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Context-aware pervasive software is responsive to various contexts and their changes. A faulty 

implementation of the context-aware features may lead to unpredictable behavior with adverse effects. In 

software testing, one of the most important research issues is to determine the sufficiency of a test suite to 

verify the software under test. Existing adequacy criteria for testing traditional software, however, have 

not explored the dimension of serial test inputs and have not considered context changes when 

constructing test suites. In this paper, we define the concept of context diversity to capture the extent of 

context changes in serial inputs and propose three strategies to study how context diversity may improve 

the effectiveness of the data flow testing criteria. Our case study shows that the strategy that uses test 

cases with higher context diversity can significantly improve the effectiveness of existing data flow testing 

criteria for context-aware pervasive software. In addition, test suites with higher context diversity are 

found to execute significantly longer paths, which may provide a clue that reveals why context diversity 

can contribute to the improvement of effectiveness of test suites. 
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1. INTRODUCTION 

Context-aware pervasive software (CPS) applications capture the evolution of the 

computing environment as contexts, and self-adapt their behavior dynamically 

according to such contexts [Lu et al. 2008]. For example, a smart phone equipped 

with sensors may continuously sample the user’s contexts such as locations and 

activities, and use them as further inputs to switch among its modes: When receiving 
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a coming call, it may vibrate silently when the user is presenting a report in a 

meeting room, or may beep loudly when the user is watching a football game at home. 

This class of applications is increasingly deployed in our everyday environments. 

At the same time, their failures, if any, increasingly affect our daily living. It is 

critical to assure their quality. 

Software testing is the most widely used approach in the industry to assure the 

quality of programs [Bertolino 2007]. In the testing process, test inputs known as test 

cases are applied to the program under test to verify whether the execution results 

agree with the expected outcomes. Any disagreement between the two shows that the 

execution of the test case against the program reveals a failure of the program under 

test. Every such failure is due to a fault, which means an incorrect step in a program. 

However, it is well known that testing techniques can only reveal failures but 

cannot prove the absence of faults [Ammann and Offutt 2008], and it is impractical to 

exhaustively test the program with nontrivial input domains [Weyuker and Ostrand 

1980]. As such, a central problem in software testing research is to determine when 

to stop the testing process, which gives birth to research in test adequacy criteria 

[Hutchins et al. 1994]. Specifically, a collection of test cases, known as a test suite, is 

said to be adequate if it satisfies a specific test adequacy criterion. A simple test 

adequacy criterion is statement coverage [Zhu et al. 1997], where every statement in 

the code is executed at least once by the test suite. More advanced test adequacy 

criteria have been introduced in the literature. An important class of such criteria is 

the data flow testing criteria, which examine how well test cases cover the execution 

paths between data definitions and their corresponding data usage in the program 

under test [Frankl and Weyuker 1988]. Data flow testing criteria have been widely 

regarded to be highly effective, which have been validated by numerous empirical 

studies [Hutchins et al. 1994, Frankl and Weiss 1993, Offutt et al. 1996]. 

Traditional test adequacy criteria may, however, fail to perform effectively on 

some classes of applications due to domain-specific features. As such, domain-specific 

data flow testing criteria have been proposed to address this problem. Examples 

include test adequacy criteria for database-driven applications [Kapfhammer and 

Soffa, 2003], service-oriented workflow applications [Mei et al. 2008], and CPS 

applications [Lai et al. 2008; Lu et al. 2006; 2008] to address the challenges due to 

embedded SQL statements, XML and XPath constructs, and dynamic evolutions of 

contexts in the program environment, respectively. 

In general, test cases for CPS applications consist of sequences of context values. 

For instance, the smart phone takes location, activity sequences such as meeting 

room, present report and home, watch football as inputs. Context values are 

usually noisy and error-prone [Chen et al. 2011]. CPS applications running with 

reference to these context values are, however, expected to compute results that 

agree with the users’ intuitions on CPS applications perceived from the surrounding 

environment. 

Our experience in conducting the experimentation for the above criteria for CPS 

applications [Lu et al. 2006] show that CPS programs over different context 

sequences serving as inputs may follow the same program path, and yet the fault 

detection ability of these context sequences may be significantly different. This leads 

us to develop our work in Wang and Chan [2009], which proposes the notion of 

context diversity to measure the extent of context changes inherent in sequences of 

context values. For example, the context diversity for the sequences meeting room, 

present report and home, watch football is 2 after summing up the context changes 
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in the dimensions of location (where “meeting room” is different from “home”) and 

activity (where “present report” is different from “watch football”). 

This paper extends our previous work [Wang and Chan 2009] to study how 

context diversity affects the effectiveness of data flow testing criteria in exposing 

faults in CPS applications. Specifically, we study three strategies, namely, CARS-H, 

CARS-L, and CARS-E, to select test cases with higher, lower, and more evenly 

distributed context diversity in constructing test suites that are adequate with 

respect to the data flow testing criteria. To study these effects, we report a new 

multi-subject case study using the popular and representative data flow testing 

criteria on the three CPS benchmarks with a total of 8,097 lines of code, 30,000 test 

cases, 959 faulty versions produced through mutation analysis [Andrews et al. 2006; 

Budd et al. 1980], and 43,200 adequate test suites. Our case study covers all the 

benchmarks used in representative previous work such as Lu et al. [2008], Wang et 

al. [2007], and Zhai et al. [2010; 2012]. 

The experimental results in the case study show that CARS-H and CARS-E can 

improve the effectiveness of data flow testing criteria by 10.6−22.1% and 0.8−5.3%, 

respectively, while CARS-L can be 2.0−22.2% less effective. Considering that data 

flow testing criteria have been deemed by many researchers to be highly effective test 

adequacy criteria to expose faults, the experimental results indicate that the 

additional boost by CARS-H in terms of test effectiveness is significant. The contrast 

between CARS-H and CARS-L further confirms that the difference is not by chance. 

Moreover, the ineffectiveness of evenly distributed test case diversity (demonstrated 

by CARS-E) in the CPS domain points out potential further research in random 

testing and adaptive random testing. 

The main contribution of this paper is threefold: (i) It is the first work to 

formulate strategies to modify the context-awareness distribution of adequate test 

suites. (ii) We report one of the largest case studies on the effectiveness and 

ineffectiveness of testing strategies for CPS applications. (iii) We propose the notion 

of context diversity and provide the first empirical evidence to demonstrate its 

usefulness in enhancing the effectiveness of testing CPS applications. 

The rest of the paper is organized as follows: Section 2 reviews related work. 

Section 3 introduces the fundamental concepts in this paper and formulates our test 

suite construction strategies. Section 4 presents the research questions and explains 

the setup of the case study. Section 5 summarizes the analysis results. Section 7 

discusses the applicability of traditional data flow adequacy criteria to pervasive 

software, and Section 5.5 concludes the paper. 

2. RELATED WORK 

Many researchers proposed various verification techniques and methodologies to 

assure the quality of CPS applications. Tse et al. [2004] advocated the use of 

metamorphic relations among different contexts to alleviate the test oracle problem. 

Lu et al. [2006; 2008] identified new data flow associations that projected the effects 

of context changes on the traditional control flow graphs of CPS applications, and 

proposed a family of test adequacy criteria. Wang et al. [2007] proposed to 

manipulate the interleaving of multithreaded components with respect to a set of 

program call sites where context changes may affect the program states, and further 

recommended a set of control-flow testing criteria to exercise all these program 

points. Lai et al. [2008] proposed a set of coverage-based test adequacy criteria to 

expose interrupt-based faults in nesC programs while the programs re-adjusted their 

behavior to new contexts. Our technique proposed in the present paper can be 
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integrated with these coverage-based criteria by selecting test cases with different 

context-diversity optimization objectives when constructing the corresponding 

adequate test suites. 

To determine the adequacy of a test suite, a technique usually involves two 

components. First, it should statically analyze the set of program elements to be 

exercised by the test suite. Second, it should dynamically monitor the executions of 

selected test cases against the program to determine the coverage achieved with 

respect to the exercised program elements. 

It is well known that static analysis to compute the data definition-usage 

associations in a program suffers from severe problems [Santelices and Harrold 2007] 

when program variables span across multiple procedures, when variables are aliased, 

or if the program involves concurrent components. Fortunately, the scalability issues 

in point-to analysis have been significantly alleviated in recent years [Lhotak and 

Chung 2011; Kastrinis and Smaragdakis 2013]. They help make the static analysis 

in data flow testing more practical. 

When applying a data flow adequacy criterion, it generally requires executing test 

cases against the program to determine the achieved coverage (Frankl and Weyuker, 

1988, Hassan and Andrews 2013). Unfortunately, the overhead of runtime 

monitoring with respect to data flow adequacy criteria is very high due to the need of 

profiling data accesses in the course of program executions. For instance, to profile 

the data accesses from the executions of C/C++ programs via the popular Pin 

framework, the overhead can be as high as almost a 100-fold slowdown [Luk et al. 

2005]. This high runtime overhead problem is further amplified by the fact that data 

flow test adequacy criteria are demanding to be satisfied [Weyuker 1990, Hassan and 

Andrews 2013]. Hence, blindly applying more test cases to a program may not 

effectively exercise more program elements that are identified to be not covered by 

previous executions. This issue still prevents these test adequacy criteria from being 

adopted by the industry to test large-scale applications [Yang et al. 2009]. Significant 

researches should be made so that data flow testing to assure CPS applications can 

be applied in practice. 

To address these issues, the present work contributes by studying the application 

of context diversity. As we have described in Section 1, context diversity is a notion 

that measures the properties of test cases without exercising the program and does 

not rely on the source code of the program. Test case selection among a set of 

candidates can be performed by simply using an effective mechanism to guide the 

process. With respect to this selection problem, our case study shows that using the 

CARS-H strategy can be significantly more effective than not using it. 

Static verification approaches have been proposed to assure the quality of CPS 

applications. Specification and Description Language (SDL) [Belina and Hogrefe 

1989] and Message Sequence Charts (MSC) [Alur and Yannakakis 1999] are two 

well-known formal techniques to model the interactions among system components of 

pervasive software. They use formal analysis tools (such as the ObjectGeode1 tool set) 

to verify specific objectives (such as deadlocks, livelocks, and the possibility of 

reaching a particular state during exploration). Roman et al. [1997] modeled a mobile 

software application in Mobile UNITY and verified the model against the specified 

properties, particularly the mobility aspects of the software. Murphy et al. [2006] 

proposed to represent contexts as tuples, and contexts are captured when constraints 

on contexts are activated. Sama et al. [2010] verified the conformance between the 

 
1 Available at http://www.verilog.org/. 
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adaptive behavior of a program and a set of proposed patterns, which is concerned 

with discovering faults in context-awareness and adaptation behavior of an 

application. By dividing the whole adaptive program into non-adaptive functional 

parts and adaptive ones, Zhang and Cheng [2006] proposed a model-driven approach 

using Petri Nets for developing adaptive systems. Zhang et al. [2009] also presented 

a modular A-LTL (an extension of Linear Temporal Logic with adapt operators) 

model-checking approach to verifying the adaptation properties of such systems. 

