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Abstract

This paper investigates passive vehicle suspensions with inerters by considering multiple per-
formance requirements including ride comfort, suspension deflection and tyre grip, where
suspension deflection performance is novelly considered which is formulated as a part of ob-
jective functions and a constraint separately. Six suspension configurations are analyzed and
the analytical solutions for each performance measure are derived. The conditions for each
configuration to be strictly better than the simpler ones are obtained by presenting the ana-
lytical solutions of each configuration based on those of the simpler ones. Then, two stages
of comparisons are given to show the performance limitations of suspension deflection for
passive suspensions with inerters. In the first stage, it is shown that although the configu-
rations with inerters can improve the mixed performance of ride comfort and tyre grip, the
suspension deflection performance is significantly decreased simultaneously. In the second
stage, it is shown that for passive suspensions with inerters, suspension deflection is the more
basic limitation for both ride comfort and tyre grip performance by doing comparisons among
mixed ride comfort and suspension deflection optimization, mixed ride comfort and tyre grip
optimization, and mixed suspension deflection and tyre grip optimization. Finally, the prob-
lem of mixed ride comfort and tyre grip performance optimization with equal suspension
deflection is investigated. The limitations of suspension deflection for each configuration are
further highlighted.
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1. Introduction

Vehicle suspension plays a central role in vehicle dynamics, contributing to improve the
ride comfort and the vehicle stability [1]. Generally speaking, suspension systems can be
classified into passive, semi-active and active suspensions. Passive suspensions are composed
of only passive elements, such as springs, dampers and inerters [2]. Simplicity, high reliability,
low cost and zero energy consumption are the advantages of passive suspensions. Semi-
active suspensions are integrated with semi-active elements, such as the MR damper, the ER
damper and the EH damper, of which the damping coefficient can be adjusted within a large
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actuation bandwidth by consuming only a small amount of energy [3, 4]. Active suspensions
not only provide best performance but also demand most energy due to the force-generating
actuators [5, 6].

The inerter is a recently proposed concept and device with the property that the applied
force at the two terminals is proportional to the relative acceleration between them [2, 7].
The inerter extends the class of mechanical realizations of complex impedances compared to
the ones using only springs and dampers and has been applied to various mechanical systems,
including vehicle suspensions [8, 9, 10, 11, 12, 13, 14], motorcycle steering systems [15, 16],
train suspensions [17, 18, 19, 20] and building vibration control [21, 22]. It has also rekindled
interest in passive network synthesis [23, 24, 25, 26, 27].

The application of the inerter in passive suspension systems was first investigated in [8].
Improvements of about 10% or greater were announced in terms of ride comfort, type grip
and dynamic load carrying performances for both quarter-car and full-car models. In [9], an
ingenious approach to deriving analytical solutions for ride comfort and tyre grip performance
measures in [8] in terms of six networks with fixed structures, which comprised one or two
springs, one damper and possibly one inerter, was provided and it is demonstrated that the
results in [8] were in fact global optima and the benefits of inerters were further highlighted.
In [10], the nonlinearities of a ball-screw inerter were investigated and a nonlinear theoretical
model was also obtained. An approach to optimizing all passive transfer functions (positive
real admittances) with fixed order by the Linear Matrix Inequalities method was proposed
in [11]. To keep the passive suspensions with inerter low complexity and low cost, the
question what was the general class of vehicle suspension admittances which can be realized
with only one damper, one inerter and arbitrary springs was answered in [12, 24]. Another
consideration to realize higher-order admittance and also keep simplicity of vehicle suspension
structure was to combine the mechanical and electrical networks together by using a novel
mechatronic suspension strut which was composed of a ball-screw inerter and a Permanent
Magnet Electric Machinery (PMEM) [13, 14].

It is well known that suspension deflection is one of the basic performance requirements for
suspension systems, since large working space of suspensions will cause damages to vehicle
components and generate more passenger discomfort [6]. Given the significant impact of
suspension deflection on vehicle suspensions, the argument for equal suspension deflection
comparisons has been suggested many years ago [28, 29, 30, 31]. However, for passive vehicle
suspensions incorporating the inerter, suspension deflection has never been considered as a
requirement [8, 9, 10, 11, 12, 13, 14], and the influence of inerter on suspension deflection has
not yet been clearly understood. Since the vehicle suspension design is a compromise among
a number of factors, to fully investigate the performance of passive vehicle suspensions with
inerters, multiple performance requirements including ride comfort, suspension deflection and
tyre grip are considered for six simple suspension configurations in this paper. Suspension
deflection performance is formulated as a part of the objective functions and a constraint
separately. The performance limitations caused by suspension deflection requirement are
demonstrated by carrying out different stages of comparisons. The issue of designing passive
vehicle suspensions with equal suspension deflection is also investigated.

Note that the main differences between this paper and the existing works [8] and [9] are:
1. suspension deflection performance is novelly studied, which has never been investigated for
passive vehicle suspensions with the inerter in the existing works, such as [8, 9, 10, 11, 12, 13,
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Figure 1: A quarter-car vehicle model.

14]. Two situations where suspension deflection is formulated as a part of objective functions
and a hard constraint are investigated separately in this paper; 2. The comparisons in this
paper are carried out by considering multiple performance requirements simultaneously and
the multi-objective optimization about ride comfort and tyre grip in [9] is further analyzed
by inserting the requirement of equal suspension deflection performance; 3. A different
representation of the analytical solutions compared with [9] is given in this paper, where the
conditions for each configuration to be strictly better than the simpler ones can directly be
derived.

