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Inverse mask synthesis is achieved by minimizing a cost function on the difference between the

output and desired patterns. Such a minimization problem can be solved by a level-set method

where the boundary of the pattern is iteratively evolved. However, this evolution is time-

consuming in practice and usually converges to a local minimum. The velocity of the boundary

evolution and the size of the evolution step, also known as the descent direction and the step size in

optimization theory, have a dramatic influence on the convergence properties. This paper focuses

on developing a more efficient algorithm with faster convergence and improved performance such

as smaller pattern error, lower mean edge placement error, wider defocus band, and higher

normalized image log slope. These improvements are accomplished by employing the conjugate

gradient of the cost function as the evolution velocity, and by introducing an optimal time step for

each iteration of the boundary evolution. The latter is obtained from an extended Euler time range

by using a line search method. The authors present simulations demonstrating the efficacy of these

two improvements. VC 2013 American Vacuum Society. [http://dx.doi.org/10.1116/1.4813781]

I. INTRODUCTION

With ever-shrinking feature size, the physical characteris-

tics of optics have stronger impact on the imaging system. In

particular, the band-limit system causes the output pattern to

be a warped version of the input mask.1,2 Several resolution

enhancement techniques (RETs) have been developed to

improve the performance of optical lithography.2–4

Benefiting from the developments in computational power

and optimization algorithms, inverse lithography technology

(ILT), as one of these RETs, has shown great promise in

meeting various challenges in future technology nodes.

Inverse lithography technology treats the mask design as

an inverse mathematical problem that aims at synthesizing

an input mask to deliver a desired output pattern. Various

algorithms have been proposed to deal with this inverse

problem in the literature. Liu and Zakhor pioneered a mask

design method based on the branch-and-bound algorithm,5–7

but this is a time-consuming process. In order to reduce the

computation complexity, iterative methods were proposed to

solve the inverse problem by using an optimization pro-

cess.8,9 Granik classified and discussed methods for solving

inverse lithography problems in linear, quadratic, and non-

linear formulations.10 In subsequent years, Poonawala and

Milanfar designed the model-based optical proximity correc-

tion (OPC) system and introduced the steepest descent (SD)

algorithm for the optimization framework.11–13 Ma and Arce

further generalized this algorithm for phase shifting masks

and partially coherent imaging systems,14–18 and proposed

rigorous lithography imaging models, which take into

account both 3D mask diffraction effects and optics polariza-

tion effects.19–21 Meanwhile, the optimization algorithm was

improved with an active set method by Chan et al.,22 with a

hotspot- and robustness-aware method using a weighted

scheme by Li et al.,23 combined with an augmented

Lagrangian method by Li et al.24 Moreover, the robustness

of inverse imaging is improved through the use of stochastic

gradient descent.25–28 These methods consider the mask as a

raster image constituted by pixels, where it is synthesized

pixel-by-pixel. Such an approach is very flexible due to the

thousands and even millions of design variables, i.e., the pix-

els, but such flexibility often results in patterns of much

higher complexity, which in turn leads to difficulties in prac-

tical manufacturing of the input mask.29,30

Recently, the level set approach31,32 has been actively

explored as a feasible alternative to tackle the inverse lithog-

raphy problem,33,34 and Shen et al.35 provided a complete

but conventional level set formulation of this problem. In

this method, the boundary of a mask is iteratively evolved

according to an optimization algorithm. Such an approach is

quite different from the pixel-based approach, since it does

not discretize the mask into pixels, but instead it treats the

mask as a continuum. Experimental results in Ref. 35 dem-

onstrated that the level set approach achieved a considerably

better performance in reducing pattern error than the pixel-

based method with an almost equal runtime. Furthermore,a)Electronic mail: shyliu@mail.hust.edu.cn
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Shen et al. pointed out that the level-set-based approach

tended to eliminate small unwanted block objects in the

synthesized masks, which would be generated by the pixel-

based methods.35 In addition, they took defocus and

aberrations into account to enhance the robustness of the lay-

out patterns.36 Nevertheless, the optimization algorithm

employed in the above-mentioned studies is still time-

consuming, and sometimes it cannot reach an optimal solu-

tion, which limits the application in practice.

Generally, the inverse lithography problem is ill-posed,

and therefore, finding a rigorous global minimum is usually

too expensive and is not necessary.7,13 Any good local mini-

mum of the inverse lithography problem, whose goodness is

evaluated using pattern error, defocus window, or other user-

desired metrics, can serve as an acceptable solution.

Nevertheless, various techniques are applied in ILT to try to

convert it to a well-posed problem and to increase the proba-

bility of finding a better local minimum. This is accom-

plished by adding regularization terms,12,13 by setting the

initial mask as shown in Ref. 13, and by designing a compos-

ite cost function combining image fidelity, contour fidelity,

and so on.10,30 Yu and Yu investigated the impact of various

cost functions on inverse lithography, and all these cost func-

tions showed unique characteristics in the resulting mask

patterns, optical images, and contours.30 They found that a

clever mix of these cost functions can push the resolution

limits and achieve a good mask correction. In this paper, our

main focus is on the impacts of iterative optimization algo-

rithms on the solution to the inverse lithography problem.