Kacem et al. [2009] proposed a coordination protocol for distributed adaptation of 

component-based systems. They then used colored Petri nets to model the key 

behavioral properties of coordination and conducted CTL (Computational Tree Logic) 

model checking to assess the correctness of the models and protocols. Xu et al. [2013] 

automatically inferred domain and environment models to suppress false alarms in 

state transitions for rule-based context-aware systems. Yang et al. [2013] employed 

logical time to model the temporal evolution of environment states as a lattice, used a 

formal language to model the specification of dynamic properties over the traces of 

environment state evolution, and applied the SurfMaint algorithm to achieve 

runtime maintenance of the active surface of the lattice. Static verification 

techniques, however, usually suffer from the scalability issue: They are only suitable 

for small programs but not large scale applications [D’Silva et al. 2008]. Different 

from these verification efforts, our technique does not assume the presence of model-

based artifacts and use runtime coverage information and context diversity to 

facilitate the testing of CPS applications. 

The idea of evaluating the quality of a test suite is not new. Harder et al. [2003] 

proposed to add test cases to a test suite incrementally until the operational 

abstraction of the test suite is not changed by the next candidate test case. On the 

other hand, our technique selectively replaces an existing test case of a test suite by a 

candidate test case if the context diversity of the test suite can be enhanced by such a 

replacement. Jeffrey and Gupta [2007] employed multiple coverage-based testing 

criteria to resolve tie cases. A key difference between our strategy and their work is 

that they tried to retain all redundant test cases with respect to the primary test 

adequacy criterion as long as they satisfy additional requirements with respect to 

some complementary criteria. Lin and Huang [2009] proposed to control the sizes of 

the reduced test suites by picking up only one test case that contributes the most to 

the complementary criteria from all redundant test cases with respect to the primary 

test adequacy criterion. Still, the reduced test suite produced by their algorithm may 

be redundant with respect to the primary criterion. In contrast, the essential idea of 

our proposed strategy is to replace one test case by another  it does not retain any 

redundant test case with respect to any test adequacy criterion. More importantly, 

our technique introduces much less overhead to testers because they can derive 

context diversity from test inputs without program execution while all the other 

techniques discussed in this paragraph need to execute programs to collect runtime 

white-box information. 

Last but not least, the strategy proposed in this paper is open to a variety of 

choices of other test adequacy criteria. For instance, one may integrate our approach 

with the ideas of Heimdahl and George [2004] to obtain testing items (such as 

variables, transitions, and conditions/decisions) defined by formal software 

specifications. One may also combine our approach with the idea of von Ronne [1999] 

to derive requirements that each testing item needs to be covered multiple times 

before they are considered sufficiently exercised. In addition, one may also combine 

our approach with the failure-pursuit sampling strategy proposed by Leon and 
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Podgurski [2003]. That is, after clustering all test cases based on their execution 

profiles, one test case in each cluster is randomly selected to execute; if it succeeds to 

find a failure, its k nearest neighbors (which may cross the boundary of clusters) are 

also selected to execute. Thus, the idea of our approach is general and versatile. 

3. FUNDAMENTAL CONCEPTS AND PROPOSED STRATEGIES 

In this section, we present the fundamental concepts and notation in our model for 

CPS applications and testing, as well as our proposed strategies. 

3.1 Context-Aware Pervasive Software 

A context variable v is a characterization of the contexts [Lu et al. 2006; 2008]. We 

follow Xu et al. [2010] to model a context variable as a tuple field1, field2, …, fieldu 

such that each fieldw (w = 1, 2, …, u) is an environmental attribute of a CPS 

application. A context instance (denoted by ins(v)) is an instantiated context variable 

such that every field in v is given a value. A context stream, denoted by cstream(v), is 

an input to a CPS application. It is a time series of the form         ,         , …, 

        , where each          (for s = 1, 2, …, m and ts < ts+1) in cstream(v) is a 

context instance sampled at time ts. 

For example, the smart phone mentioned above has a two-dimensional context 

variable location, activity. When a user presents a report in a meeting room, the 

context variable is initialized as a context instance meeting room, present report. As 

time goes on, the context stream sequence captures a series of activities, beginning 

with meeting room, present report, followed by meeting room, discuss, and finally 

home, watch football. 

3.2 Context Diversity 

Context diversity (denoted by CD) [Wang and Chan 2009] measures the number of 

context changes inherent in a context stream. For any given context stream 

cstream(v), it computes the total Hamming distance2 [Hamming 1950, Forney 1966] 

between all pairs of consecutive context instances, and is defined as: 

                        
   
    

Each                       is the Hamming distance between the pair of context 

instances                       for i = 1, 2, ..., L–1, where L is the length of the context 

stream. Consider the context stream example in Section 3.1. For the context stream 

(meeting room, present report, meeting room, discuss, home, watch football), the 

Hamming distance between meeting room, present report and meeting room, 

discuss is 0 + 1 = 1, and that between meeting room, discuss and home, watch 

football is 1 + 1 = 2. Hence, the context diversity of the sequence is given by the total 

Hamming distance of 3. 

3.3 Data Flow Testing Criteria 

Data flow testing criteria can be defined in terms of a Control Flow Graph (CFG) that 

models the program structure. A CFG is a directed graph that consists of a set N of 

nodes and a set E   N × N of directed edges between nodes. Each node represents a 

 
2 Hamming distance was originally proposed by Hamming [1950] for binary tuples, but was generalized to 

cover tuples of the form field1, field2, …, fieldu such that the number of possible values in each fieldi is 

finite. See, for example, Forney [1966]. 
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block of simple statements executed sequentially, and each edge represents execution 

transfer among nodes. All the nodes in a CFG have both inward and outward edges 

except the begin node and the end nodes. The begin node has no inward edge since it 

defines where the execution starts, while an end node has no outward edge since it 

defines where the execution ends. A complete path is a path from the begin node to an 

end node. For instance, the CFG for computeAverage() is shown in Figure 1. It 

returns the average of all the numbers in the input array within the range [MIN, 

MAX]. The maximum size of the array is AS. The actual array size can be smaller 

than AS, in which case the end of input is represented by –999. For ease of reading, 

we label each node in Figure 1(b) as start, A, B, C, …, end. 

 

A. i=0; ti=0; 

tv=0; 

sum=0;

B. ti<AS&&value[i]

!=-999

C. ti++;

true

D. value[i]>=MIN

&&value[i]!=-999

true

E. tv++;

 sum+=value[i];

F. i++;

false

G. tv>0

H. 

av=(double)

sum/tv;

I. 

av=(double)

-999;

J. return av;

false

true
false

start

end

 
(a) Source code (b) Control flow graph 

Fig. 1. Source code and control flow graph for computeAverage(). 

Data flow testing criteria are related to the occurrences of variables within the 

program. A variable x has a definition occurrence in node n if the value of x is stored 

in a memory location during the execution of n. A variable x has a use occurrence in 

node n if the value of x is fetched during the execution of n. A use occurrence of a 

variable can be further classified as a predicate use (p-use) in a condition node (which 

contains conditional statements such as if-statements or while-statements) or a 

computation use (c-use). For example, the variables i, ti, tv, and sum are defined in 

node A, while ti has a p-use in node B and a c-use in node C. 

A path in a CFG is definition clear with respect to x if none of the nodes in the 

path (other than the first and the last node) defines x. The relation def_clear(x, ni, nj) 

double computeAverage(int[] values[], int AS, int 

MIN, int MAX) { 

int i, ti, tv, sum; 

double av; 

A. i = 0; ti = 0; tv = 0; sum = 0; 

B. while (ti < AS && value[i] != –999) { 

C.     ti++; 

D.     if (value[i] >= MIN && value[i] != –999) { 

E.         tv++; 

        sum += value[i]; 

    } 

F.     i++; 

} 

G. if (tv > 0) 

H.     av = (double) sum / tv; 

else 

I.     av = (double) –999; 

J. return av; 

} 
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denotes a definition-clear path with respect to x from ni to nj. For this relation, a 

definition of x at node ni is a reaching definition of node nj and a use of x at node nj is 

a reaching use of node ni. A def-use association (du-association for short) is defined as 

a triple (x, ni, nj) such that x is used at node nj, and ni is a reaching definition of node 

nj. The triple (x, ni, nj) is covered by a path p if p is definition clear with respect to x 

and both ni and nj are in p. For instance, there is a definition-clear path with respect 

to values[] from node start to end because it does not redefine values[]. Hence, we 

have a du-association (values[], start, end). In contrast, a path with respect to ti from 

node A to C is not definition clear because ti is redefined in node C. Furthermore, 

simple paths and loop-free paths are defined to avoid an infinite number of 

definition-clear paths in programs with loops. A simple path is one in which all nodes, 

except possibly the first and the last, are distinct. A loop-free path is one in which all 

nodes are distinct. 

Frankl and Weyuker [1988] proposed a family of data flow testing criteria. The 

criterion All-Defs (AD) requires that for each definition of the variable x in node ni, 

there is a complete path that includes a definition-clear path from ni to nj such that 

there is a c-use of x in nj or a p-use of x immediately before nj. For example, the 

variable tv is defined in node A and has a c-use in node E, and there is a definition-

clear path A–B–C–D–E from node A to E. It needs a complete path start–A–B–C–D–

E–F–G–H–J that includes the definition-clear path A–B–C–D–E to satisfy the AD 

criterion. The criterion all-C-Uses (CU) requires that for each definition of the 

variable x in node ni, there is a complete path that includes a definition-clear path 

from ni to all the nodes nj such that there is a c-use of x at nj or a p-use of x 

immediately before nj. For instance, the variable ti is defined in node A and has a c-

use in node C, and there is a definition-clear path A–B–C from A to C. We can find a 

complete path start–A–B–C–D–E–F–G–H–J that includes the definition-clear path A–

B–C to satisfy the CU criterion. The criterion all-P-Uses (PU) is similar to CU, except 

that it exercises all the p-uses of the variable in question. For example, the variable 

tv is defined in node A and has a p-use in node G, and A–B–G is a definition-clear 

path. We can find a complete path start–A–B–G–H–J that includes the definition-

clear path A–B–G to satisfy the PU criterion. The criterion all-P-Uses/some-C-Uses 

(PUCU) is similarly defined. It is identical to the criterion PU when the variable has 

no c-use, and reduces the criterion to some-c-uses if the variable has no p-use, such 

that for each variable x, there are complete paths that include definition-clear paths 

from the definition of x to some nodes that have a c-use of x. Consider the variable i 

defined in node A that has no p-use but a c-use in statement 10. A complete path 

start–A–B–C–D–F–G–H–J that includes the definition-clear path A–B–C–D–F can be 

used to cover the criterion PUCU. Similarly, the criterion all-C-Uses/some-P-Uses 

(CUPU) is equivalent to CU if a variable has no p-use, and reduces to the criterion 

some-p-uses if the variable has no c-use. For instance, the variable value[] is defined 

when computeAverage() is called and has no c-use but a p-use in node D. A complete 

path start–A–B–C–D–E–F–G–H–J that includes the definition-clear path A–B–C–D 

can be used to cover the criterion CUPU. The criterion All-Uses (AU) produces a set 

of complete paths due to both the criteria PU and CU. The criterion all-DU-paths is 

the strictest test adequacy criterion, namely, that for each variable x defined in any 

node ni, test cases must traverse complete paths that include (a) all definition-clear 

simple paths from ni to all the nodes nj such that there is a c-use of x in nj and (b) all 

definition-clear loop-free paths from ni to all the nodes nj such that there is a p-use of 

x immediately before nj. 
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3.4 Baseline Test Suite Construction Strategy (BS) 

We will compare our proposed strategies for enhancing the effectiveness of test suite 

construction with a baseline strategy based on Frankl and Weyuker [1988]. First, we 

present the baseline test suite construction strategy in Algorithm 1 below. It 

constructs a random test suite with respect to a test adequacy criterion C. It first 

initializes a test suite S as an empty set. It then randomly selects a test case t from 

the test pool using the function randomSelect(1)3. We use another function coverage: 

C  S  [0, 1] to return the percentage of coverage items (such as the percentage of 

program statements for statement coverage) with respect to the criterion C fulfilled 

by the test suite S. A test suite is said to be adequate if the returned value is 100%. If 

the combined code coverage achieved by S  {t} against test adequacy criterion C via 

the function coverage(C, S  {t}) is higher than that of S via coverage(C, S), the test 

case t is added to S. The algorithm iterates until it either achieves 100% test 

coverage or reaches an upper bound M of the number of selection trials. Following 

the setting of [Lu et al. 2008], we set M = 2000. For ease of reference, we will refer to 

Algorithm 1 as BS. 