The rest of the paper is organized as follows. Section 2 introduces the relevant background
on suspension structures and performance measures. Section 3 derives the analytical solutions
for ride comfort, suspension deflection and tyre grip performances for each configuration,
where a different representation of the solutions from that in [9] is given. Section 4 investigates
the influences of suspension deflection by carrying out different stages of comparisons in mixed
performance optimization. Section 5 investigates the passive vehicle suspensions employing
inerters with equal suspension deflection requirement. Conclusions are drawn in Section 6.

2. Vehicle model, suspension configurations, and performance measures

The quarter-car model presented in Fig. 1 is the simplest model for suspension design.
It consists of a sprung mass ms, an unsprung mass mu and a tyre with spring stiffness kt
[29]. Here, the suspension strut supplying an equal and opposite force on the sprung and
unsprung masses is a passive mechanical admittance Q(s) which is defined by the ratio of
Laplace transformed force to relative velocity [8]. The suspension struts here are assumed to
have negligible mass. The equations of motion in the Laplace domain are:

mss
2ẑs = −sQ(s)(ẑs − ẑu),

mus
2ẑu = sQ(s)(ẑs − ẑu) + kt(ẑr − ẑu).
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(a) C1 (b) C2 (c) C3

(d) C4 (e) C5 (f) C6

Figure 2: Six considered configurations.
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Table 1: Q(s) for each configuration in Fig. 2.

Q1(s) = K
s

+ c Q2(s) = K
s

+ 1
s
k
+ 1

c

Q3(s) = K
s

+ bs+ c

Q4(s) = K
s

+ 1
1
bs
+ 1

c

Q5(s) = K
s

+ 1
1

k
s+c

+ 1
bs

Q6(s) = K
s

+ 1
1
c
+ 1

bs
+ s

k

Fig. 2 shows the six configurations employed as suspension struts in this paper (corre-
sponding Q(s) given in Table 1), where C1, C2 are two struts without any inerter and each
of the rest four contains an inerter. The performance measures used in this paper are dis-
cussed in detail in [32]. For ride comfort, we use the root-mean-square (rms) of body vertical
acceleration in response to road disturbances, defined as J1 as follows

J1 = 2π(V κ)1/2||sTẑr→ẑs||2,

where V is the speed of the car, κ is the road roughness parameter. Tẑr→ẑs denotes the
transfer function from the road disturbance ẑr to the displacement of the sprung mass ẑs and
|| · ||2 is the standard H2 norm. The rms suspension deflection parameter J2 is defined as

J2 = 2π(V κ)1/2
∥∥∥∥1

s
Tẑr→(ẑs−ẑu)

∥∥∥∥
2

.

The rms tyre grip parameter J3 is defined as

J3 = 2π(V κ)1/2
∥∥∥∥1

s
Tẑr→kt(ẑu−ẑr)

∥∥∥∥
2

.

The parameters for the quarter car model and performance measures in this paper are
(unless otherwise stated): ms = 250 kg, kt = 150 kNm−1, mu = 35 kg, κ = 5×10−7 m3cycle−1,
and V = 25 ms−1. The static stiffness K is chosen from 10 kNm−1 to 120 kNm−1 which covers
a range from softly sprung passenger cars through sports cars and heavy good vehicles up to
racing cars [8].

3. Individual performance analysis

The analytical solutions for ride comfort and tyre grip performance measures have been
derived in [9] by calculating Ji, i = 1, 2, 3, as Ji = 2π(V κH)1/2. In this section, we derive
the analytical solutions for suspension defection performance measure in the same manner
(see [9] for details). However, an alternative representation for these solutions will be given in
this paper, where the necessary and sufficient condition for each configuration to be strictly
better than the simpler configuration can be derived. Such conditions can directly be used
to justify whether it is necessary to upgrade a specific configuration to a more complex one
in practice.
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The ride comfort performances are rewritten as

HC1J1 = d1c+ d2c
−1, (1)

HC2J1 = HC1J1 + (d3k
−1 + d4k

−2)c, (2)

HC3J1 = HC1J1 + (g3b
3 + g2b

2 + g1b)(f1b+ f0)
−1c−1, (3)

HC4J1 = HC1J1 + (d5b
−1 + d6b

−2)c, (4)

HC5J1 = HC4J1 + ((d7 + d8b
−1 + d9b

−2)k2 − (d5 + 2d6b
−1)k)c−1, (5)

HC6J1 = HC2J1 + (d5b
−1 + d6b

−2 − 2d2b
−1k−1)c, (6)

= HC4J1 + ((d3 − 2d2b
−1)k−1 + d4k

−2)c, (7)

where parameters di, i = 1, . . . , 9 are given in Table 2.
The following remarks can be obtained by analyzing the additional terms in (2)–(7):

Remark 1. (1) C2 provides no improvement for the ride comfort performance, as d3 > 0
and d4 > 0, which is consistent with the results in [8, 9].

(2) C3 performs better than C1 if and only if b < b1 <
√

4Kmsmuk
−1
t , where b1 =

(
√
g22 − 4g1g3 − g2)(2g3)

−1. Note that for a typical vehicle, the value of b1 is relatively s-
mall, such as b1 = 73.39 kg for the vehicle parameters employed in this paper with K = 60
kNm−1. This explains the phenomenon revealed in [8, 9] that C3 requires small inertances
for ride comfort performance. For example, the optimal inertance of C3 in terms of ride
comfort when K = 60 kNm−1 is 31.27 kg as shown in [8] for the same vehicle.
(3) C4 performs better than C1 if and only if b > −d6/d5 = 1/2(K/kt+1/(1+mu/ms)