Although the iterative optimization algorithms, i.e., the evo-

lution velocity and the time step, have seldom gained atten-

tion, they also have significant impacts on the final solution

to this inverse problem, especially for the large nonlinear ill-

posed lithographic system. This is because a better method

can be used to search a wider solution space, and thus lead

to a better solution of the inverse problem. Although Refs.

35 and 36 proposed the formulation of level-set-based

inverse lithography, neither of them discussed the computa-

tional efficiency of iterative optimization algorithms, and

they only mentioned that a primary SD method, which has

been proved to converge relatively slowly,37 was applied to

solve this problem.

In this paper, we propose two improvements to enhance

the lithographic quality and computational efficiency of the

conventional level-set-based method for inverse mask syn-

thesis. One improvement is to use the conjugate gradient

(CG) method for the optimization. Among various optimiza-

tion methods, the SD method, CG method, and Newton

method are most often used. It has been proven that the SD

method has linear convergence characteristics with respect

to the iteration number, and the Newton method achieves a

local quadratic rate of convergence, while the CG method

attains a linear or super linear convergence rate. However,

the Newton method needs too much storage to perform ma-

trix factorizations of the Hessian matrix, i.e., the second-

order derivative, and it is usually sensitive to the initial

input.37 The CG method only needs the evolution velocity of

the previous iteration and therefore requires little matrix

storage compared to the Newton method.37 It is also more ef-

ficient than the SD method, which is why it is widely used in

practice to solve large linear systems of equations and non-

linear optimization problems.37 In order to achieve better

performance in convergence, efficiency, and implementa-

tion, we have chosen the CG method for optimization.

The other improvement is to introduce an optimal time

step during optimization. Instead of using a small constant

time step for all iterations, we employ a line search method

to compute the size of the time step for the boundary evolu-

tion during each iteration, and this optimal time step is capa-

ble of improving the efficiency of iteration and of achieving

a better solution. In the level set method, the evolution time

step during the entire optimization process is usually set to

be a small constant given by the Courant–Friedrichs–Lewy

(CFL) condition of the Hamilton–Jacobi equation,32 but this

method has the effect of considerably slowing down the

convergence rate.

Also, most recently, we developed a fast imaging simula-

tion algorithm for partially coherent systems by decompos-

ing the transmission cross coefficient (TCC) into analytical

kernels.38 The large TCC matrix is projected onto the circle-

sampling function (CSF) space and converted into a much

smaller projected matrix. Singular value decomposition

(SVD) is then performed to generate the analytical optical

kernels with its eigenvectors and the CSFs. We have demon-

strated that the new algorithm avoids directly performing

SVD to the large TCC matrix; thus, it is much more efficient

than the conventional method. In addition, the optical ker-

nels derived by the new algorithm have analytical forms; as

a result, the grid size of the kernels can be set to any desired

value, which is not realizable with the conventional method.

In this paper, we will apply the new algorithm to the forward

lithographic modeling in order to take advantage of these

improvements.

The remainder of this paper is organized as follows.

Section II details the improved level set formulation for

mask synthesis using the conjugate gradient and an optimal

time step. Section III provides the simulation results to dem-

onstrate the efficacy of the two proposed improvements.

Finally, we draw some conclusions in Sec. IV.

II. THEORY

A. Forward lithography model and inverse problem

Abstractly, the imaging process for optical lithography is

mathematically described as

ZðrÞ ¼ CfMðrÞg; (1)

where r represents spatial coordinates (x, y), and the operator

C{�} implements the forward mapping from the input mask

M(r) to the output pattern Z(r). In practice, C{�} in Eq. (1)

consists of the projection optics effect and the resist effect.39

The projection optics effect, namely the optical image in

resist I(r), can be modeled as a pupil function with a partially

coherent illumination source. According to Hopkins’
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imaging theory,40 the image formation process can be

expressed by a bilinear transform in the spatial domain

IðrÞ ¼
ð ð

TCCðr� r1; r� r2ÞMðr1ÞM†ðr2Þdr1dr2; (2)

where † denotes complex conjugation. The TCC is intro-

duced as

TCCðr1; r2Þ ¼ Jðr1 � r2ÞHðr1ÞH†ðr2Þ: (3)

Here, J(r1-r2) is the mutual intensity that describes the co-

herence of the illumination source; H(r) is the point spread

function that fully describes the property of the projection

lens. Since TCC is Hermitian and band-limited, it possible to

approximate the 4D TCC as a finite CSF series

TCCðr1; r2Þ ¼
XN

k¼1

XN

l¼1

pk;lukðr1Þu†
l ðr2Þ; (4)

where N is the total number of CSFs, uk(r) is the kth CSF,

and pk,l are the expansion coefficients. Since the projected

matrix P, i.e., [pk,l], is also Hermitian and positive definite,

we can perform SVD to further decompose it into eigenval-

ues and eigenvectors, as follows:

P ¼
XQ

i¼1

lisis
H
i ; (5)

where si is the ith eigenvector with Q eigenvectors in total,

sH
i is its Hermitian conjugate, and li is the corresponding

eigenvalue. Substituting Eq. (5) into Eq. (4), we can analyti-

cally express the 4D TCC as

TCCðr1; r2Þ ¼
XQ

i¼1

lihiðr1Þh†
i ðr2Þ: (6)

Here, we call hi(r) the ith analytical TCC kernel, which can

be calculated as

hiðrÞ¼
XN

l¼1

si;lulðrÞ; (7)

where si,l is the lth element of si. The flowchart of TCC

decomposition into analytical kernels is shown in Fig. 1.