ALGORITHM 1. Baseline Strategy (BS) to Construct Test Suites 

Inputs: 

M: upper bound of the number of selection trials (a nonnegative integer) 

C: test adequacy criterion 

Output: 

S: C-adequate test suite 

a1:   integer trial = 0; // no. of selection trials made 

a2:   S = { }; 

a3:   while (coverage(C, S) < 100%  trial < M) { 

a4:      trial ++; 

a5:      t = randomSelect(1); // randomly select a test case from the 

test pool 

a6:      if (coverage(C, S  {t}) > coverage(C, S)) 

a7:         S = S  {t}; // keep the test case in S 

a8:      } 

a9:   return S; 

 

Suppose, for example, that we would like to construct a test suite S to satisfy the 

criterion AU for computeAverage() in Figure 1. At the beginning, coverage(AU, S) = 0 

because no test case is included in S (= {}). Suppose AS, MIN, and MAX are global 

constants that are shared by all test cases and are set to the values of 5, 0, and 100, 

respectively. Then, a test case t = [1, 1, –999] increases the coverage of S with respect 

to AU by exercising the complete path start–A–B–C–D–E–F–G–H–J, and hence t is 

included in S (= {t}) based on condition a6. In contrast, the test case t' = [2, 3, –999] is 

excluded from S because t' shares the same complete path with t and does not 

increase coverage(AU, S). 

BS not only selects test cases randomly, but also resolves ties randomly. In 

essence, if both S  {t} and S  {t'} achieve the same coverage with respect to a 

criterion C (that is, coverage(C, S  {t}) = coverage(C, S  {t'})), BS makes a random 

selection between t and t' for inclusion in the updated test suite S. 

 
3 In general, the function randomSelect(k) randomly selects k candidate test cases from the test pool of the 

benchmark. We assume the existence of a test pool for data flow testing. Interested readers may refer to 

Edvardsson [1999] for approaches to generate test cases for the test pool. 
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3.5 Context-Aware Refined Strategies (CARS) 

We formulate a family of three strategies, each of which aims at changing the 

concentration of context diversity in an adequate test suite during the construction of 

that test suite. We refer to these three strategies as CARS-H (Context-Aware 

Refined Strategy with High context diversity), CARS-L (Context-Aware Refined 

Strategy with Low context diversity), and CARS-E (Context-Aware Refined Strategy 

with Evenly-distributed context diversity). 

The strategies are presented collectively in Algorithm 2. First, it initializes an 

empty set S of test cases. It then calls select(k, T, strategy) to return a test case t. If 

the coverage achieved by S  {t} is higher than that of S alone with respect to the 

given criterion C, the test case t is added to S. The algorithm then iterates until 

either the coverage achieved by S is 100% or the process has been repeated M times. 

On the other hand, if the coverage achieved by S  {t} is not higher than that of S 

alone, Algorithm 2 calls replace(C, S, t, strategy) to select a test case t' from S, remove 

t' from S, and add t to S. 

ALGORITHM 2. Context-Aware Refined Strategy (CARS) to Construct Test Suites 

CARS(M, C, k) select(k, S, strategy) replace(C, S, t, strategy) 

Inputs: 

M: upper bound of the 

number of selection trials 

(a nonnegative integer) 

C: test adequacy criterion 

k: size of candidate test suite 

Inputs: 

k: size of candidate test suite 

S: test suite under 

construction 

strategy: CARS-H, CARS-L, 

or CARS-E 

Inputs: 

C: test adequacy criterion 

S: C-adequate test suite 

strategy: CARS-H, CARS-L, or 

CARS-E, 

t: a test case 

Output: S: C-adequate test 

suite 

Output: x: a test case Output: y: a test case 

b1:   int trial = 0; 

// no. of selection trials 

b2:   S = { }; 

b3:   while (coverage(C, S) < 

100% and trial < M) { 

b4:      trial ++; 

b5:      t = select(k, S, strategy); 

b6:      if (coverage(C, S  {t}) 

> coverage(C, S)) 

b7:         S = S  {t}; 

b8:      else { 

b9:         t' = replace(C, S, t, 

strategy); 

b10:        if (t' is not empty) 

b11:            S = (S  {t}) \ {t'}; 

b12:     } 

b13:  } 

b14:  return S; 

c1:                   ; 

c2: if strategy is CARS-H; 

c3:       such that    

                   for 

all        ; 

c4: if strategy is CARS-L 

c5:       such that    

                   for 

all        ; 

c6: if strategy is CARS-E 

c7:       such that    

                    for 

all       , where D(t, S) 

= ∑ sS |CD(t) – CD(s)|; 

c8: return x; 

d1: R = 

                      

                           ; 

d2: if strategy is CARS-H 

d3:                      

                  ; 

d4: if strategy is CARS-L 

d5:                  

{         <     }; 

d6: if strategy is CARS-E; 

d7:                  

                      

               and D(t, T) = 

∑ sT |CD(t) – CD(s)|; 

d8: return y; 

 

The function select(k, S, strategy) first calls randomSelect(k) to construct a 

candidate test suite T' by randomly selecting k candidate test cases from the test pool 

and returns one specific test case from T' based on the chosen selection strategy: For 

CARS-H (and CARS-L, respectively), it selects an element from T' with the 
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maximum (and minimum, respectively) context diversity. For CARS-E, it applies 

adaptive random testing [Chen and Merkel 2008] that aims at spreading the context 

diversity values of a test suite evenly, and selects an element from T' that maximizes 

the sum of context diversity differences between this element and every test case in S. 

Note that if one selects an element from T' randomly, it is simply the BS strategy. 

The function replace(C, S, t, strategy) is to find a specific test case y from S to be 

substituted by the candidate test case t identified by select(k, S, strategy) in order to 

construct an updated test suite (in lines b10 and b11 of Algorithm 2), subject to the 

condition that the coverage of the test suite S before and after this substitution 

remains unchanged. 

The function replace(C, S, t, strategy) first finds a test case t1 that can be 

substituted by t without affecting the coverage achieved by S (that is, coverage(C, S) 

= coverage(C,                )), and adds t1 to test suite R. It then selects a test case y 

from R based on the chosen strategy of Algorithm 2: For CARS-H, it selects a test 

case tL from R with minimum context diversity (that is, min(U)) subject to the 

condition that t1 must exhibit lower context diversity than the given test case t (that 

is,                       ). The selection criterion for CARS-L is similar to that of 

CARS-H, except that it selects test cases with higher (instead of lower) context 

diversity than t from R, and then replaces the test case t1 that has the maximum 

(instead of minimum) context diversity with t. For CARS-E, it selects all the test 

cases from R that have lower distances from the test set S  {t} than t does, and then 

substitutes the test case t1 that has lowest distance from S  {t} by t. 

Let us further explain CARS using our example in Section 3.5. Suppose we aim to 

select test cases with high context diversity and hence prefer strategy CARS-H. 

When k is set to a value of 2, we have two candidate test cases [2, 3, –999] and [3, 3,  

–999] in T and f1(k, S) returns t = [2, 3, –999], which carries the highest context 

diversity among test cases in T. Suppose S contains one test case t'= [1, 1, –999]. 

Then, t shares the same complete path with test case t' and does not increase the 

coverage of S with respect to AU, and hence we enter statements b9−b11 in Algorithm 

2. The function R(AU, {t'}, t) produces {t} because coverage(AU, {t'}) = coverage(AU, {t}) 

and CD(t') = 1 < CD(t) = 2. The function f2(AU, {t'}, t) produces t' because t' carries 

the lowest context diversity among test cases returned by R(AU, {t'}, t). (For this 

particular example, in fact, R(AU, {t'}, t) returns only one test case t'.) Finally, we 

replace t' by t in b11 and obtain S = {t}. 

Different from BS (which is blind to context diversity), CARS uses the context 

diversity of the test case in two different dimensions. In the data sampling stage, BS 

simply randomly selects a test case from the test pool without reference to any 

context diversity information (a5 in BS), while CARS aims to change the context 

diversity distribution of the whole test set by favoring different test cases (b5 in 

CARS()): If the goal is to achieve higher context diversity (c2 in select()), it favors test 

cases with the highest context diversity (c3). It selects test cases with the lowest 

context diversity (c5) if it aims to achieve lower context diversity (c4). It selects test 

cases with the longest distances from the existing test suite (c7) if it targets to evenly 

distribute the context diversity of the test suite. Moreover, when a selected test case 

cannot improve the overall test coverage achieved by the test suite, BS simply drops 

the test case (a7 and a8 in BS) while CARS uses the context diversity information of 

the test case to solve the tie case (b8–b12 in CARS()): For CARS-H, it selects a test 

case with the lowest context diversity to substitute (d3). In contrast, CARS-L selects 

a test case with the highest context diversity to replace (d5). CARS-E picks up a test 

case with the shortest distance from the existing test suite to replace (d7). 
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4. CASE STUDY 

4.1 Research Questions 

We study the following research questions in the case study: 

RQ1: How do context changes inherent in individual test cases affect the test 

effectiveness of coverage-based adequate test suites in assuring CPS applications? 

RQ2: For test effectiveness, is there any correlation between the context diversity 

and the white-box measures of the runs? 

In general, some adequate test suites can achieve much higher test effectiveness 

than other adequate test suites with respect to the same test adequacy criterion. It is 

impossible, of course, to predict the effectiveness of a test suite before execution. On 

the other hand, testers do not like to put in extra effort in constructing an adequate 

test suite only to find that the test suite is ineffective. This problem is fundamental 

and must be addressed. As such, we want to know whether there is any good method 

that is likely to improve the probability of finding an adequate test suite with higher 

test effectiveness than a test suite that minimally satisfies the same test adequacy 

criterion. 

RQ1 examines the input value dimension of individual test cases to determine 

whether this dimension provides a good source of information to steer the selection of 

adequate test suites with higher test effectiveness (compared with the average case). 

To the best of our knowledge, our study of RQ1 contributes as the first work to 

address the problem in the testing of CPS applications. 