2)(ms+
mu) ≈ 1/2(ms +mu). Note that for a typical vehicle, the value of −d6/d5 is relatively large,
such as −d6/d5 = 166.60 kg for the vehicle parameters employed in this paper with K = 60
kNm−1. This explains the phenomenon revealed in [8, 9] that C4 requires large inertances
for the ride comfort performance. For example, the optimal inertance of C4 in terms of ride
comfort when K = 60 kNm−1 is 333.30 kg as shown in [8] for the same vehicle.
(4) C5 performs better than C4 if and only if b < −2d6/d5 and k < (d5 + 2d6b

−1)(d7 +
d8b
−1 + d9b

−2)−1. Substituting the vehicle parameters employed in this paper and setting
K = 60 kNm−1, one obtains the conditions for C5 to perform better than C4 is b < 333.3
kg and k < (9.12 × 104b−1 − 273.60)(0.0023 − 1.02b−1 + 268.63b−2)−1 Nm−1. The optimal
inertance of C5 in terms of ride comfort when K = 60 kNm−1 is about 200 kg as shown
in [9], which satisfies the condition b < 333.3 kg. For b = 200 kg, the range of k is k < 46.80
kNm−1 which covers the optimal stiffness k (about 30 kNm−1 as shown in [9]).
(5) C6 performs better than C2 if and only if b > d6(2d2k

−1 − d5)−1. For the vehicle param-
eters employed in this paper with K = 60 kNm−1, the condition is b > (360.04k−1 + 0.006)−1

kg. C6 performs better than C4 if and only if b < K(ms+mu)k
−1
t and k > d4(2d2b

−1−d3)−1,
which explain why the relaxation spring in C6 provides no improvement for the ride com-
fort performance as shown in [8, 9]: the optimal inertance b in the series-connected ar-
rangement always possesses a large value for ride comfort, and consequently, the condition
b < K(ms + mu)k

−1
t is not satisfied. For example, for the vehicle parameters employed in

this paper with K = 60 kNm−1, the condition for C6 to perform better than C4 is b < 114
kg and k > (3.8b−1 − 0.033)−1 kNm−1. As shown in [8], the optimal inertance of C4 for the
same vehicle when K = 60 kNm−1 is 333.3 kg, which does not satisfy the condition b < 114
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kg, which means it is unnecessary to upgrade C4 to C6 by inserting a relaxation spring, or
in other words, the relaxation spring is redundant for the ride comfort performance.

Proof. Since all the items in the remark are similarly derived by checking the additional
terms in (2)–(7), for brevity, only the proofs of item (2) and item (3) are illustrated.

For item (2), since f0 > 0, f1 > 0, g3 > 0 and g1 < 0 as shown in Table 2, then
HC3J1 < HC1J1 if and only if the additional term in (3) is negative, that is g3b

2 +g2b+g1 < 0,
and then one obtains b < b1 = (

√
g22 − 4g1g3 − g2)(2g3)−1 (here one assumes that b > 0 and

c > 0, otherwise, the configuration reduces to a simpler one that is no longer the configuration
C3).

Similarly, for item (3), since d5 < 0 and d6 > 0 as shown in Table 2, then HC4J1 < HC1J1

if and only if d5b
−1 + d6b

−2 < 0, and then one obtains b > −d6/d5.

The suspension deflection performances are derived as

HC1J2 = e1c
−1, (8)

HC2J2 = HC1J2 + e2k
−2c, (9)

HC3J2 = HC1J2, (10)

HC4J2 = HC1J2 + e3b
−2c, (11)

HC5J2 = HC4J2 + ((e4b
−2 + e5b

−1)k2 − 2e3b
−1k)c−1, (12)

HC6J2 = HC4J2 + (e2k
−2 − 2e1k

−1b−1)c, (13)

= HC2J2 + (e3b
−2 − 2e1k

−1b−1)c, (14)

where parameters ei, i = 1, . . . , 5 are given in Table 2.
Similarly, for the suspension deflection performance measure, the following remarks can

be obtained:

Remark 2. (1) For the individual performance J2, the optimal values of each configuration
are all zero by carefully choosing the coefficients of elements.
(2) C2, C4 and C6 provide no improvement for suspension deflection compared with C1, and
C3 achieves equal suspension deflection with C1.
(3) C5 performs better than C4 if and only if k < 2e3(e4b

−1+e5)
−1. For the vehicle parameters

employed in this paper with K = 60 kNm−1, the condition is k < (2.95b−1 + 5.48 × 10−3)−1

kNm−1. C5 performs better than C1 if and only if k < 2e3(e4b
−1 + e5)

−1 and c < 2kb −
(e4/e3 + e5/e3b)k

2. For the vehicle parameters employed in this paper with K = 60 kNm−1,
the condition is k < (2.95b−1 +5.48×10−3)−1 kNm−1 and c < 2kb− (0.0059+1.10×10−5b)k2

Nsm−1.
(4) C6 performs better than C4 if and only if k > e2b(2e1)

−1. For the vehicle parameters
employed in this paper with K = 60 kNm−1, the condition is k > 263.16b Nm−1. C6 performs
better than C2 if and only if b > e3k(2e1)

−1. For the vehicle parameters employed in this
paper with K = 60 kNm−1, the condition is b > 0.0028k kg.