Substituting Eq. (6) into Eq. (2), the optical image is given

by

IðrÞ5
XQ

i¼1

lijhiðrÞ �MðrÞj2; (8)

where � denotes the two-dimensional convolution.

The resist effect can be approximated by a constant

threshold resist model using the following logarithmic

Sigmoid function:12

sig ½IðrÞ� ¼ 1

1þ e�aðIðrÞ�trÞ
; (9)

where a is the steepness of the Sigmoid function, and tr is

the threshold. In reality, tr is equal to the threshold level of

the resist.

Putting Eqs. (8) and (9) together, we rewrite Eq. (1) as

ZðrÞ ¼ CfMðrÞg ¼ sig½IðrÞ�

¼ sig

"XQ

i¼1

lijhiðrÞ �MðrÞj2
#
: (10)

Due to the low-pass nature of the optical imaging system,

Z(r) is typically a blurred version of M(r). We employ the L2

norm as the pattern error to evaluate the difference between

the output pattern of M(r) and the desired pattern Z*(r):

FfMðrÞg ¼ kCfMðrÞg � Z�ðrÞk2
2

¼
����sig

"XQ

i¼1

lijhiðrÞ �MðrÞj2
#
� Z�ðrÞ

����
2

2

:

(11)

Now, we formulate the inverse lithography problem by find-

ing an optimal input mask M*(r) to minimize the pattern

error, i.e., the cost function F{M(r)},

M�ðrÞ ¼ arg min
MðrÞ

FfMðrÞg: (12)

FIG. 1. Flowchart of TCC decomposition into analytical kernels.
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B. Preliminaries

Before introducing the level set formulation of the opti-

mization problem, the CG method, and the optimal time

step, we will first explain some of the terms which are com-

monly encountered in this work.

1. Polak–Ribière–Polyak conjugate gradient method

In the CG method, the evolution velocity vk in the kth iter-

ation is defined by

vk ¼
�gk þ gkvk�1 if k � 1

�gk if k ¼ 0
:

�
(13)

Here, gk is a matrix representing the gradient rFfMðr; tkÞg
of F{M(r, tk)} at r, and gk is a factor that depends on differ-

ent CG methods. When gk¼ 0, the evolution velocity is the

negative gradient, and the CG method is simplified as the

SD method. In the widely used Polak–Ribière–Polyak (PRP)

CG method, gk is defined as41,42

gk
PRP ¼

kgkk2
2 �

X
gk�gk�1

kgk�1k2
2

: (14)

In practical computations, the PRP CG method is generally

believed to be the most efficient CG method.42 Compared to

the SD method, the PRP CG method makes use of the veloc-

ity information in the previous iteration, and can automati-

cally adjust gk to avoid jamming. It essentially performs a

restart when a bad direction occurs.42 In a sense, it can

search a wider solution space and has the capability of

achieving a better solution. For theoretical foundations and

demonstrations, interested readers may refer to Refs. 37, 41,

and 42.

2. Courant–Friedrichs–Lewy condition and the Euler
time step

The CFL condition is necessary for convergence and sta-

bility when solving certain partial differential equations. It

asserts that the numerical wave speed Dx/Dt must be at least

as fast as the physical wave speed |u|, i.e., Dx/Dt> |u| (see

Chap. 3.2 in Ref. 32). In the present application, the CFL

condition is given by

Dt �max
jvxj
Dx
þ jvyj

Dy

� �
¼ a; (15)

where Dx and Dy provide the grid size of the discrete

Cartesian grid, vx and vy are the components of evolution ve-

locity v in the x and y direction, respectively. a is called the

CFL number with 0< a< 1, and the calculated time step Dt
based on Eq. (15) is called the Euler time step.

3. Weighted essentially nonoscillatory polynomial

It is possible to evaluate the spatial derivatives of level

set function / by using a first-order accurate forward differ-

ence and backward difference, or a second-order accurate

central difference.43 In order to improve the computational

accuracy, Harten et al. developed the essentially nonoscilla-

tory (ENO) polynomial interpolation method that uses the

smoothest possible polynomial interpolation of /, and then

differentiates it to get the spatial derivatives.44 Frequently

used ENO schemes include first-, second-, and third-order

accurate essentially nonoscillatory (ENO1, ENO2, ENO3)

methods, in addition to a fifth-order accurate weighted ENO

(WENO) method, which consists of a convex combination

of ENO approximations. In this work, we use the WENO

method to get the level set function /. Interested readers

may refer to Refs. 32, 43, and 44 for more details.