RQ2 attempts to deepen our understanding of why a black-box metric for CPS 

applications can affect the fault detection capability of a white-box testing criterion. 

It is well known that black-box metrics and white-box metrics have the potential to 

complement each other. Nonetheless, to the best of our knowledge, no empirical 

result has been reported in the literature (at least for the CPS domain). 

4.2 Benchmarks 

We used three benchmarks as subjects in our case study: WalkPath, TourApp, and 

CityGuide, each of which was used as the benchmark in Lu et al. [2008], Wang et al. 

[2007], and Zhai et al. [2010; 2012], respectively, published in such venues as 

International Conference on Software Engineering and IEEE Transactions on 

Services Computing. (Note that each of the papers used one subject in its evaluation.) 

Table 1 summarizes the descriptive statistics of the three benchmarks. 

Table 1. Descriptive Statistics of Benchmarks Used in the Case Study 

Benchmark Description LOC4 Middleware 
Program 

Nature 

No. of 

Mutants5 

WalkPath Path tracking 803 LANDMARC, Cabot  Sequential 1676 

TourApp Tour guide 3690 Context Toolkit  Multithreaded 383 

CityGuide POI recommendation 3604 jCOLIBRI  Sequential 288 

 

The benchmark WalkPath is a sequential program. It runs on the Cabot 

middleware [Xu et al. 2010] deployed with a context inconsistency resolution service 

component. The benchmark also contains a component that implements the classical 

location-sensing algorithm LANDMARC [Ni et al. 2004], which reports a user’s 

location based on RFID data. The program obtains a person’s location data by 

 
4 Measured by JavaNCSS available at http://javancss.codehaus.org/. 
5 Generated by MuClipse available at http://muclipse.sourceforge.net/. 
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requesting LANDMARC to analyze the RFID data, further invokes the context 

inconsistency resolution services to clean the location data if necessary, and finally 

reports the person’s movement and data reliability based on the (cleaned) location 

data. Therefore, the only context variable used in WalkPath is RFID location data. 

The multithreaded benchmark TourApp is the largest application shipped with 

the Context Toolkit middleware [Salber et al. 1999]. Context Toolkit consists of a 

number of widgets (such as communication widgets that implement HTTP or TCP 

protocols to transfer contextual data, assembling widgets that collect related contexts 

into a group, and subscribe-and-callback widgets that allow the application tier 

component of a CPS application to register interested context data and specify how to 

react to changes in the subscribed context data). TourApp informs visitors who 

attend a conference about demos of interest based on the visitors’ preferences and 

location data. In the current empirical setting, TourApp uses the visitors’ activity 

information such as login, enter room, view demo, logout as the only context 

variable. 

The benchmark CityGuide is a sequential program. It runs on the case-based-

reasoning middleware jCOLIBRI [Diaz-Agudo et al. 2007]. jCOLIBRI retrieves the 

cases from a relational database and reasons about the provided contextual data 

(which include user preferences such as payment methods, food styles, and room 

types, as well as GPS location data in terms of latitudes and longitudes) to 

recommend the best points of interest such as hotels and restaurants based on 

similarity functions of the contextual data and user decision history. It then saves 

the users’ confirmed decisions in the database. CityGuide captures multiple context 

variables such as the users’ preferences (e.g., payment methods, food styles, and 

room types) as well as GPS location data in terms of latitudes and longitudes. We 

assign the same weight to each context variable so that they are treated identically 

when calculating context diversity. 

The sizes of WalkPath, TourApp, and CityGuide are 803, 3690, and 3604 lines of 

code, respectively. 

4.3 Faulty Versions 

In mutation analysis [Andrews et al. 2006; Budd et al. 1980], a program mutant 

refers to a variation of a program under test by a small syntactic change. It mimics a 

simple fault in the program. Previous research such as Andrews et al. [2006] has 

shown that more complex and real faults in the same program are strongly coupled 

with these mutants, and test suites that kill these mutants are highly effective to 

expose real and complex faults in the same program. 

The process of mutation analysis involves the execution of test cases against a set 

of program mutants. When executing a test case against the program under test and 

executing the same test case against a program mutant produce a difference in 

program output, the mutant is said to be killed. 

We refer to the proportion of a test suite that can kill a mutant as the failure rate 

of the mutant with respect to the test suite. We measure this rate as a proxy of the 

probability that the mutant can be killed by at least one test case in the test suite. 

We adopt mutation analysis to evaluate the techniques. We particularly note that, 

to apply our techniques in practice, there is no need to generate any mutants to test 

CPS applications. 

Specifically, we generated mutants for each of our benchmarks and deemed them 

as faulty versions of the corresponding benchmarks. Initially, we planned to use all 

the mutants of each benchmark. After running the first ten mutants of TourApp, 
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however, we found it impractical because the test run of each mutant took much time 

to complete. As such, we refined the methodology for TourApp by applying the 

procedure recommended by Andrews et al. [2006]. Thus, we selected every 5th 

mutant of TourApp. We retained all the mutants whose failure rates fell within the 

range (0.06, 1.00). Our approach to excluding the results of faulty versions follows the 

work of Lu et al. [2008]. In total, 475, 244, and 240 mutants were retained for 

WalkPath, TourApp, and CityGuide, respectively, to be used as faulty versions of the 

benchmarks for data analysis. The mean failure rates of the retained mutants for 

WalkPath, TourApp, and CityGuide were 0.311, 0.369, and 0.150, respectively. 

4.4 Test Adequacy Criteria 

We used six data flow testing criteria introduced in Section 3.3 in our case study, 

namely, AD, CU, PU, PUCU, CUPU, and AU. We did not investigate the all-DU-

paths criterion because the complexity of du-paths was not polynomial with respect 

to the number of conditional statements encountered, which was intractable. To 

circumscribe the cost of static analysis for data flow testing criteria discussed in 

Section 2, we used a runtime monitoring technique to collect the du-associations for 

any given criterion: We used the open-source tool Gretel 6 to instrument the program 

under test, and monitored the execution path of each test case. Then, following 

Misurda et al. [2005], we figured out the last definition of each usage of the same 

memory location in each execution trace to analyze the du-associations of every test 

case. Different from static analysis techniques, the test requirements inferred by 

such dynamic analysis were all feasible in the sense that they were all reachable by 

at least one test case. State-of-the-art test adequacy criteria have been proposed by 

Lu et al. [2008] to test context-aware software with context inconsistency resolution 

services. They are applicable only to WalkPath but not TourApp and CityGuide 

because the latter two benchmarks do not have such services defined to clean noisy 

contexts. To maintain consistency, therefore, we do not study the criteria proposed by 

Lu et al. in our case study. 

4.5 Preparation of Test Cases and Test Suites 

We reused an existing test pool for WalkPath, which contained 20,000 distinct test 

cases, each consisting of real-world data captured via RFID readers and used in 

integration testing experiments [Lu et al. 2006; 2008]. For TourApp and CityGuide, 

we developed a random input generation tool to generate 5,000 test cases such that 

the benchmarks neither raised any unhandled exception nor resulted in infinite loops 

(and, of course, each benchmark outputs a result in each case). Based on the practical 

guidelines in Arcuri and Briand [2011], 5,000 test cases are sufficient in terms of 

randomness to obtain a statistical conclusion. 

When constructing adequate test suites for each benchmark, the upper bound M 

of the number of selection trials for BS, CARS-H, CARS-L, and CARS-E were set to 

2,000, which was the same as that in Lu et al. [2008]. Similar to the experiment in 

Lu et al., we also configured our tool to use the random selection method as the test 

case generator generate(1) in Algorithm 1 and generate(k) in Algorithm 2. 

To conduct a controlled experiment to explore how context diversity affects test 

effectiveness, we need to ensure that the test suites for comparison constructed by 

different strategies (namely, BS, CARS-H, CARS-L, and CARS-E) achieve the same 

coverage and are of the same size. We systematically varied the sizes of candidate 

 
6 Available at http://sourceforge.net/projects/gretel/. 
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test suites for k = 1, 2, 4, 8, 16, 32, 64, and 128. Our tool constructed 1000 adequate 

test suites for each combination of test adequacy criterion, test suite construction 

strategy, and size of the candidate test suite. As a result, 144,000 test suites were 

constructed for each benchmark. For every criterion and every benchmark, we 

collected the set of test suite sizes such that each can be attained by all adequate test 

suites with respect to the given criterion regardless of the test suite construction 

strategy (BS, CARS-H, CARS-L, or CARS-E) and the value of k (1, 2, 4, 8, 16, 32, 64, 

or 128). We then picked up the largest among the set of test suite sizes as the 

baseline test suite size for the criterion. Thus, the baseline test suite size for a specific 

test adequacy criterion can be shared by all its adequate test suites irrespective of 

test suite construction strategies and the setting of the sizes of candidate test suites. 

We show the baseline test suite sizes for each criterion in Table 2. 

Finally, for each benchmark, we constructed 100 test suites for each combination 

of test adequacy criterion, context-aware refined strategy, and size of candidate test 

suite. As such, we obtained 14,400 (= 100 × 6 × 3 × 8) adequate test suites for each 

benchmark for the purpose of test effectiveness comparison. It took 1.5 months to 

construct test suites for all the four strategies (CARS-H, CARS-L, CARS-E, BS), 

eight values of k (1, 2, 4, 8, 16, 32, 64, 128), six data flow testing criteria (PU, PUCU, 

CU, CUPU, AD, AU), and three subjects (WalkPath, CityGuide, TourApp). In the best 

setting such that CARS outperformed BS the most (corresponding to the CARS-H 

strategy, k = 64, and the PUCU testing criterion), it took about 1, 2, and 4 hours to 

construct 100 adequate test suites for WalkPath, CityGuide, and TourApp, 

respectively. The differences among subjects were due to different modes of program 

executions. For example, TourApp employs the client/server model to implement the 

business logic. A typical communication between clients and servers is: The clients 

send context instances to the server via the network, and then the server analyzes 

the context instances and returns the analysis results to the clients. Since network 

communications usually take time, the execution of TourApp was the most time-

consuming. CityGuide accessed a database and hence its execution was faster than 

TourApp, while WalkPath did not access any database or network and its execution 

was the fastest. 

Compared with the experiment by Lu et al. [2008], which uses one benchmark and 

four criteria with 30 faulty versions, our experiment is significantly larger by two 

orders of magnitude. 

Table 2. Baseline Test Suite Sizes for each Criterion 

 AD CU PU PUCU CUPU AU 

WalkPath 10 15 5 10 16 18 

CityGuide 9 13 5 5 13 14 

TourApp 12 18 12 16 19 24 

4.6 Construction of Interacting Finite State Machine 

We used a finite state machine (FSM) to model the interactions between a CPS 

application and its computing environment for the investigation of RQ2. For 

WalkPath, whenever a context inconsistency resolution service [Lu et al. 2008] was 

triggered to clean data, we modeled that the process as a transition from the current 

location to the resolved location and labeled the transition with the input location. 

For TourApp, whenever a new user activity was captured, we modeled the process as 

a transition from the current user activity to the new one, and labeled the transition 

with the user activity. For CityGuide, whenever a returned location was confirmed by 

the user, we modeled the process as a transition from the current location to the 
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confirmed location, and labeled the transition with the outputted location. For each 

benchmark, we constructed an interacting FSM from the corresponding test pool so 

that the FSM can represent all the behavior that could be exercised by the test pool 

against the benchmark. Table 3 shows the sizes of the interacting FSMs constructed 

for the three benchmarks. 