Proof. The proof is similar to Remark 1, hence omitted.
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The tyre grip performances are rewritten as

HC1J3 = a1c+ a2c
−1, (15)

HC2J3 = HC1J3 + (a3k
−1 + a4k

−2)c, (16)

HC3J3 = HC1J3 + (a5b
2 − a3b)c−1, (17)

HC4J3 = HC1J3 + (a6b
−1 + a7b

−2)c, (18)

HC5J3 = HC4J3 + ((a8 + a9b
−1 + a10b

−2)k2 − (a6 + 2a7b
−1)k)c−1, (19)

HC6J3 = HC2J3 + (a6b
−1 + a7b

−2 − 2a2b
−1k−1)c, (20)

= HC4J3 + ((a3 − 2a2b
−1)k−1 + a4k

−2)c, (21)

where parameters ai, i = 1, . . . , 10 are given in Table 2.
For tyre grip performance measure, the following remarks can be obtained:

Remark 3. (1) C2 performs better than C1 if and only if K < ms(ms+2mu)kt/(2(ms+mu)
2)

and k > −a4/a3. For the vehicle parameters employed in this paper, the first inequality is
K < 73.87 kNm−1, and if setting K = 60 kNm−1, the second inequality is k > 434.38 kNm−1.
One sees that C2 improves the tyre grip performance over C1 for soft suspensions and the
required relaxation spring stiffness is quite large, which is consistent with the results in [8, 9]
(the optimal k of C2 for tyre grip when K = 60 kNm−1 is about 700 kNm−1, as shown in [9]
for the same vehicle).
(2) C3 performs better than C1 if and only if K > ms(ms + 2mu)kt/(2(ms + mu)

2) and
b < a3/a5. For the vehicle parameters employed in this paper, the first inequality is K > 73.87
kNm−1, and if setting K = 80 kNm−1, the second inequality is b < 23.30 kg. One sees that C3
improves the tyre grip performance over C1 for stiff suspensions and the required inertance
is quite small, which is consistent with the results in [8, 9] (the optimal b of C3 for tyre grip
when K = 80 kNm−1 is about 20 kg, as shown in [9] for the same vehicle).
(3) C4 performs better than C1 if and only if K > msmukt/(ms+mu)

2 and b > −a7/a6. For
the vehicle parameters employed in this paper, the first inequality is K > 16.16 kNm−1, and
if setting K = 60 kNm−1, the second inequality is b > 191.71 kg. One sees that C4 improves
the tyre grip performance over C1 for stiff suspensions and the required inertance is quite
large (the optimal b of C4 for tyre grip when K = 60 kNm−1 is about 400 kg, as shown in [9]
for the same vehicle). Note that compared with C3, the range of the static stiffness for C4
to be better than C1 is larger than that for C3.
(4) C5 performs better than C4 if and only if k < (a6 + 2a7b

−1)(a8 + a9b
−1 + a10b

−2)−1 and
b < −2a7/a6. For the vehicle parameters employed in this paper with K = 60 kNm−1, the
conditions are b < 383.42 kg and k < (6.23× 107b−1 − 1.65× 105)(1.82× 105b−2 − 715b−1 +
1.85)−1 Nm−1. As shown in [9] for the same vehicle, the optimal inertance b of C5 for tyre
grip when K = 60 kNm−1 is about 200 kg, and for b = 200 kg, the range of k is k < 52.63
kNm−1 (the optimal k is about 40 kNm−1, as shown in [9] for the same vehicle).
(5) C6 performs better than C2 if and only if b > a7(2a2k

−1 − a6)
−1, and for the vehicle

parameters employed in this paper with K = 60 kNm−1, the condition is b > (450.58k−1 +
0.0052)−1. C6 performs better than C4 if and only if k > a4(2a2b

−1−a3)−1, and for the vehicle
parameters employed in this paper with K = 60 kNm−1, the condition is k > (1.19b−1+2.30×
10−3)−1 kNm−1. The optimal inertance b and stiffness k when K = 60 kNm−1 are about 300
kg and 300 kNm−1, respectively, as shown in [9] for the same vehicle. For k = 300 kNm−1,
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Table 2: Summary of parameters.

d1 = kt
2m2

s
d2 = (ms+mu)K2

2m2
s

e1 = ms+mu

2
e2 = kt

2

d3 = ktK
m2

s
d4 = ktK2

2m2
s

e3 = (ms+mu)2K+m2
skt

2ktK

e4 =
(ms+mu)3K2+2(ms+mu)ktm2

sK+k2tm
3
s

2K2k2t
d5 = − (ms+mu)K

m2
s

e5 = m2
s

2K2

d6 = (ms+mu)2K2+ktm2
sK

2m2
skt

d7 = ms+mu

2m2
s

f0 = 2m3
smu f1 = 2(ms +mu)m

2
s

d8 = −2(ms+mu)2K+m2
skt

2m2
skt

g0 = msmu(ms +mu)K
2

d9 =
(ms+mu)3K2+2m2

s(ms+mu)ktK+m3
sk

2
t

2(mskt)2
g1 = −2msmuktK

g2 = −2kt(ms +mu)K +msk
2
t g3 = k2t a1 = (ms+mu)2kt

2m2
s

a2 = (ms+mu)3K2

2m2
s

− mu(ms+mu)ktK
ms

+
muk2t

2
a3 =

2(ms+mu)2ktK−ms(ms+2mu)k2t
2m2

s

a4 =
(ms+mu)2ktK2−ms(ms+2mu)k2tK+m2

sk
3
t

2m2
s

a6 = −(ms+mu)3K+msmu(ms+mu)kt
m2

s

a9 = −2(ms+mu)4K+ms(ms+mu)2(2mu−ms)kt
2m2

skt
a5 =

(ms+mu)k2t
2m2

s
a8 = (ms+mu)3

2m2
s

a7 = (ms+mu)4K2+(ms+mu)2(ms−2mu)msktK+(msmukt)2

2m2
skt

a10 = ms+mu

2m2
sk

2
t

((ms +mu)
4K2 + 2ms(ms +mu)

2(ms −mu)ktK

+ (m2
u −msmu +m2

s)(mskt)
2)

the range of b is b > 148.85 kg, and for b = 300 kg, the range of k is k > 159.15 kNm−1. It
is clear that the optimal inertance and spring stiffness satisfy the conditions derived in this
paper.

Proof. The proof is similar to Remark 1, hence omitted.