C. Level set formulation with conjugate gradient and
optimal time step

In the level-set based framework of inverse lithography,

the M(r) is described by a level set function /(r), which is

related to M(r) by

MðrÞ ¼ mint forfr : /ðrÞ < 0g
mext forfr : /ðrÞ > 0g ;

�
(16)

where mint¼ 1 and mext¼ 0 when a binary mask is consid-

ered. The boundary of subregions in M(r) is the zero level of

/(r), namely, /(r)¼ 0.

Generally, a distance function d(r) is defined as

dðrÞ ¼ minðjr� rXjÞ; for all rX 2 MX; (17)

where MX denotes the boundaries of M(r), and /(r) is

defined as the signed distance function32 related to d(r)

/ðrÞ ¼
�dðrÞ r 2 MX�

0 r 2 MX

þdðrÞ r 2 MXþ

;

8<
: (18)

where MX� is the region occupied by the mask and MXþ is

the void region.

Now, we reformulate the inverse lithography problem by

finding an optimal level set function /*(r) that seeks to mini-

mize the cost function F{M(r)} as

Finding /�ðrÞ to minimize FfMðrÞg;

where : MðrÞ ¼ mint for fr : /�ðrÞ < 0g
mext for fr : /�ðrÞ > 0g :

�

In this way, the inverse lithography problem is changed to

handle the level set function /(r) instead of the mask pattern

M(r) itself. To solve this inverse problem, an iterative

scheme is applied by deriving an evolution equation for the

level set function /(r). Letting t represent the artificial time,

we arrive at the Hamilton–Jacobi equation

@/
@t
¼ vðr; tÞjr/j; (19)

where v(r, t) is the evolution velocity of /(r) at r in the

normal direction. In the optimization process, the evolution
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velocity v(r, t) should reduce the cost function F{M}, namely

dF{M}< 0, where dF{M} is the directional derivative of the

cost function F{M} in the direction dM. According to Ref. 45,

the directional derivative dF{M} is

dFfMg ¼
X
rFfMg � vðr; tÞ; (20)

where � denotes an element-by-element multiplication opera-

tor, and rFfMg is the gradient with respect to M

r FfMg ¼ JðMÞT½CfMg�Z��

¼ a
XQ

i¼1

kih
f lip
i � ½ðZ�Z�Þ �Z � ð1�ZÞ � ðh†

i �MÞ�
( )

þa
XQ

i¼1

ðkih
f lip
i Þ

†� ½ðZ�Z�Þ �Z � ð1�ZÞ � ðhi�MÞ�
( )

:

(21)

The detailed derivation of Eqs. (20) and (21) are given in the

Appendix. Here, J(M) is the Jacobian of C{M} at M; hi
flip is

the up–down and left–right flip of hi; and a is the steepness

of the Sigmoid function in Eq. (9).

Generally, the evolution velocity v(r, t) is set to be the

negative gradient of the cost function F{M},35,37 i.e.,

vðr; tÞ ¼ �rFfMg, which leads to dFfMg ¼
�
P
jFfMgj2 < 0 and implies the descent of F{M}. In the

present work, the conjugate gradient of F{M} is used for the

evolution velocity v(r, t), which also satisfies a negative

dF{M}.

Now, the procedure for the level set method with conju-

gate gradient and optimal time step for inverse mask synthe-

sis is described as follows:

Iteration 0: Given a desired output pattern Z*(r), we use

Z*(r) as the initial input mask M(r, t0), then compute the

level set function /(r, t0) of M(r, t0), and calculate the gradi-

ent g0 of F{M(r, t0)} with respect to M(r, t0), which is based

on Eq. (21) and the evolution velocity v(r, t0), which is based

on Eq. (13).

FIG. 2. (Color online) (a) Desired pattern, (b) its optical image, and (c) its output pattern on the wafer with a pattern error of 16 723. (d) The synthesized mask

pattern by the SD method after 81 iterations, (e) its optical image, and (f) its output pattern on the wafer with a pattern error of 4408. (g) The synthesized mask

pattern by the CG method after 81 iterations, (h) its optical image, and (i) its output pattern on the wafer with a pattern error of 3670. The horizontal axis and

vertical axis denote x position and y position of the patterns in nanometers, respectively. The two red dotted lines are CD cutlines both at the position of

y¼ 450 nm, which will be detailed in Fig. 5(b).
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/ðr; t0Þ ¼
�dðrÞ r 2 Mðr; t0ÞX�

0 r 2 Mðr; t0ÞX
þdðrÞ r 2 Mðr; t0ÞXþ

;

8<
: (22)

g0 ¼ rFfMðr; t0Þg; (23)

vðr; t0Þ ¼ �g0: (24)

Iteration k:

Step i: Calculate the Euler time step Dtk
e according to

Eq. (15), and then employ a line search method to obtain an

optimal time step Dtk from an extended Euler time range

Dtk ¼ arg min
Dt

FfMðr; tk þ DtÞg: (25)

Here Dt is a time step within the search range [b�Dtk
e, c�Dtk

e]

specified by the Euler time step Dtk
e, where b and c are

called the extension factors to control the search range, and

0� b< c.