Table 3. Sizes of Interacting FSM for Benchmarks 

Benchmark No. of States No. of Transitions 

WalkPath 30 133 

CityGuide 8 50 

TourApp 4 16 

4.7 Hardware Platform 

We conducted the case study on 16 high-performance cluster nodes from the HKU 

Gideon-II Cluster. Each cluster node was equipped with 16 x 2.53GHz quad core 

Xeon processors with 16GB physical memory. The operation system for all the cluster 

nodes was Linux version 2.6.9-82.ELsmp 64-bit. This cluster machine (without any 

GPU usage) achieved the performance of 3.45 TFLOPS on the Linpack benchmark 

with a peak performance of 5.181 TFLOPS. Each benchmark was written in Java and 

executed under JRE version 1.6.0_23-b05 with the use of Java HotSpot (TM) Server 

VM (build 19.0-b09, mixed mode). 

4.8 Experimental Procedure 

We first followed the procedure presented in Section 4.5 to prepare the test pool and 

test suites for each benchmark. For each test case, we collected its context diversity 

and the execution path length. Furthermore, we computed the test effectiveness of 

each test adequacy criterion to analyze how it is affected by context diversity. Then, 

we used MuClipse version 1.3 7 to generate a set of mutants for the benchmarks and 

ruled out any syntactically equivalent mutants. 

5. DATA ANALYSIS 

This section presents the experimental results that tackle the research questions 

raised in Section 4.1. More specifically, Section 5.1 investigates how our strategies 

affect the context diversity of test suites, which validates the design goals of the 

strategies. Section 5.2 addresses RQ1 that studies how context diversity affects the 

effectiveness of test suites, and Sections 5.3 and 5.4 address RQ2 by correlating 

context diversity with white-box testing criteria, namely, execution path lengths and 

context-aware system interactions. 

5.1 Effects of Different Strategies on Context Diversity 

We first present the context diversity of test suites constructed by the BS strategy in 

Table 4. The data shows that stronger test adequacy criteria (in terms of the 

subsumption relationship proposed by Frankl and Weyuker [1988]) do not 

necessarily exhibit higher context diversity than weaker test adequacy criteria. For 

example, criterion PUCU is stronger than criterion PU, but for WalkPath, test suites 

constructed by PUCU carry lower context diversity than test suites constructed by 

PU. Similar observations can be found for CityGuide and TourApp. For instance, the 

context diversity of test suites constructed by PUCU is the same as that of test suites 

constructed by PU for CityGuide, whereas test suites constructed by a stronger 

 
7 Available at http://muclipse.sourceforge.net/. 
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criterion AU carry lower context diversity than test suites constructed by a weaker 

criterion AD for TourApp. Furthermore, we find that test suites constructed by 

different test adequacy criteria share very similar context diversity values. For 

example, the largest difference in context diversity for test suites constructed by 

different criteria is less than 0.3 for WalkPath, the largest difference never exceeds 

2.1 for CityGuide, and the largest difference is 0.9 for TourApp. These observations 

suggest that test adequacy criteria may be not a significant factor that affects the 

context diversity of their adequate test suites. 

 
Table 4. Context Diversity of Test Suites Constructed by BS 

Test Adequacy Criterion WalkPath CityGuide TourApp 

PU (all-P-Uses) 12.1 13.6 15.5 

PUCU (all-P-Uses/some-C-Uses) 11.8 14.3 16.1 

CU (all-C-Uses) 11.9 12.2 15.7 

CUPU (all-C-Uses/some-P-Uses) 12.1 12.2 15.9 

AD (All-Defs) 11.8 12.7 16.4 

AU (All-Uses) 12.1 12.9 15.6 

 

Figure 2 summarizes to what extent context diversity can be incorporated into 

adequate test suites through different strategies with respect to the baseline strategy 

BS. 8  Starting from top left and then clockwise, these nine subfigures show the 

differences in context diversity of C-adequate test suites under different sizes (k = 

1, …, 128) of the candidate sets compared with the context diversity using the BS 

strategy, where criteria C are PU, PUCU, CU, AU, AD, and CUPU, respectively. For 

instance, in the top left subfigure, when the candidate size is 1, the CARS-H for 

TourApp is higher in context diversity than BS by 6.185. 
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Fig. 2. Differences in context diversity between CARS and BS. 

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively. 

 
8 Interested readers may refer to Figures A1−A3 in the online appendix for the data and analysis that 

produce the curves in the figure. 
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In each subfigure, we observe that all the solid lines are above the x-axis, and 

generally show upward trends as the x-value increases. It indicates that CARS-H 

consistently achieves higher context diversity than BS, and the difference is 

increasingly more noticeable with larger values of k. This observation follows the 

design of CARS-H because every test case substitution made by CARS-H improves on 

the context diversity of the adequate test suite being constructed, and a larger 

candidate test suite should offer a high probability of a successful substitution. The 

dashed-and-dotted lines are always positioned below the x-axis, and generally show 

downward trends as the x-value increases. It shows that the CARS-L strategy always 

results in worse context diversity. Moreover, we find that the difference in context 

diversity resulting from the use of CARS-H and CARS-L on each test adequacy 

criterion can be as large as 50−90% when the size of a candidate test suite is 

relatively large (such as k = 32 or higher). The finding shows that it is feasible to 

significantly modify the context diversity of an adequate test suite, which is 

encouraging. 

In Figure 2, CARS-E also leads to higher context diversity than BS, but the 

magnitude is generally much less noticeable than CARS-H and CARS-L. The finding 

indicates that the idea of evenly spreading test cases in the context diversity 

dimension exhibits less effectiveness than CARS-H or CARS-L in the case study. 

 
Table 5. No. of Cases that Rejects the Null Hypothesis for Context Diversity 

Comparison for Various CARS Strategies and Benchmarks 
Benchmark CARS-H CARS-L CARS-E 

WalkPath 44 45 0 

CityGuide 46 48 0 

TourApp 48 48 0 

 

To investigate whether the difference between various test suite construction 

strategies and the baseline strategy is significant, we conduct hypothesis testing for 

each test suite construction strategy with the null hypothesis “test suites constructed 

by a specific context-aware refined strategy share the same context diversity with 

those constructed by the baseline strategy BS” at a significance level of 5%. We 

present the summarized results in Table 5. Interested readers may find the detailed 

data from Table A2 in the appendix. 

For each benchmark and for each CARS strategy, we evaluate 48 different cases 

corresponding to all combinations of the 6 different criteria (namely, PU, PUCU, CU, 

CUPU, AD, AU) and 8 different sizes of candidate sets (k = 1, 2, 4, 8, 16, 32, 64, 128). 

Each cell in Table 4 shows the number of cases that successfully rejects the null 

hypothesis. For example, for WalkPath using CARS-H, there are 44 out of 48 cases 

successfully rejecting the null hypothesis. Table 5 shows that, regardless of 

benchmarks and test adequacy criteria, both CARS-H and CARS-L are more likely to 

reject the null hypothesis. For example, CARS-H rejects the null hypothesis for 44, 

46, and 48 out of 48 cases on WalkPath, CityGuide, and TourApp, respectively. 

CARS-L rejects the null hypotheses for 45, 48, and 48 out of 48 cases on WalkPath, 

CityGuide, and TourApp, respectively. In contrast, CARS-E consistently fails to 

reject the null hypothesis for candidate test suites of all sizes. This result validates 

that both CARS-H and CARS-L have a significant effect on the context diversity of 

the adequate test suites thus constructed, and the effect of CARS-E on the context 

diversity of test suites is not statistically significant. 

To sum up, stronger testing criteria do not necessarily lead to higher context diversity, 

which motivates us to develop new strategies (such as CARS strategies presented in this 
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paper) to alter the mean context diversity of a test suite during the construction of the 

test suite. Moreover, CARS-H (and CARS-L, respectively) tends to result in higher (and 

lower, respectively) context diversity with the increase of the value of k. The observation 

shows that our strategies successfully change the context diversity distribution of test 

suites. In Sections 5.2 and 5.1, we will further use these test suites for the data analysis 

to answer RQ1 and RQ2. 

5.2 Effects of Different Strategies on Overall Test Effectiveness 

 
Table 6. Fault Detection Rates of Test Suites Constructed by BS 

Test Adequacy Criterion WalkPath CityGuide TourApp 

PU (all-P-Uses) 0.218 0.163 0.651 

PUCU (all-P-Uses/some-C-Uses) 0.414 0.247 0.752 

CU (all-C-Uses) 0.622 0.264 0.812 

CUPU (all-C-Uses/some-P-Uses) 0.218 0.163 0.651 

AD (All-Defs) 0.414 0.247 0.752 

AU (All-Uses) 0.622 0.264 0.812 

 

We present in Table 6 the mean fault detection rate of each criterion using the 

baseline strategy BS. In the table, for each of the three benchmarks, AU consistently 

outperforms PUCU and CUPU, PUCU outperforms PU, and CUPU outperforms CU 

in terms of attaining higher mean fault detection rates averaged over all mutants. 

This finding is in line with the popular understanding on test adequacy criteria that 

stronger criteria are generally more effective than weaker ones in exposing faults. 

Figure 3 summarizes the changes in test effectiveness between the baseline 

strategy BS and a context-aware refined strategy (CARS-H, CARS-L, and CARS-E, 

respectively).9 Each subfigure can be interpreted in the same way as a subfigure in 

Figure 2, except that the y-axis now stands for the change in fault detection rate 

instead of the change in context diversity. 

We observe from Figure 3 that all the solid lines in each subfigure are above the x-

axis. This indicates that CARS-H consistently improves the testing effectiveness in 

terms of the mean fault detection rates regardless of benchmarks, test adequacy 

criteria, and sizes of candidate test suites. Moreover, the effect of the size of the 

candidate test suite seems to be saturated at k = 64 in the experiment. In particular, 

when k = 64, the improvements in test effectiveness for all criteria induced by CARS-

H over BS are 10.6-21.9% for WalkPath, 12.3-22.1% for TourApp, and 12.6-14.5% 

for CityGuide, respectively. In summary, irrespective of benchmarks and criteria, 

when k = 64, CARS-H can bring about an improvement of 10.6-22.1% in test 

effectiveness to the baseline strategy in terms of mean fault detection rates. 

Considering that data flow testing is by itself a highly effective technique, the result 

shows that the improvement made by CARS-H is significant. 

Moreover, irrespective of benchmarks and test adequacy criteria, the lines for the 

CARS-L strategy are always below the x-axis, indicating that this strategy 

consistently performs less effectively than the BS strategy in terms of mean fault 

detection rate. 

Combined with the result presented in Section 5.1, we find that changing the 

context diversity of an adequate test suite via CARS-H and CARS-L does correlate 

with the change in test effectiveness. In contrast, CARS-E has less impact on test 

effectiveness compared with CARS-H and CARS-L. 

 
9 Interested readers may refer to Figures A4−A6 in the online appendix for the detailed data analysis. 
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Fig. 3. Differences in fault detection rates between CARS and BS. 

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively. 