4. Suspension deflection performance in mixed performance optimization

The mixed J1 and J3 performance optimization has been done in [9] by defining a mixed
performance measure of J1 and J3 as follows:

HCi;1,3 = (1− α)m2
sHCiJ1 + αHCiJ3 , α ∈ [0, 1] (22)

In this section, mixed J1 and J2 performance measure HCi;1,2, and mixed J2 and J3 perfor-
mance measure HCi;2,3 are defined in a similar manner as

HCi;1,2 = (1− α)HCiJ1 + αm2
smuHCiJ2, (23)

HCi;2,3 = (1− α)m4
sHCiJ2 + αHCiJ3, (24)

where α ∈ [0, 1], HCiJ1 , HCiJ2 , and HCiJ3 are given in the previous section, and m2
smu, m

4
s

are inserted to approximately normalize the measures.
Note that the mixed performance measures defined in (22), (23) and (24) for each configu-

ration can be represented in a similar form as in Section 3, where by analyzing the additional
terms, the explicit conditions for each configuration to be better than the simpler ones can
similarly be obtained. For brevity, they are not shown in this paper. The main focus of
this section is to investigate the influence of the inerter on suspension deflection performance
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Figure 3: Mixed J1 and J3 performance. Solid, dot-dash, and dash lines denote K = 75 kNm−1, K = 55
kNm−1, and K = 25 kNm−1, respectively. Solid circles denote C1; squares denote C2; stars denote C3;
hollow circles denote C4; diamonds denote C5; triangles denote C6.

and to demonstrate the necessity of considering suspension deflection in vehicle suspension
design. Hence, in what follows, two stages of comparisons will be given.

At the first stage of comparison, the suspension deflection performance measures J2 for
each configuration by using the parameters in the mixed J1 and J3 optimization are compared.
Fig. 3 shows the optimization results of mixed J1 and J3 performance with respect to different
α and different static stiffness K, where we see that the configurations with inerters can
greatly improve the mixed J1 and J3 performance compared with C1 and C2. However, as
shown in Fig. 4, the J2 performance is significantly degraded, which means that the mixed
J1 and J3 performance is improved by sacrificing the suspension deflection performance.

At the second stage of comparison, the J1 performance in mixed J1 and J3 optimization
will be compared with the J1 performance in mixed J1 and J2 optimization to show which
is the more basic limitation for J1 performance in terms of J2 and J3. Besides, the J3 in
mixed J1 and J3 optimization will be compared with J2 in mixed J2 and J3 optimization to
show which is the more basic limitation for J3 performance in terms of J1 and J2. For the
mixed J1 and J2 optimization and mixed J2 and J3 optimization, the optimal solutions can
be derived by doing some algebraical calculations, where the analytical results are given in
Appendices A and B.

Since similar results are obtained for these configurations, for simplicity, only the results
of C5 are shown in Fig. 5 and Fig. 6. In Fig. 5, it is shown that the J1 performance in
mixed J1 and J2 optimization is always (significantly) larger than that in mixed J1 and J3
optimization, which means that suspension deflection is a more basic limitation than tyre
grip for ride comfort performance. Similarly, as shown in Fig. 6, suspension deflection is also
a more basic limitation than ride comfort for tyre grip performance.
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5. Vehicle suspensions with equal suspension deflection performance

From Section 4, one sees that suspension deflection is a basic limitation for both ride
comfort and tyre grip performance and the improvements in the mixed ride comfort and tyre
grip optimization are actually obtained by reducing the suspension deflection performance
simultaneously. Hence, in this section, an optimization problem will be proposed to realize
the equal suspension deflection design by using the analytical solutions derived in this paper.

The optimization problems are formulated as

min
b,c,k

JCi;1,3

JCi;1,3 = 2π (V κ((1− α)m2
sHCiJ1 + αHCiJ3))

1/2
,

subject to J2;Ci ≤ γ, i = 1, . . . , 6

where γ is the permitted largest rms value of J2 and J2;Ci = 2π(V κHCiJ2)
1/2, HCiJ1, HCiJ2

and HCiJ3 are given in (1)–(21).
Note that the problems for C1 and C3 are easy due to the simple representations of J2 as

shown in Equations (8) and (10), where the constraint J2;Ci ≤ γ can be transformed into c ≥
(4π2V κe1)/γ

2 and the problems become unconstrained ones. For the other configurations, the
constrained nonlinear optimization function fmincon in Matlab is used with various starting
points to guarantee the global optima. Since the performances for soft and stiff suspensions
are different, we illustrate the static stiffness with K = 20 kNm−1 and K = 80 kNm−1

separately.
Fig. 7 and Fig. 8 show the results with α = 0.5, where one sees that the mixed perfor-

mance measures of J1 and J3 are significantly reduced by restricting the J2 performance at
the same level. For example, 3.72% improvements can be achieved for C6 if there is no limi-
tation of suspension deflection (γ >= 0.008) when K = 20 kNm−1, while such improvements
will be reduced to 1.67% if the constraint J2 <= 0.004 is imposed, as shown in Fig. 7. Ob-
serving Fig. 8(b), one can see that although C6 reduces to C4 if suspension deflection is not a
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limitation (γ >= 0.005), for γ < 0.005, C6 always performs better than C4, which indicates
that with the equal suspension deflection requirement, the optimal behaviors of some config-
urations may be different from the cases without such a requirement. Hence, it is essential
to take suspension deflection into account in vehicle suspension design. The comparisons of
the Pareto optimal solutions for J1 and J3 with and without the equal suspension deflection
requirement are depicted in Fig. 9 and Fig. 10, where the performance degradations of J1
and J3 are clearly shown for each configuration.