Step ii: Update /(r, tkþ1) and M(r, tkþ1),

/ðr; tkþ1Þ ¼ /ðr; tkÞ þ vðr; tkÞDtk; (26)

Mðr; tkþ1Þ ¼
mint forfr : /ðr; tkþ1Þ < 0g
mext forfr : /ðr; tkþ1Þ > 0g :

�
(27)

Step iii: Calculate the gradient gkþ1 based on Eq. (21),

the factor gkþ1 based on Eq. (14), and then the evolution ve-

locity v(r, tkþ1) for the next iteration

gkþ1 ¼ rFfMðr; tkþ1Þg; (28)

gkþ1
PRP ¼

kgkþ1k2
2 �

X
gkþ1�gk

kgkk2
2

; (29)

vðr; tkþ1Þ ¼ �gkþ1 þ gk
PRP � vðr; tkÞ: (30)

If kvðr; tkþ1Þk < f or k>W, go to Stop.

Else, return to Step i.

Stop: Obtain the synthesized mask,

M�ðrÞ ¼ Mðr; tkþ1Þ: (31)

In the above procedure, the iteration is terminated when

kvðr; tkþ1Þk < f or k>W, where f is defined as the minimum

value of the norm of velocity, and W is the prescribed upper

FIG. 3. (Color online) Comparison of output pattern contours. Enlarged views of three black boxes 1, 2, and 3 in (a) are shown in (b), (c), and (d) for the line-

end error, the corner error, and the edge error, respectively.
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limit of the number of iterations. The termination criterion

kvðr; tkþ1Þk < f means that the evolution stops when the ve-

locity along the boundary is zero or rather small.

A small constant time step, such as the Euler time step, is

commonly used for optimization, and this is a very safe

method for enforcing the convergence stability of the evolu-

tion. However, it likely results in a large number of itera-

tions. Hence, we introduce an optimal time step to improve

the efficiency of iteration and provide the capability of

achieving a better solution. In a strict sense, the optimal time

step is not the exact optimal solution, which would be too

expensive to compute. In this specific inverse lithography

problem, when the time step is too small or too large, the

iteration gave rise to bad performance during our simulation

experiments. This result led us to assume that the problem of

seeking the optimal time step was locally convex, although

without theoretical foundations. Then, the optimal time step

was obtained using a line search method from a given search

range, which was specified as an extended Euler time

range [b�Dtk
e, c�Dtk

e] by simply setting the extension factors

b and c. The optimal time step shows a much faster conver-

gence rate over that achieved by the constant time step,

which has been demonstrated in our simulations.

D. Regularization

Since inverse lithography is generally ill-posed, regulari-

zation approaches are applied to bias the mask to a more

desired pattern. In this work, we adopt total variation (TV)

regularization to reduce mask complexity,12,13,35 which is

defined as46

RðMÞ ¼
ð

X
jrMjdr; (32)

where X is the area of the bounded domain, or the number of

pixels in M. TV regularization normally leads to a curve

shortening result and makes the boundary move in the nor-

mal direction with a velocity defined by

rðr; tÞ ¼ r � rM

jrMj

� �
: (33)

By adding the regularization velocity as shown in Eq. (33),

we update Eq. (19) as

FIG. 4. (Color online) Convergence of pattern error and mean EPE by the

SD and CG methods, both for the desired pattern as shown in Fig. 2(a). The

red dotted–dashed line represents the 5% CD tolerance.

FIG. 5. (Color online) (a) Mean EPEs vs defocus variation for the synthe-

sized mask pattern shown in Figs. 2(d) and 2(g), and (b) intensity distribu-

tions along the cutlines shown in Figs. 2(e) and 2(h).
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@/
@t
¼ vðr; tÞjr/j þ j � rðr; tÞjr/j; (34)

where j is a user-defined parameter to reveal the weight of

the TV regularization.

III. SIMULATION

Simulations were performed on a partially coherent imag-

ing system with an annular source illumination whose outer

radius was rout¼ 0.6 and whose inner radius was rin¼ 0.4.

The wavelength in the simulations was set at 193 nm, and

the numerical aperture was 0.85. The resist effects were

approximated by a Sigmoid function with a¼ 80 and

tr¼ 0.3. The TV regularization factor j was set at 0.01. The

value of f was set at 0.3 in the termination criterion

kvðr; tkþ1Þk < f, where the norm of the evolution velocity

kvðr; tkþ1Þk was normalized to kvðr; t0Þk. The WENO poly-

nomial was applied to calculate the level set function /(r)

and its spatial derivatives. The CFL number a was set at 0.5.

The Euler time step was calculated using the CFL number a
and Eq. (15). We applied the Golden Section Search

method47 as the line search method, and the search range

was set at [0.1Dte, 10Dte] with a terminated accuracy of

0.01Dte, where Dte is the Euler time step. All the simulations

were carried out with in-house MATLAB codes on a HPZ800

(3.47 GHz Xeon) Workstation using a Windows 7 (64 bit)

operating system.