Similar to Table 5, we also summarize the hypothesis testing results in Table 7. 

Detailed data can be found in Table A7−A9 in the appendix. The null hypothesis is 

“test suites constructed by a specific context-aware refined strategy share the same 

fault detection rate with those constructed by the baseline strategy BS” and the 

significance level is 5%. 

 
Table 7. No. of Cases that Rejects the Null Hypothesis for Testing 

Effectiveness Comparison for Various CARS Strategies and Benchmarks  

Benchmark CARS-H CARS-L CARS-E 

WalkPath 30 28 0 

CityGuide 48 0 0 

TourApp 48 38 0 

 

The hypothesis testing results confirm that CARS-H can outperform the BS 

strategy significantly in terms of the fault detection rates achieved by test suites with 

a specific candidate suite size and coverage. For example, CARS-H rejects the null 

hypothesis for 30, 48, and 48 out of 48 cases on WalkPath, CityGuide, and TourApp, 

respectively. In contrast, CARS-L deteriorates the effectiveness of test suites 

significantly. For example, CARS-L rejects the null hypotheses for 28 and 38 out of 

48 cases on WalkPath and TourApp, respectively. We also find that quite a number of 

outliers exist for CityGuide: CARS-L fails to reject the null hypothesis for all these 

cases. As shown in Table 6, owing to the low fault detection rates achieved by test 

suites constructed by the baseline strategy BS, it would be hard for CARS-L to 

deteriorate the test effectiveness further. In contrast, CARS-E consistently fails to 

reject the null hypothesis for candidate test suites of all sizes. This result validates 

that both CARS-H and CARS-L can have significant impacts on testing effectiveness 

of the adequate test suites constructed. The impact of CARS-E on the testing 

effectiveness of test suites is not statistically significant compared with the test 

suites constructed by the BS. 

In this section, we have shown that across all benchmarks and all values of k, the 

CARS-H (and CARS-L, respectively) strategy can significantly improve (and 

deteriorate, respectively) the effectiveness of the evaluated data flow testing criteria. 
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This result answers RQ1 directly: Context diversity of test cases can significantly 

correlate with the test effectiveness of data flow adequate test suites for CPS 

applications. This finding leads to two suggestions for test engineers when they test 

CPS software: (a) better test effectiveness can be achieved by favoring test cases with 

higher context diversity and (b) context diversity helps resolve tie cases in which 

multiple test cases have the same contribution to test coverage. Note that it does not 

need any code change of CPS software to apply CARS because context diversity can 

be measured without knowledge of the source code. Moreover, we are aware of 

context diversity before the execution of test cases, so our CARS strategies do not 

need runtime profiling to access the current context diversity during program 

execution. 

5.1 Effects of Different Strategies on the Normalized Execution Path Length 

Figure 4 presents the normalized execution path lengths of test suites constructed by 

different strategies. 10  Each subfigure can be interpreted in the same way as a 

subfigure in Figure 2, except that the y-axis is now the change in normalized 

execution path length instead of the change in context diversity. 

Table 8. Mean Normalized Execution Path Length of Test Suites 
Constructed by BS 

Test Adequacy Criteria WalkPath CityGuide TourApp 

PU (all-P-Uses) 0.464 0.361 0.681 

PUCU(all-P-Uses/some-C-Uses) 0.473 0.369 0.688 

CU(all-C-Uses) 0.481 0.374 0.696 

CUPU(all-C-Uses/some-P-Uses) 0.484 0.377 0.698 

AD(All-Defs) 0.465 0.365 0.682 

AU(All-Uses) 0.492 0.389 0.709 
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Fig. 4. Differences in normalized execution path lengths between CARS and BS. 

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively 
 We first present the mean normalized execution path lengths of test suites 

constructed by BS in Table 8. We define a normalized execution path length as the 

 
10 Interested readers may refer to Figures A7−A9 in the online appendix for the data and analysis that 

produce the curves in the figure. 
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ratio of the length of that path to the length of the longest execution path exercised 

by the test cases in the test pool. We find that for all the benchmarks, AU always 

leads the programs to execute the longest paths among all test adequacy criteria, 

followed by CUPU, CU, PUCU, AD, and finally PU. This order is consistent with the 

test effectiveness performance of the test adequacy criteria reported in Table 6, 

which further suggests that the normalized execution path length contributes to the 

effectiveness of test suites. 

We find that for every subfigure in Figure 4, the solid lines are consistently above 

the x-axis. This shows that for each size of candidate test suites, CARS-H 

consistently exercises more statements than BS. In contrast, the lines for CARS-L 

are always positioned below the x-axis. It shows that these test cases execute shorter 

paths than BS on average. Moreover, CARS-E leads to longer execution paths than 

BS, but only has much lighter effect than CARS-H in forcing test cases to traverse 

longer paths. 

 
Table 9. Number of Cases that Reject the Null Hypothesis for Comparing 

Normalized Execution Path Lengths for Various CARS Strategies and Benchmarks  

Benchmark CARS-H CARS-L CARS-E 

WalkPath 44 39 0 

CityGuide 44 48 0 

TourApp 48 48 0 

 

Similar to the previous two subsections, we also conduct hypothesis testing to 

confirm our observation. The null hypothesis is “test suites constructed by a specific 

context-aware refined strategy share the same normalized execution path lengths 

with those constructed by the baseline strategy BS” and the significance level is 5%. 

The results of the hypothesis testing are shown in Table 9. CARS-H rejects the 

null hypothesis for 44, 44, and 48 out of 48 cases on WalkPath, CityGuide, and 

TourApp, respectively. CARS-L rejects the null hypothesis for 39, 48, and 48 out of 48 

cases on these three benchmarks, respectively. However, CARS-E fails to reject any 

null hypothesis in all cases. We find that the effect of CARS-H is more consistent 

than that of CARS-L (albeit in modifying the normalized execution path lengths in 

the opposite directions), and CARS-E appears to be neutral. 

In summary, to answer RQ2, we find that test suites having higher context 

diversity can lead to longer execution paths. Since various test suites with different 

context diversity may be constructed to achieve the same code coverage, code 

coverage appears not to be an explanation for the better effectiveness observed in the 

case study. In contrast, as shown in our previous work [Wang et al. 2010], the 

execution times and execution sequence of context-related statements can correlate 

with test effectiveness, and longer execution paths may lead to more diverse 

execution times. Our results thus indicate that in the domain of CPS applications, 

apart from test adequacy criteria, context changes inherent in test suites can be a 

promising research dimension to harvest so as to improve the effectiveness of the test 

suites constructed. 

5.3 Effects of Different Strategies on System Interactions 

In this section, we report to what extent the context diversity of a test case correlates 

with the state coverage and transition coverage achieved by the test case against the 

corresponding interacting FSM. 

Different programs have different ranges of context diversity. To facilitate 

comparisons across the three benchmarks, we have normalized the context diversity 
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of each test case by dividing the actual context diversity by the maximum e for the 

respective benchmark. For brevity, we will refer to such kind of context diversity as 

normalized context diversity. 

 

Fig. 5. State coverage (SC) and transition coverage (TC) vs. normalized context diversity 

 

We report in Figure 5 how the normalized context diversity correlates with the 

state and transition coverage of interacting FSMs. In Figure 5, the state coverage 

increases from 0.46 to 0.80 (by a factor of 1.7) when the normalized context diversity 

increases from 0.37 to 1.00 (by a factor of 2.7) for WalkPath. For CityGuide, the state 

coverage increases from 0.48 to 1.00 (a factor of 2.1) when the normalized context 

diversity increases from 0.36 to 1.00 (a factor of 2.8). For TourApp, however, the state 

coverage can only increases from 0.99 to 1.00 (a factor of 1.01) when the normalized 

context diversity increases from 0.33 to 1.00 (a factor of 3.0). 

In addition, we conduct Pearson’s correlation test [Pearson 1920] to determine the 

strength of the correlation if a linear regression trend indeed exists between the two 

variables. Although there is no golden criterion to interpret the results of Pearson’s 

correlation tests in software engineering research, we use the following definition: If 

the absolute value of Pearson’s correlation coefficient (PCC) is greater than 0.8, the 

correlation is regarded as strong. If the absolute value is more than 0.1 but less than 

0.5, the correlation is considered mild. If the absolute value is at most 0.1, there is no 

correlation. Otherwise, the correlation is said to be moderate. A similar 

interpretation is also used in the experiment in Binkley and Harman [2004]. The 

PCC result for the correlation between mutation scores and statement coverage is 

shown in Table 10. The results in the table consistently show that, regardless of the 

benchmark, PCC values estimated by each metric is higher than 0.7. This suggests 

that context diversity of a test case has a moderate to strong correlation with both 

state coverage and transition coverage. 

 
Table 10 Pearson’s Correlation Coefficient between context diversity 

and state coverage and transition coverage of interacting FSMs 

Coverage WalkPath CityGuide TourApp 

State 0.998 0.981 0.745 

Transition 0.998 0.980 0.945 

 

In summary, to answer RQ2, we find that there exists a moderate to strong 

correlation between context diversity and state and transition coverage of interacting 

FSMs. It suggests that higher context diversity tend to increase the interactions 

between CPS applications and its computing environment. 
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5.4 Threats to Validity 

Threats to construct validity. Construct validity relates to whether our defined 

metrics really measure the properties we intend to capture. We used fault detection 

rate to measure the effectiveness of a test suite. The use of other metrics such as the 

time needed to generate an adequate test suite may produce different comparison 

results. To minimize potential threats from inherent stochastic fault detection 

behavior of individual test suites, we constructed a sufficiently large number of 

adequate test suites per test adequacy criterion to compute the corresponding fault 

detection rates. 

Another concern is that we use mutation faults rather than real-life faults in our 

experiment. The “competent programmer hypothesis” in mutation analysis is 

supported by both empirical and theoretical results [Budd et al. 1980]. Andrews et al. 

[2006] has further validated that test results of coverage-based testing criteria with 

respect to mutation faults can be generalized to those with respect to real-life faults. 

Threats to internal validity. Internal validity is concerned with whether there is 

any bias in the experimental design that can affect the causal relationship under 

study. We have implemented a tool to construct test suites and computed the context 

diversity and coverage information of test suites, as well as the failure rates of 

mutants. The correctness of this tool would determine whether there is any potential 

implementation bias in our experiment. We have tested the tool with small programs 

and spot-checked the results for larger programs to ensure that it works as expected. 

The test pool used in the experiment can also introduce a bias. Different test case 

generation techniques may introduce different biases in the results due to differences 

in the levels of code coverage. Because we focus on assessing the impact of context 

diversity on the fault detection capability of test adequacy criteria, we employ the 

random test case selection method used in the experiment of Lu et al. [2008] as the 

test input generators generate(1) in Algorithm 1 and generate(k) in Algorithm 2. We 

only retain those generated mutants with failure rates higher than 0.06 as candidate 

faulty versions of the benchmarks in the case study. The use of mutants with 

different failure rates may produce different results. To ensure that the experiment 

ends within manageable time, we follow the sampling strategy in Andrews et al. 

[2006] to include every 5th mutant of TourApp in the experimentation. The inclusion 

of more mutants would significantly lengthen the experimentation. To strike a 

balance between the effort and the representativeness of the experiment, we settle 

for the current strategy. 