6. Conclusion

This paper has investigated the problem of passive vehicle suspension design with in-
erters by considering multiple performance requirements including ride comfort, suspension
deflection and tyre grip, where the suspension deflection performance was formulated as a
part of the objective functions and a constraint separately. The analytical solutions for six
suspension configurations have been derived and an alternative representation of these solu-
tions has been given, where the explicit conditions for each configuration to be strictly better
than the simpler ones can directly be derived. To investigate the influence of suspension
deflection in passive vehicle suspensions with inerters, two stages of comparisons have been
carried out. At the first stage, the suspension deflection performance measures for the con-
figurations under consideration with the parameters obtained in the mixed ride comfort and
tyre grip optimization were compared. The result showed that although the configurations
with inerters can improve the mixed performance measure of ride comfort and tyre grip, the
suspension deflection performance was significantly reduced simultaneously. At the second
stage, for all the configurations, the ride comfort performances in mixed ride comfort and
suspension deflection optimization and in mixed ride comfort and tyre grip optimization were
compared. Meanwhile, the tyre grip performances in mixed ride comfort and tyre grip op-
timization and mixed suspension deflection and tyre grip optimization were also compared.
It was shown in this stage that for passive suspensions with inerters, suspension deflection is
the more basic limitation for both ride comfort and tyre grip performance. Finally, the prob-
lem of equal suspension deflection comparison was considered, where the mixed ride comfort
and tyre grip performance optimization was integrated with a hard constraint on suspension
deflection. The performance limitations of suspension deflection for each configuration were
further highlighted.
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Appendix A. Analytical solutions of mixed J1 and J2 optimization

Note that it has been shown in Remark 1 that the relaxation springs in C2 and C6 provide
no improvement for ride comfort and Remark 2 also indicates that for better suspension
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Figure 7: Mixed J1 and J3 optimization with equal J2 performance requirement when K = 20 kNm−1. (a)
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deflection performance, the relaxation springs should be absolutely stiff. Hence, we deduce
that the relaxation springs in C2 and C6 will not improve the mixed performance of J1 and
J2, and only C1, C3, C4 and C5 remain to be optimized for mixed J1 and J2 optimization.

Proposition 1. Let ms, mu, kt be fixed and positive. Consider

HC1:1,2 = (1− α)HC1J1 + αm2
smuHC1J2, (A.1)

where HC1J1 and HC1J2 are given by Equations (1) and (8).
For any fixed K and α, HC1;1,2 has a unique minimum with

c =

(
(1− α)d2 + αm2

smue1
(1− α)d1

)1/2

.

Proposition 2. Let ms, mu, kt be fixed and positive. Consider

HC3:1,2 = (1− α)HC3J1 + αm2
smuHC3J2,

= (1− α)d1c+

(
(1− α)

g3b
3 + g2b

2 + g1b+ g0
f1b+ f0

+ αm2
smue1

)
c−1 (A.2)

where HC3J1 and HC3J2 are given by Equations (3) and (10).
For any fixed c, Equation (A.2) has a minimum over b given by b = 0 or the positive real
root of the cubic equation

2g3f1b
3 + (3g3f0 + g2f1)b

2 + 2g2f0b− g0f1 + g1f0 = 0. (A.3)

For any K ≥ 0 and any b ≥ 0, the optimal c is given by

c =

(
(1− α)(g3b

3 + g2b
2 + g1b+ g0) + αm2

smue1(f1b+ f0)

(1− α)d1(f1b+ f0)

)1/2

.

Proposition 3. Let ms, mu, kt be fixed and positive. Consider

HC4:1,2 = (1− α)HC4J1 + αm2
smuHC4J2, (A.4)

where HC4J1 and HC4J2 are given by Equations (4) and (11).
For any K ≥ 0 the optimal b and c to make Equation (A.4) minimal are

b = −2((1− α)d6 + αm2
smue3)

(1− α)d5
,

c =

(
(1− α)d2 + αm2

smue1
(1− α)d1 + (1− α)d5b−1 + ((1− α)d6 + αm2

smue3)b−2

)1/2

.

Proposition 4. Let ms, mu, kt be fixed and positive. Consider

HC5:1,2 = (1− α)HC5J1 + αm2
smuHC5J2 = cf1c+ cr1c

−1, (A.5)
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where HC5J1 and HC5J2 are given by Equations (5) and (12).

Denote b0 = −2((1−α)d6+αm2
smue3)

(1−α)d5 . For any K ≥ 0 the optimal k and c to make Equation (A.5)
minimal are

k =
(1− α)(d5 + 2d6b

−1) + 2αm2
smue3b

−1

2((1− α)(d7 + d8b−1 + d9b−2) + αm2
smu(e4b−2 + e5)b−1)

, (A.6)

c =

(
cr1
cf1

)1/2

, (A.7)

where

cf1 = (1− α)d1 + (1− α)d5b
−1 + ((1− α)d6 + αm2

smue3)b
−2,

cr1 = ((1− α)(d7 + d8b
−1 + d9b

−2) + αm2
smu(e4b

−2 + e5b
−1))k2

+((1− α)(−d5 − 2d6b
−1)− 2αm2

smue3b
−1)k + (1− α)d2 + αm2

smue1,

and b is given by the b0 or the positive real solution of the function when substituting Equations
(A.6) and (A.7) into Equation (A.5) and differentiating with respect to b. If the optimal b is
larger than b0, the optimal k is zero and the network reduces to C4.

Appendix B. Analytical solutions of mixed J2 and J3 optimization

Proposition 5. Let ms, mu, kt be fixed and positive. Consider

HC1:2,3 = (1− α)m4
sHC1J2 + αHC1J3, (B.1)

where HC1J2 and HC1J3 are given by Equations (8) and (15).