Figure 2 depicts the simulated images for the synthesized

mask patterns by using the SD and CG methods. Figure 2(a)

shows the desired pattern, which is with a critical dimension

(CD) of 80 nm and consists of 501	 501 pixels with a grid

resolution of 3 nm. As expected, the optical images and the

output patterns on the wafer differ for different input mask

patterns, and the synthesized mask patterns by the SD and

CG methods achieve much smaller pattern errors compared

to that obtained by simply inputting the desire pattern as the

mask pattern. After the same 81 iterations, the CG method

results in a pattern error of 3670 compared to 4408 by the

SD method, which means a performance improvement by

20.1%. Moreover, we compared the output pattern contours

without mask optimization, with the SD optimization

method, and with the CG optimization method. As shown in

FIG. 6. (Color online) (a) Desired pattern, (b) its optical image, and (c) its output pattern on the wafer with a pattern error of 42 066. (d) The synthesized mask

pattern by the SD method after 100 iterations, (e) its optical image, and (f) its output pattern on the wafer with a pattern error of 6781. (g) The synthesized

mask pattern by the CG method after 100 iterations, (h) its optical image, and (i) its output pattern on the wafer with a pattern error of 5372. The horizontal

and vertical axes denote x position and y position of the patterns in nanometers, respectively.
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Fig. 3, it is obvious that the resist contour without mask opti-

mization is a distorted version of the input mask, while this

distortion is corrected dramatically by using the SD or CG

method. From the enlarged views shown in Figs. 3(b) to

3(d), it is also observed that the CG method achieves a rela-

tively smaller contour error than that by the SD method,

especially around the corners, as shown in Fig. 3(c). This is

because the CG method searches a wider solution space and

hence achieves a better solution than the SD method.

Edge placement error (EPE) is popularly used in RETs,

especially in the polygon-based OPC, to convey CD infor-

mation, which is essentially the CD error at one side.48,49

Here, the mean EPE is also introduced to evaluate the opti-

mization effect, which is defined as the weighted average

EPE of all segments

mean EPE ¼

XS

i¼1

xijEPEðpiÞj

XS

i¼1

xi

; (35)

where pi is the ith segment, and S is the total number of

segments. In this work, all the weighted factors xi are set

at 1.

Figure 4 illustrates the convergence comparison, for both

the pattern error and the mean EPE. In Fig. 4(a), the SD

method converges to a pattern error of 4408 with 81 itera-

tions after 1494 s, while the CG method converges to a pat-

tern error of 4362 with 27 iterations after 499 s. The CG

method also converges to a pattern error of 3670 with 81

iterations after 1494 s. From Fig. 4(b), it is interesting to

observe that the mean EPE generally has a positive relation-

ship with the pattern error along with a small local fluctua-

tion. This means that the mean EPE is equivalent to the

pattern error. However, in practice, the mean EPE is rarely

adopted as a cost function in pixel-based OPC, especially in

level-set-based inverse lithography, because the calculation

of the explicit gradient of the mean EPE is too complicated

or even impossible. We therefore directly use the pattern

error as the cost function, as shown in Eqs. (11) and (12) to

guide mask synthesis in this work, but we adopted both the

pattern error and the mean EPE as metrics to evaluate the

FIG. 7. (Color online) Convergence of pattern error and mean EPE by the

SD and CG methods, both for the desired pattern as shown in Fig. 6(a).

TABLE I. Optimization comparison for some typical mask patterns by the SD and CG methods, both using an optimal time step.a

Iteration number to fulfill

10% CD tolerance

Iteration number to fulfill

5% CD tolerance

Mask patterns The SD method The CG method The SD method The CG method

Reduction of pattern error by the CG method

compared to the SD method (%)

Single contact hole 1 1 1 1 4.7

Single bar 1 1 2 2 2.4

Single crossbar 2 2 12 7 12.2

Nine contact holes (sparse)b 6 4 –c 16 26.7

Nine contact holes (dense) 8 6 – – 11.7

Seven bars (sparse) 2 2 2 2 12.0

Seven bars (dense) 7 3 16 9 21.5

Figure 2(a) 3 3 40 13 20.1

Figure 6(a) 16 8 – – 26.2

aAll the target CD of the mask patterns is 80 nm.
bSparse denotes the ratio of CD to pitch is 1:3; Dense denotes the ratio of CD to pitch is 1:2.
c– means that it cannot satisfy the condition.
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optimization effect. As shown in Fig. 4(b), both the SD and

CG methods obtain a mask pattern which can fall within a

5% tolerance of the CD margin, or 4 nm in this case (the tar-

get CD is 80 nm); the CG method, however, needs only 13

iterations to fulfill this goal, while the SD method needs 40

iterations. It is clear that the CG method shows a pronounced

convergence performance with high computational

efficiency.

The normalized image log slope (NILS) is usually used to

evaluate the sensitivity of the mask pattern to dose varia-

tion,50 and is given by

NILS ¼ CD

Ithreshold

dI

dx

����Ithreshold

����
����; (36)

where Ithreshold is the threshold intensity [i.e., tr in our resist

model Eq. (9)], and CD is the critical dimension (80 nm in

this case). A higher value of NILS is preferred in practice.