We have used random test case selection as the baseline strategy for comparison. 

The use of more advanced strategies as the baseline would produce different 

improvement results. However, according to Harman and McMinn [2010], 

“sophisticated search techniques such as Evolutionary Testing [most commonly 

implemented as genetic algorithms] can often be outperformed by far simpler search 

techniques”. In their paper, the authors proposed hill climbing as a “far simpler 

search technique”, and found that “Where test data generation scenarios do not have 

a Royal Road property, Hill Climbing performs far better than Evolutionary Testing”. 

The CARS algorithms in our paper are similar to hill climbing, except that CARS 

terminates after a number of trials instead of one trial. 

Threats to external validity. External validity refers to the extent that we can 

generalize our empirical results to other benchmarks. In our case study, we use the 

40 Java mutation operators proposed in Ma et al. [2006] to generate candidate 

mutation faults for experimentation. Other mutation operators for different 

programming languages may produce different results. We have included three 
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benchmarks in our case study. They do not represent all types of CPS applications. 

Although the use of more benchmarks would certainly increase the power of data 

analysis, the current experiment has taken more than three months to run 

continuously on high-performance clustered machines, and hence it would be 

unrealistic to include additional benchmarks in the case study. The 

representativeness of the test process used may also impact the generalization of our 

results. It will be beneficial to complement our case study with industrial case 

studies in the future. It will also be interesting to study other algorithms and 

strategies in the future. 

5.5 Discussions of the Applicability of Traditional Test Adequacy Criteria to Pervasive 
Software 

A real-life program receives system inputs via system calls or API callback functions. 

Only trivial programs do not make system or API calls. In pervasive software, 

environmental contexts constitute part of the system inputs. The same sequence of 

statements may maintain different pointer values or system constants in the same 

variables. When the values of these variables are passed to a context-aware system 

call, the system will respond with an adaptive function. In Android systems, for 

instance, the values of possible types of wireless channels (such as WiFi, 3G, and 

Bluetooth) are context values. The choice of specific values will allow the application 

to adapt to different media for data transmission. 

Traditional test adequacy criteria can be applied to assure pervasive programs, 

but since the former do not consider changes due to context-aware system calls, they 

do not measure whether the adequacy with respect to such contexts has been fulfilled. 

In theory, one can conduct program analysis of the entire system so that all the data 

flows from the sensor device level to the application level can be reviewed. In practice, 

however, the scale of such program analysis is intractable. Lu et al. [2006] takes a 

projection approach. They abstract all the intermediate code between the sensor and 

the application, and just model it minimally as an environmental node. In this way, 

they provide an innovative approach to address the data flow testing problem for 

pervasive systems. Unfortunately, the dynamic analysis of context-aware data flow 

coverage is still complex in real life despite the abstraction. 

In this paper, we propose the use of traditional data flow coverage criteria to test 

pervasive software, thus bypassing the complexity of intermediate code coverage in 

Lu et al. Context manipulation in terms of diversity is a means to enhance the 

effectiveness. Compared with an arbitrary change of context, the difference is 

whether the change affects the context-aware API. In real life, a context change 

usually causes the program to exercise other paths instead of forcing the same path 

to use new contexts. Thus, within a program, a context variable behaves like a global 

variable. 
However, the scope of influence (in terms of the number of program statements 

affected) of a context variable is more intensive that of a local variable. A context is 

usually not a simple value precisely representing the captured behavior. Hence, in a 

context-aware program, such contexts are usually used in a statistical way or 

portrayed as ranges of values. Thus, a higher discrepancy in the context space will 

lead to a higher probability in producing failures. This may explain why the three 

strategies proposed in our paper expose failures at different levels of effectiveness, 

namely, that CARS-H performs better than CARS-E, which performs better than 

CARS-L. 
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6. CONCLUSION 

This paper has proposed the notion of test case substitution in constructing adequate 

test suites, and has studied three strategies to take context changes into account 

during such construction. The basic idea is to annotate each test case with the 

amount of its context changes, and to select the appropriate test cases based on such 

amounts whenever choices can be made. The paper has also formulated the notion of 

context diversity as a means to represent the amount of context changes in a test 

case. We have conducted a multi-subject case study to investigate how context 

changes may be injected into adequate test suites and to what extent such test case 

substitution can contribute to the effectiveness of the data flow test adequacy criteria. 

We have studied six test adequacy criteria, including PU, PUCU, CU, CUPU, AD, 

and AU as summarized in Section 4.4. We have used three benchmarks with a total 

of 8,097 lines of code, 30,000 test cases, 959 mutants, and 43,200 adequate test suites 

for data analysis. To the best of our knowledge, we have presented one of the largest 

test adequacy experiments on the testing of CPS applications. The experimental 

results show that the context-aware refined strategies can be successful in changing 

the context diversity of test suites and can affect the effectiveness of a test adequacy 

criterion. In particular, we have found in the case study that the CARS-H strategy 

can improve the mean test effectiveness of existing data flow testing criteria by 10.6 

to 22.1%, which is significant. On the other hand, CARS-L reduces the mean test 

effectiveness by 2.0 to 22.2% while CARS-E can only have a marginal effect. 

Furthermore, the test suites constructed by CARS-H can execute longer paths in a 

statistically significant way. They provide a clue in understanding the contribution 

brought by CARS-H to the test effectiveness of adequate test suites. Test suites 

constructed by CARS-L tend to execute shorter paths, and CARS-E seems to have no 

significant impact on the execution path lengths of test suites. The experiment also 

finds that context diversity moderately to strongly correlates with the scope of 

interactions between CPS applications and their computing environments (in terms 

of coverage of interacting finite state machines). 

In the future, we plan to extend the presented notion of context diversity to model 

richer information such as complex context representation (e.g., context instances with 

uncertainty levels), associations among context variables (e.g., a constraint between 

the location “meeting room” and the activity “watch football”), and different weights of 

context variables based on their importance to CPS applications. Moreover, we will 

further study the connection between context changes and program debugging. 

Context diversity is a black-box metric and it can improve the test effectiveness of 

adequate test suite. Mutation testing is very time consuming. As indicated in our 

previous work [Wang et al. 2010], we are also interested in studying the relationship 

between mutation analysis and context diversity. We will report our findings in the 

future. 
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Appendix A 

This appendix reports to what extent context diversity can be incorporated into 

adequate test suites through different strategies. For every benchmark, we have 

computed the mean context diversity of all the adequate test suites for each 

combination of adequacy criterion, test suite construction strategy, and size of 

candidate test suite. 

The results for the respective benchmarks are shown in Figures A1, A2, and A3. 

In each bar chart, the x-axis represents the size of the candidate test suite. Suppose 

y1 denotes the mean context diversity of test suites constructed by the baseline 

strategy BS and y2 denotes that constructed by a context-aware refined strategy 

CARS-H, CARS-L, or CARS-E. Then, the y-axis represents y2 − y1, which measures 

the improvement in mean context diversity of the test suites constructed by a 

context-aware-refined strategy over that constructed by the baseline strategy. A 

positive (negative, respectively) bar means that the test suites constructed by the 

corresponding strategy exhibit higher (lower, respectively) context diversity than 

that constructed by BS. 

All the bars for the CARS-H strategy in Figure A1 are above the x-axis, which 

indicates that the test suites constructed by CARS-H consistently have higher 

context diversity than those constructed by BS strategy regardless of benchmarks, 

test criteria, and sizes of candidate test suites. The bars of CARS-H for larger 

candidate test suites are longer than those for smaller candidate test suites. It 

indicates that higher context diversity can be achieved by larger candidate test suites. 

This observation agrees with the design of CARS-H because every test case 

substitution made by CARS-H increases the context diversity of the adequate test 

suite being constructed, and a larger candidate test suite should provide more trials 

for a successful substitution. On the other hand, all the bars for the CARS-L strategy 

in Figure A2 are below the x-axis. We find that the difference in context diversity 

resulting from the use of CARS-H and CARS-L on each adequacy criterion can be 

50−90% when the size of a candidate test suite is relatively large (such as k = 32 or 

higher). The finding shows that it is feasible to significantly modify the context 

diversity of an adequate test suite. 

We also find that the lengths of the bars for CARS-L in Figure A2 tend to be 

longer than those for CARS-H in Figure A1. The result indicates that it can be easier 

to reduce the context diversity of an adequate test suite than to increase it. Since the 

two strategies are designed to be symmetric, the asymmetric result thus obtained is 

interesting. The underlying reason is still unclear. We will leave the explanation to a 

future study. 
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(a) WalkPath 

 
(b) CityGuide (c) TourApp 

Fig. A1. Differences in context diversity between CARS-H and BS. 

(a) WalkPath (b) CityGuide (c) TourApp 

Fig. A2. Differences in context diversity between CARS-L and BS. 

(a) WalkPath (b) CityGuide (c) TourApp 

Fig. A3. Differences in context diversity between CARS-E and BS. 

 

Although all the bars for CARS-E in Figure A3 are above the x-axis, they are 

much shorter than the corresponding bars in both Figures A1 and A2. Compared 

with the context diversity of the adequate test suites produced by BS, the lengths of 

the bars for CARS-E in Figure A3 only indicate a difference of 7−27%, which is 

noticeable but less significant than CARS-H and CARS-L in general. The finding 

indicates that the idea of evenly spreading test cases in the context diversity 

dimension exhibits less effectiveness than CARS-H and CARS-L in the case study. 
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Table A1. Bonferroni Multiple Comparisons of Context Diversity of Test Suites 
Constructed by Different Strategies for WalkPath 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 
C

A
R

S
-H

 
PU 17–21 18–22 22–25 25–28 27–30 29–32 31–33 32–35 

PUCU 17–21 21–23 23–26 26–29 29–32 31–34 33–36 32–35 

CU 21–24 23–26 26–29 28–31 30–33 32–35 34–37 36–38 

CUPU 21–24 23–26 26–28 28–31 30–33 32–35 34–37 36–38 

AD 17–20 21–24 24–27 26–29 28–31 30–33 33–36 32–35 

AU 22–24 23–26 26–29 28–31 30–33 32–35 34–37 36–38 

C
A

R
S

-L
 

PU 15–16 12–14 10–12 8–10 6–9 4–7 2–5 1–4 

PUCU 13–15 11–13 9–11 6–9 4–7 3–6 1–4 1–3 

CU 12–14 9–11 6–9 4–7 2–5 1–3 1–2 1 

CUPU 12–14 9–11 6–9 3–7 2–5 1–3 1–2 1 

AD 13–15 10–13 9–11 6–9 4–8 3–6 1–4 1–3 

AU 12–14 9–11 6–9 4–7 2–5 1–3 1–2 1 

C
A

R
S

-E
 

PU 16–18 16–18 16–18 16–18 16–19 16–19 16–19 17–19 

PUCU 15–17 16–17 16–17 16–17 16–18 16–18 16–19 16–19 

CU 16–17 16–17 16–18 16–19 16–18 17–19 17–20 17–20 

CUPU 16–18 16–18 16–18 16–18 16–18 17–19 17–19 17–20 

AD 16–17 15–17 16–17 16–18 16–18 16–19 16–19 17–20 

AU 16–18 16–18 16–18 16–18 16–18 16–19 17–20 17–20 

B
S

 