For any fixed K and α, HC1;2,3 has a unique minimum given by c =
(

(1−α)m4
se1+αa2

αa1

)1/2
.

Proposition 6. Let ms, mu, kt be fixed and positive. Consider

HC2:2,3 = (1− α)m4
sHC2J2 + αHC2J3 = cf2c+ cr2c

−1, (B.2)

where HC2J2 and HC2J3 are given by Equations (9) and (16) and

cf2 = αa1 + αa3k
−1 + ((1− α)m4

se2 + αa4)k
−2, cr2 = (1− α)m4

se1 + αa2.

Denote K1 = ms(ms+2mu)kt
2(ms+mu)2

. The optimal value of k and c where HC2;2,3 achieves its minimum
are given by

k−1 =

{
− αa3

2((1−α)m4
se2+αa4)

, K < K1

0, K ≥ K1
and c =

(
cr2
cf2

)1/2

.

Proposition 7. Let ms, mu, kt be fixed and positive. Consider

HC3:2,3 = (1− α)m4
sHC3J2 + αHC3J3,

= αa1c+ ((1− α)m4
se1 + α(a2 − a3b+ a5b

2))c−1, (B.3)

where HC3J2 and HC3J3 are given by Equations (10) and (17).
The optimal value of b and c where HC3:2,3 achieves its minimum is given by

b =

{
a3
2a5
, K < K1

0, K ≥ K1
and c =

(
(1− α)m4

se1 + α(a2 − a3b+ a5b
2)

αa1

)1/2

.
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Proposition 8. Let ms, mu, kt be fixed and positive. Consider

HC4:2,3 = (1− α)m4
sHC4J2 + αHC4J3 = cf3c+ cr3c

−1, (B.4)

where HC4J2 and HC4J3 are given by Equations (11) and (18) and

cf3 = αa1 + αa6b
−1 + ((1− α)m4

se3 + αa7)b
−2, and cr3 = (1− α)m4

se1 + αa2.

Denote K2 = msmukt
(ms+mu)2

. The optimal value of b and c where HC4;2,3 achieves its minimum is
given by

b−1 =

{
− αa6

2((1−α)m4
se3+αa7)

, K < K2

0, K ≥ K2
and c =

(
cr3
cf3

)1/2

.

Proposition 9. Let ms, mu, kt be fixed and positive. Consider

HC5:2,3 = (1− α)m4
sHC5J2 + αHC5J3 = cf4c+ cr4c

−1, (B.5)

where HC5J2 and HC5J3 are given by Equations (12) and (19) and

cf4 = αa1 + αa6b
−1 + ((1− α)m4

se3 + αa7)b
−2, cr4 = t2k

2 + t1k + t0,

t2 = αa8 + ((1− α)m4
se5 + αa9)b

−1 + ((1− α)m4
se4 + αa10)b

−2,

t1 = −(αa6 + (2(1− α)m4
se3 + 2αa7)b

−1), t0 = (1− α)m4
se1 + αa2.

Denote b1 = −2((1−α)m4
se3+αa7)

αa6
. For any K and α, the optimal value of k, b, and c where

HC5:2,3 achieves its minimum are given by

k = − t1
2t2

, c =

(
cr4
cf4

)1/2

. (B.6)

Let Q be the set of positive real solutions b of the equation after substituting Equation (B.6)
into Equation (B.5) and differentiating with respect to b. The optimal value of b is equal to
b1 or Q

⋂
(0, b1). If b =∞, C5 reduces to C1, and if k = 0, C5 reduces to C4.

Proposition 10. Let ms, mu, kt be fixed and positive. Consider

HC6:2,3 = (1− α)m4
sHC6J2 + αHC6J3 = cf5c+ cr5c

−1, (B.7)

where HC6J2 and HC6J3 are given by Equations (13) and (20).
For any fixed K and α, HC6:2,3 has a unique minimum over b, c and k at

k = − 2((1− α)m4
se2 + αa4)

−2(1− α)m4
se1b

−1 + α(a3 − 2a2b−1)
, b−1 =

b−1num
b−1den

and c =

(
cr5
cf5

)1/2

,

with b, k ≥ 0 and

b−1num = α(a6e2m
4
s − a6e2m4

sα + a6a4α + a3e1m
4
s − a3e1m4

sα + a3a2α),

b−1den = (−2m8
se3e2 − 2a7a4 + 2m4

se3a4 + 2a7m
4
se2 + 2m8

se
2
1 − 4m4

se1a2 + 2a22)α
2

+(4m8
se3e2 − 2m4

se3a4 − 2a7m
4
se2 + 4m4

se1a2 − 4m8
se

2
1)α− 2m8

se3e2 + 2m8
se

2
1.

If b = ∞ or k = ∞ at any global minimum, the C6 configuration reduces to the case of C2
or C4, respectively.

19



References

[1] M.C. Smith, G.W. Walker, Performance limitations and constraints for active and pas-
sive suspensions: A mechanical multi-pot approach, Vehicle System Dynamics 33 (2000)
137–168.

[2] M.C. Smith, Synthesis of mechanical networks: The inerter, IEEE Transactions on
Automatic Control 47 (10) (2002) 1648–1662.

[3] H. Du, N. Zhang, F. Naghdy, Robust control of vehicle electrorheological suspension
subject to measurement noises, Vehicle System Dynamics 49 (2011) 257–275.

[4] H. Du, K.Y. Sze, J. Lam, Semi-active H∞ control of vehicle suspension with magneto-
rheological dampers, Journal of Sound and Vibration 283 (5) (2005) 981–996.

[5] H. Du, N. Zhang, H∞ control of active vehicle suspensions with actuator time delay,
Journal of Sound and Vibration 301 (1) (2007) 236–252.