Figure 5 depicts the mean EPE varying with defocus and

the intensity distribution along a cutline. From Fig. 5(a), it is

revealed that the mask pattern synthesized by the CG method

achieves a wider defocus band in fulfilling a 5% CD toler-

ance. Compared to the mask pattern synthesized by the SD

method, this mask pattern also achieves a lower mean EPE

under the same defocus conditions. In Fig. 5(b), the average

NILS of 12 edge slopes obtained by the CG method is

1.3425 compared to 1.2953 by the SD method, indicating

that the proposed CG method also improves the tolerance to

dose fluctuation. Moreover, the contrast of the optical image

by the CG method is sharply contoured compared to that by

the SD method, as shown in Figs. 2 and 5(b).

FIG. 8. (Color online) (a) Synthesized mask pattern by the CG method with the Euler time step after 151 iterations, (b) its optical image, and (c) its output pat-

tern on the wafer with a pattern error of 4785. (d) The synthesized mask pattern by the CG method with the optimal time step after 81 iteration, (e) its optical

image, and (f) its output pattern on the wafer with a pattern error of 3670. The horizontal axis and vertical axis denote x position and y position of the patterns

in nanometers, respectively.

FIG. 9. (Color online) (a) Convergence of pattern error by the CG method

with the optimal time step and the Euler time step, and (b) the ratio of the

optimal time step to the Euler time step during the evolution, both for the

desired pattern shown in Fig. 2(a).
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Another set of simulations is presented in Figs. 6 and 7,

where the desired pattern has a size of 501	 501 pixels with

a grid resolution of 3 nm. The optimization is terminated af-

ter 100 iterations. Compared to the results by the SD method,

the CG method reduces the pattern error by 26.2%, as shown

in Fig. 6. The CG method also achieves a better convergence

with the same running time (or iteration number) and has a

pronounced improvement in the convergence rate, as shown

in Fig. 7.

It should be noted that the CG method usually achieves a

slightly better mask pattern than the SD method when opti-

mizing a simple mask pattern during our simulation experi-

ments, like a single bar, a single contact hole, a patterns with

very sparse features, etc., but the CG method always results

in a considerable improvement in computational efficiency.

On the other hand, when handling a more complicated mask

pattern, as shown in Figs. 2(a) and 6(a), the CG method out-

performs dramatically over the SD method. From our two

sets of simulations, the CG method has demonstrated the

capacity to reduce the pattern error by more than 20%.

Table I summarizes the optimization performance for some

typical mask patterns by using the SD and CG methods.

We also performed simulations for the mask pattern

shown in Fig. 2(a) by using the CG method with two differ-

ent time steps. The optimization results and the convergence

history are depicted in Figs. 8 and 9, respectively. As illus-

trated in Fig. 9(a), adopting the Euler time step achieves a

pattern error of 4785 with 151 iterations after 2147 s, while

evolving with the optimal time step achieves a pattern error

of 3670 with 81 iterations after 1494 s. It is interesting to

note that the evolution with the optimal time step converges

faster than that with the Euler time step, especially in the first

tens of iterations. Although the proposed method takes more

time in each iteration, the total time is less than that with the

Euler time step (see Table II). Figure 9(b) compares the opti-

mal time step with the Euler time step calculated during the

optimization process. Note that after certain iterations, the

optimal time step size barely changes, indicating that a con-

stant time step size can be used for the subsequent iterations.

Figure 10 depicts the calculated cost function varying

with respect to the time step Dt in the extended Euler time

range of [0.1Dte, 10Dte], by taking the 1st and the 60th itera-

tions as two examples. It is clear that the cost function in

each iteration is approximately convex within the extended

Euler time range, and therefore, a line search method such as

the Golden Section Search method can easily find an optimal

time step.

IV. CONCLUSIONS

This paper proposes two improvements for level-set-

based inverse lithography. One improvement uses the CG

method for optimization. Compared to the conventional SD

method, the CG method results in improved performance

with a lower mean EPE, a wider defocus band, and a higher

NILS, along with a considerable improvement in computa-

tional efficiency. For the second improvement, we introduce

an optimal time step to accelerate the iteration with a higher

efficiency. In addition, we find that the optimal time step

size obtained by a line search method barely changes after

certain iterations, with the result that a constant step size can

then be used for subsequent iterations to decrease computing

time. The proposed method is expected to have applications

in mask optimization and synthesis for optical lithography.
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TABLE II. Comparison of the pattern error and convergence performance by

the CG method with different time steps.

