VV = VH = V , the
four individual probabilities of resonant photons are equal,
i.e., TH = RH = TV = RV = 0.25. This means that, in this
degenerate case an H polarized photon can be transferred
to the V polarized photon with a probability of 0.5 (where
TV = RV = 0.25). Therefore, a �-type QD with degenerate
ground states coupled to a bimodal cavity with two orthogonal
polarization modes can be used as a single-photon polarization
beam splitter. This corresponds to the recent experiment for
realizing the polarization beam splitter by using a Fabry-Pérot

cavity with two orthogonal linearly polarized modes coupled
to a 85Rb atom [37].

IV. CONCLUSION

The feasibility of our proposal is based on the controllable
cavity-QD interacting strengths. This is available in the current
photonic crystal technique. In fact, the PCCs distinguish
themselves from other dielectric cavities by combining a
high-quality factor with an ultimately small mode volume,
which makes them particularly promising for coupling a QD
to the cavity mode. The magnitude of the photon-QD coupling
strength in the PCC (relative to the rates for dissipation and
decoherence processes [4]) primarily depends on the Purcell
effects [38], i.e.,

Fp(r) = 
cav


hom
rad

= 3

4π2

Q(λ/n)3

Vcav
|ed · f(r)|2 1

1 + 4�2
dQ

2/ω2
c

. (18)

Here 
cav is the rate of emission into the cavity mode, 
hom
rad the

dipole emitter relative to the radiative spontaneous-emission
rate of the same emitter in a homogeneous medium, Q

the cavity quality factor, and Vcav the mode volume. Also,
λ is the wavelength in vacuum, n the refractive index of
the medium, ed the direction of the QD transition dipole
moment, f(r) the spatial profile of the mode functions, and
�d = ωe − ωc the detuning between the QD frequency ωe

and the cavity frequency ωc. From the above expression we
can see that a large Purcell factor requires not only a low-loss
cavity with a small mode volume, but also the QD spatially
and spectrally matching the cavity mode. These requirements
could be satisfied if the QD is (i) positioned spatially in the
cavity where the electric field strength is large, (ii) with the
transition dipole moment oriented along the local electric field,
and (iii) at resonance with the cavity.

In fact, in the past decade there have been many investi-
gations of the quantum optical properties of QDs coupled to
PCCs. The Rabi-splitting spectra were observed by using an
air-hole-shifted L3 cavity (a line of three missing holes in a
triangular-lattice pattern of air holes) containing a QD [5].
These experimental results indicate that the strong-coupling
regime was achieved successfully. By using an atomic force
microscope, a single QD is added to the L3 cavity through
precise positioning techniques [39]. An extremely high Q

factor of 2 × 106 was created based on the modulation-width
PCC [40], while the photon lifetime of the PCC is longer
than the dephasing time of the QD [1]. Recent experimental
results [29] show that the cavity modes can be tuned by
depositing nitrogen in the cavity and the resonance of the QD
can be adjusted by changing the temperature of the system.
Therefore, by increasing the spectral and spatial overlap
with the cavity mode, improving the Q factor, and better
aligning the polarization axis of the QD relative to the cavity
mode, the properties shown in this paper can be applied to
control the transport of photons as an all-optical switch in the
scalable solid-state platform.

Additionally, we compare the solid-based cavity quantum
electrodynamics (CQED) with atomic CQED, i.e., Haroche
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CQED [41,42]. The atomic CQED investigates individual
atoms passing through a resonant microwave cavity one by
one, wherein the atomic state is controlled by the interaction
between the transporting atom and the cavity photons; in the
solid-based CQED, like a QD coupled to a PCC, the focus
is the transporting photons along the waveguide controlled
by the atoms. This photonic device combines the advantages
of photons (low decoherence rates and high velocities),
waveguides (low-loss and long-range photon transfer with
a controllable group velocity), QDs (tunable luminescence
properties, large dipole moments, and small dephasing), and
PCCs (small volumes and high-quality factors). In particular,
the great attraction of the solid-based CQEDs is that they can
be monolithically fabricated and integrated into the large-scale
arrays [43,44].

The photonic transmission spectra along the optical waveg-
uide are measured experimentally by using homodyne de-
tection [45], phase-sensitive vector network analyzers [46],
spectrum analyzers [47], lock-in amplifier systems [48], etc.
Specifically, the relevant Rabi splitting of the photon being
transported along a PCC with a QD has been demonstrated
by photoluminescence measurements [5]. Therefore, the pre-
dictions in this work can also be directly observed with the
current techniques.

In conclusion, by adopting quantum waveguide theory, we
investigated the single-photon transport along a waveguide
coupled to a PCC with a �-type QD. We found that the
single-photon transmission probability of the resonant photon
can be manipulated by changing both the QD-cavity and
waveguide-cavity coupling strengths. Typically, when one
dipole of the �-type QD is resonant with the incident photon,
the electron in the QD originally in state |1〉 will be excited
to the state |3〉, which provides another transition to the state
|2〉 yielding a frequency shift �ω = ω13 − ω23. Therefore, the
device proposed in the present work could be utilized to realize
a quantum optical frequency converter at a single-photon level.
Furthermore, extending the single-waveguide–single-cavity
structure discussed here to multiple interacting cavities [49]
and also the cavities coupled to two waveguides [50] should
be important for the solid-state realization of various optical
quantum devices.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China under Grants No. 11174373,
No. 11104191, and No. 11304210 and the National Fun-
damental Research Program of China through Grant No.
2010CB923104.

[1] S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
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Frédérick, M. Bichler, M.-C. Amann, A. W. Holleitner, M.
Kaniber, and J. J. Finley, Phys. Rev. X 2, 011014 (2012).

[3] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre,
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