[6] H. Du, N. Zhang, J. Lam, Parameter-dependent input-delayed control of uncertain ve-
hicle suspensions, Journal of Sound and Vibration 317 (3) (2008) 537–556.

[7] M.Z.Q. Chen, C. Papageorgiou, F. Scheibe, F.C. Wang, M.C. Smith, The missing me-
chanical circuit element, IEEE Circuits and System Magazine 9 (1) (2009) 10–26.

[8] M.C. Smith, F.C. Wang, Performance benefits in passive vehicle suspensions employing
inerters, Vehicle System Dynamics 42 (4) (2004) 235–257.

[9] F. Scheibe, M.C. Smith, Analytical solutions for optimal ride comfort and tyre grip for
passive vehicle suspensions, Vehicle System Dynamics 47 (10) (2009) 1229–1252.

[10] F.C. Wang, W.J. Sue, The impact of inerter nonlinearities on vehicle suspension control,
Vehicle System Dynamics 46 (7) (2008) 575–595.

[11] C. Papageorgiou, M.C. Smith, Positive real synthesis using matrix inequalities for me-
chanical networks: application to vehicle suspension, IEEE Transactions on Control
Systems Technology 14 (3) (2006) 423–435.

[12] M.Z.Q. Chen, Y. Hu, B. Du, Suspension performance with one damper and one inerter,
Proceedings of the 24th Chinese Control and Decision Conference (CCDC), Tainyuan,
China, 2012, pp. 3551–3556.

[13] F.C. Wang, H.A. Chan, Mechatronic suspension design and its applications to vehicle
suspension control, Proceedings of the 47th IEEE Conference on Decision and Control,
Cancun, Mexico, 2008, pp. 3769–3774.

[14] F.C. Wang, H.A. Chan, Vehicle suspensions with a mechatronic network strut, Vehicle
System Dynamics 49 (5) (2011) 811–830.

[15] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Control of motorcycle steering
instabilities, IEEE Control Systems Magazine, 26 (5) (2006) 78–88.

20



[16] S. Evangelou, D.J.N. Limebeer, R.S. Sharp, M.C. Smith, Mechanical steering compen-
sators for high-performance motorcycles, Journal of Applied Mechanics 74 (2) (2007)
332–336.

[17] F.C. Wang, M.K. Liao, B.H. Liao, W.J. Sue, H.A. Chan, The performance improvements
of train suspension systems with mechanical networks employing inerters, Vehicle System
Dynamics 47 (7) (2009) 805–830.

[18] F.C. Wang, M.K. Liao, The lateral stability of train suspension systems employing
inerters, Vehicle System Dynamics 48 (5) (2009) 619–643.

[19] F.C. Wang, M.R. Hsieh, H.J. Chen, Stability and performance analysis of a full-train
system with inerters, Vehicle System Dynamics 50 (4) (2011) 545–571.

[20] J.Z. Jiang, A.Z. Matamoros-Sanchez, R.M. Goodall, M.C. Smith, Passive suspensions
incorporating inerters for railway vehicles, Vehicle System Dynamics 50 (sup1) (2012)
263–276.

[21] F.C. Wang, C.W. Chen, M.K. Liao, M.F. Hong, Performance analyses of building sus-
pension control with inerters, Proceedings of the 46th IEEE Conference on Decision and
Control, New Orleans, LA, USA, 2007, pp. 3786–3791.

[22] F.C. Wang, M.F. Hong, C.W. Chen, Building suspensions with inerters, Proceedings of
the IMechE, Part C: Journal of Mechanical Engineering Science 224 (8) (2010) 1605–
1616.

[23] M.Z.Q. Chen, Passive Network Synthesis of Restricted Complexity, PhD Thesis, Cam-
bridge Univ. Eng. Dept., U.K., 2007.

[24] M.Z.Q. Chen, M.C. Smith, Restricted complexity network realizations for passive me-
chanical control, IEEE Transactions on Automatic Control 54 (10) (2009) 2290–2301.

[25] M.Z.Q. Chen, K. Wang, Z. Shu, C. Li, Realizations of a special class of admittances
with strictly lower complexity than canonical forms, IEEE Transactions on Circuits and
Systems–I: Regular Papers 60 (9) (2013) 2465–2473.

[26] M.Z.Q. Chen, K. Wang, Y. Zou, and J. Lam, “Realization of a special class of admit-
tances with one damper and one inerter for mechanical control,” IEEE Transations on
Automatic Control, 58 (7) (2013) 1841–1846.

[27] J.Z. Jiang, M.C. Smith, Regular positive-real functions and five-element network syn-
thesis for electrical, IEEE Transactions on Automatic Control 56 (6) (2011) 1275–1290.

[28] R.S. Sharp, D.A. Crolla, Road vehicle suspension system design–A review, Vehicle Sys-
tem Dynamics 16 (3) (1987) 167–192.

[29] R.S. Sharp, S.A. Hassan, The fundamental of passive automotive suspension system
design, Society of Environmental Engineers Conference on Dynamics in Automotive
Engineering, 1984, pp. 104–115.

21



[30] R.S. Sharp, S.A. Hassan, The relative performance capabiblities of passive, active and
semi-active car suspension systems, Proceedings of Insttitution of Mechanical Engineers
200 (3) (1986) 219–228.

[31] R.S. Sharp, S.A. Hassan, An evaluation of passive automotive suspension systems with
variable stiffness and damping parameters, Vehicle System Dynamics 15 (6) (1986) 335–
350.

[32] G.W. Walker, Constraints upon the Achievable Performance of Vehicle Suspension Sys-
tems, PhD Thesis, Cambridge Univ. Eng. Dept., U.K., 1997.

22