Time step

Pattern

error

Iteration

number

Runtime

(s)

Time/iteration

(s)

The Euler time step 4785 151 2147 14.2

The optimal time step 3670 81 1494 18.5

FIG. 10. Cost function vs time step Dt in the extended Euler time range of

[0.1Dte, 10Dte], where FfMðr; t1 þ DtÞg and FfMðr; t60 þ DtÞg denote the

cost functions in the 1st and the 60th iterations, respectively, and Dte
1 and

Dte
60 representing the corresponding Euler time steps.
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APPENDIX A: DERIVATION OF EQ. (20)

According Ref. 45, the unit outward normal of the boundary of M at r is

~nðrÞ ¼ r/ðrÞ
jr/ðrÞj : (A1)

dM and dr represent the small variations of M and r, respectively. Assuming that each point moves perpendicular to the

boundary, i.e.,~nðrÞ, dM can be expressed as the normal displacement

dM ¼ dr � r/ðrÞ
jr/ðrÞj : (A2)

If the normal evolution velocity is v(r, t), it leads to

dr ¼ vðr; tÞ r/ðrÞ
jr/ðrÞj : (A3)

Noticing Eqs. (A1)–(A3), we can therefore derive dF{M} as

dF Mf g ¼
X
rFfMg � dMðrÞ ¼

X
rF Mf g � r/ðrÞ

jr/ðrÞj � dr ¼
X
rF Mf g � r/ðrÞ

jr/ðrÞj � vðr; tÞ � r/ðrÞ
jr/ðrÞj

¼
X
rFfMg � vðr; tÞ: (A4)

APPENDIX B: DERIVATION OF EQ. (21)

To derive the gradient in Eq. (21), we first give some useful intermediate results as

@sigðxÞ
@x

¼
@

1

1þ e�aðx�trÞ

@x
¼ a � 1

1þ e�aðx�trÞ

� �2

�
�

e�aðx�trÞ
	
¼ a � 1

1þ e�aðx�trÞ

� �
� 1� 1

1þ e�aðx�trÞ

� �
¼ a � sigðxÞ � ½1� sigðxÞ�; (B1)

and

@½hðrÞ �MðrÞ�
@MðqÞ ¼

@
hX

s
hðr� sÞMðsÞ

i
@MðqÞ ¼ hðr� qÞ; (B2)

where r, s and q denote the spatial coordinates (x, y).

As M(r) is real, we express Ii as

Ii ¼ jhiðrÞ �MðrÞj2 ¼ ½hiðrÞ �MðrÞ� � ½h†
i ðrÞ �MðrÞ�: (B3)

Then, the derivation of Ii with respect to M(q) is

@Ii

@MðqÞ ¼
@f½hiðrÞ �MðrÞ� � ½h†

i ðrÞ �MðrÞ�g
@MðqÞ

¼ @½hiðrÞ �MðrÞ�
@MðqÞ � ½h†

i ðrÞ �MðrÞ� þ @½h
†
i ðrÞ �MðrÞ�
@MðqÞ � ½hiðrÞ �MðrÞ�

¼ hiðr� qÞ � ½h†
i ðrÞ �MðrÞ� þ h†

i ðr� qÞ � ½hiðrÞ �MðrÞ�: (B4)

Noticing the definition of Z(r) in Eq. (10), finally we can derive the gradient of the cost function F{M} with respect to M(q) as
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rF Mf g ¼ @FfMðrÞg
@MðqÞ ¼

@kZ � Z�k2
2

@MðqÞ ¼
X

r
ðZ � Z�Þ � @Z

@MðqÞ ¼ a �
X

r
ðZ � Z�Þ � Z � ð1� ZÞ �

@
X

i
liIi

@MðqÞ

¼ a �
X

i
li �

X
r
ðZ � Z�Þ � Z � ð1� ZÞ � @Ii

@MðqÞ


 �

¼ a �
X

i
li �

X
r
ðZ � Z�Þ � Z � ð1� ZÞ � ðh†

i �MÞ � hiðr� qÞ

þ
X

r
ðZ � Z�Þ � Z � ð1� ZÞ � ðhi �MÞ � ½hiðr� qÞ�†

8<
:

9=
;

¼ a �
X

i
li �

X
r
ðZ � Z�Þ � Z � ð1� ZÞ � ðh†

i �MÞ � hi
f lipðq� rÞ

þ
X

r
ðZ � Z�Þ � Z � ð1� ZÞ � ðhi �MÞ � ½hi

f lipðq� rÞ�†

8<
:

9=
;

¼ a �
X

i
li �

hi
f lip � ½ðZ � Z�Þ � Z � ð1� ZÞ � ðh†

i �MÞ�
þðhi

f lipÞ† � ½ðZ � Z�Þ � Z � ð1� ZÞ � ðhi �MÞ�

( )

¼ a
XQ

i¼1

lihi
f lip � ½ðZ � Z�Þ � Z � ð1� ZÞ � ðh†

i �MÞ� þ a
XQ

i¼1

ðlihi
f lipÞ† � ½ðZ � Z�Þ � Z � ð1� ZÞ � ðhi �MÞ�

�
:

()(

(B5)

APPENDIX C: DERIVATION OF EQ. (33)

Based on Eq. (32), the gradient of the TV regularization

R(M) is

rRðMÞ ¼ r
ð
jrMjdr ¼ r

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
dxdy

¼ � @

@x

Mxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q � @

@y

Myffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
¼ �r � rM

jrMj

� �
: (C1)

Here, Mx ¼ @M=@x and My ¼ @M=@y. In order reduce the

value of R(M) in the iteration process, the evolution velocity

should be along the negative direction of rRðMÞ, that leads

to Eq. (33)

rðr; tÞ ¼ r � rM

jrMj

� �
: (C2)
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