PU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18 

PUCU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17 

CU 16–17 16–17 16–17 16–17 16–17 16–17 16–17 16–17 

CUPU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18 

AD 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17 

AU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18 

 
Table A2. Bonferroni Multiple Comparisons of Context Diversity of Test Suites 

Constructed by Different Strategies for CityGuide 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 14–18 20–22 22–24 24–26 24–28 25–29 25–29 25–29 

PUCU 14–20 20–22 22–24 24–27 24–28 25–29 25–29 25–29 

CU 21–23 22–24 23–26 24–27 25–28 25–28 25–29 25–29 

CUPU 21–22 22–24 23–25 24–27 25–28 25–29 25–29 25–29 

AD 17–21 21–23 22–25 24–27 24–28 25–29 25–29 25–29 

AU 21–23 22–24 23–26 24–27 25–28 25–29 25–29 25–29 

C
A

R
S

-L
 

PU 11–13 8–11 6–9 3–7 1–5 1–3 1 1 

PUCU 11–13 9–11 6–8 3–7 1–5 1–3 1 1 

CU 9–11 6–9 2–6 1–4 1–3 1–2 1–2 1–2 

CUPU 8–10 6–8 3–6 1–4 1–3 1–2 1–2 1–2 

AD 10–12 8–10 5–8 3–6 1–4 1–2 1 1 

AU 8–11 5–8 2–6 1–4 1–3 1–2 1–2 1–2 

C
A

R
S

-E
 

PU 14–17 14–18 14–17 14–18 14–18 15–18 15–19 15–19 

PUCU 14–16 14–16 14–16 14–16 14–17 14–17 14–17 14–18 

CU 14–15 14–15 14–15 14–15 14–15 14–16 14–16 14–16 

CUPU 14–17 14–17 14–17 14–18 14–18 14–18 15–19 15–19 

AD 14 14 14 14–15 14–15 14–15 14–15 14–16 

AU 14–15 14–16 14–16 14–16 14–16 14–17 14–17 14–17 

B
S

 

PU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15 

PUCU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15 

CU 14 14 14 14 14 14 14 14 

CUPU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15 

AD 14 14 14 14 14 14 14 14 

AU 14 14 14 14 14 14 14 14 
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Table A3. Bonferroni Multiple Comparisons of Context Diversity of Test Suites 
Constructed by Different Strategies for TourApp 

Strategy Criterion 
Sizes of Candidate Test suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 14–16 15–16 16–17 16–18 16–19 16–19 16–19 17–20 

PUCU 15–16 16–17 16–18 16–19 16–20 16–20 16–20 17–21 

CU 14–16 15–17 16–18 16–18 16–19 16–19 16–19 16–20 

CUPU 14–16 15–17 16–18 16–18 16–19 16–19 16–19 16–20 

AD 14–16 15–17 16–18 16–18 16–19 16–20 16–20 17–20 

AU 14–16 15–17 16–18 16–19 16–19 16–19 16–19 16–20 

C
A

R
S

-L
 

PU 6–7 3–5 1–3 1 1 1 1 1 

PUCU 6–8 3–5 1–3 1–2 1 1 1 1 

CU 5–7 3–5 1–3 1–2 1 1 1 1 

CUPU 6–7 3–5 1–3 1–2 1 1 1 1 

AD 7–9 5–6 1–4 1–3 1–2 1 1 1 

AU 5–6 3–5 1–3 1 1 1 1 1 

C
A

R
S

-E
 

PU 10–11 10–12 10–12 10–12 10–12 10–12 10–12 10–11 

PUCU 10–13 10–13 10–13 10–12 10–14 10–14 10–14 10–13 

CU 10–13 10–13 10–13 10–13 10–12 10–12 10–12 10–12 

CUPU 10–14 10–14 10–13 10–13 10–13 10–13 10–13 10–13 

AD 10–15 11–15 10–14 10–14 10–14 10–14 10–14 10–13 

AU 10–12 10–12 10–12 10–12 10–12 10–12 10–11 10–11 

B
S

 

PU 10 10 10 10 10 10 10 10 

PUCU 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11 

CU 10 10 10 10 10 10 10 10 

CUPU 10 10 10 10 10 10 10 10 

AD 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11 

AU 10 10 10 10 10 10 10 10 

 

Moreover, for all benchmarks and test criteria in Figure A1, CARS-H always 

brings in the smallest increase in context diversity when k = 1. Note that when k =1, 

the candidate test suite defined in Figure A1 contains only one test case, and the 

context-aware sampling strategy degrades into the random strategy. However, 

CARS-H may still has a chance to increase context diversity of the test suites by 

solving tie cases during test suite construction: According to the definition of the 

replace() function in Algorithm 2, the context diversity of the test suite being 

constructed will be increased when a test case is replaced. The positive bars for k = 1 

suggests that the tie case solving strategy employed by CARS-H (and implemented 

by the replace() function) contributes to an increase in context diversity. When k > 1, 

the candidate test suite contains more than one test case and has more chances to 

select test cases with higher context diversity. The higher context diversity for k > 1 

than for k = 1 suggests that nontrivial candidate test suites (implemented by the 

select() function) contributes to an increase in context diversity. Similarly, the 

negative bars for k = 1 in Figure A2 suggest that the replace() function in CARS-L 

tends to reduce context diversity, and the lower context diversity for k > 1 than for k 

= 1 suggests that the select() function in CARS-L tends to reduce context diversity 

also. 

To investigate whether the difference between various test suite construction 

strategies and the baseline strategy is significant, we have conducted Bonferroni 

multiple comparison analysis for every test suite construction strategy. The results 

for WalkPath, CityGuide, and TourApp are presented in Tables A1, A2, and A3. For 

any candidate test suite size, if the range of numbers in the cell of a refined strategy 

has an overlap with the range of numbers in the cell of the baseline strategy, then 

there is no significant difference in the mean context diversity at a confidence level of 

95% and thus fail to reject the null hypothesis that “test suites constructed by a 
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specific context-aware refined strategy share the same context diversity with those 

constructed by the baseline strategy BS”. Otherwise, the difference is significant and 

the corresponding cells reject the null hypothesis. For example, for the test criterion 

PU and the candidate test suite size = 1 in Table A1, test suites constructed by 

CARS-H do not have significant different context diversity from that constructed by 

BS because the ranges of numbers in their respective cells has an overlap of the 

numbers 17 and 18. However, for the test criterion CU, test suites constructed by 

CARS-H have significant different context diversity from that constructed by BS 

because the ranges of numbers in their respective cells has no overlap. For ease of 

recognition, we have highlighted the cells that reject the null hypothesis. 

From Tables A1, A2, and A3, we find that regardless of benchmarks and test 

criteria, both CARS-H and CARS-L are more likely to reject the null hypothesis. For 

example, CARS-H rejects the null hypothesis in 44, 46, and 48 out of 48 cases for 

WalkPath, CityGuide, and TourApp, respectively. CARS-L can reject the null 

hypotheses in 45, 48, and 48 out of 48 cases for WalkPath, CityGuide, and TourApp, 

respectively. In contrast, CARS-E consistently fails to reject the null hypothesis for 

candidate test suites of all sizes. This result validates that both CARS-H and CARS-

L have a significant impact on the context diversity of test suites, and the impact of 

CARS-E to the context diversity of test suites is not statistically significant. 

Appendix B 

To study the test effectiveness enhanced by context diversity considerations using 

different strategies, we compare the strategies at the criterion level. Figures A4, A5, 

and A6 show the changes in test effectiveness between the baseline strategy BS and a 

context-aware refined strategy CARS-H, CARS-L, and CARS-E, respectively. The x-

axis of each plot in Figures A4 to A6 shows the size of candidate test suites. Suppose 

y1 denotes the mean fault detection rate of a criterion (such as PU, PUCU, CU, 

CUPU, AD, and AU) of the baseline strategy and y2 denotes that of a context-aware 

refined strategy CARS-H, CARS-L, or CARS-E. Then, the y-axis represents y2 − y1, 

which is the difference between the fault detection rate of a context-aware refined 

strategy and that of the baseline strategy with respect to a specific adequacy 

criterion. Note that a positive bar for a specific adequacy criterion indicates that a 

context-aware refined strategy is more effective than the BS strategy in exposing 

faults. 

 

(a) WalkPath 
 

(b) CityGuide (c) TourApp 

Fig. A4. Differences in fault detection rates between CARS-H and BS. 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

1
 

2
 

4
 

8
 

1
6

 
3

2
 

6
4

 
1

2
8

 

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

1
 

2
 

4
 

8
 

1
6

 

3
2

 

6
4

 

1
2

8
 

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n

 r
at

e 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 

0 

0.05 

0.1 

0.15 

0.2 

1
 

2
 

4
 

8
 

1
6

 

3
2

 

6
4

 

1
2

8
 D

if
fe

re
n
ce

 i
n
 f

au
lt

e 
d
et

ec
ti

o
n
 r

at
e 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 



Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:35 
 

 

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

(a) WalkPath (b) CityGuide 
 

(c) TourApp 

Fig. A5. Differences in fault detection rates between CARS-L and BS. 

(a) WalkPath (b) CityGuide 
 

(c) TourApp 

Fig. A6. Differences in fault detection rates between CARS-E and BS. 

When analyzing the mean fault detection rates of various criteria paired with 

CARS-H, we find that all the bars in Figure A4 are positive. This observation implies 

that an adequacy criterion paired with the CARS-H strategy can be more effective 

than that paired with the baseline strategy BS in terms of fault detection rates. For 

WalkPath, for instance, when k varies from 1 to 128, CARS-H outperforms BS by 

6.1-17.1% for PU, 8.2-22% for PUCU, 4.5-12.4% for CU, 5.2-10.6% for CUPU, 

6.9-20% for AD, and 3.5-10.6% for AU. Similar observations can be found for 

CityGuide and TourApp. In other words, CARS-H can consistently improve the test 

effectiveness in terms of the mean fault detection rate regardless of benchmarks, test 

criteria, and sizes of candidate test suites. Considering that data flow testing is by 

itself a highly effective technique, the result shows that the improvement made by 

CARS-H is significant. 

Furthermore, for CARS-H, the lengths of bars become longer and longer when the 

value of k increases, and the effect of k seems to be saturated at k = 64 in the 

experiment. For example, the maximum difference in test effectiveness between k = 

64 and k = 128 never exceeds 2.4%, 0.3%, and 1.3% for WalkPath, CityGuide, 

TourApp, respectively, regardless of the adequacy criterion. In particular, when k = 

64, the improvement of test effectiveness for all criteria induced by CARS-H over BS 

is 10.6-21.9% for WalkPath, 12.3-22.1% for TourApp, and 12.6-14.5% for CityGuide. 

In summary, irrespective of benchmarks and criteria, when k = 64, CARS-H can 

bring about an improvement of 10.6-22.1% in test effectiveness to the baseline 

strategy in terms of the mean fault detection rate. 

In Figure A5, all the bars of CARS-L are negative. This suggests that irrespective 

of benchmarks and test criteria, the CARS-L strategy always performs less 
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effectively than the BS strategy in terms of achieving the mean fault detection rates. 

In particular, for all the criteria when k = 64, CARS-L is 5.4-21%, 2.0-3.9%, and 

9.8-22.2% less effective than BS for WalkPath, CityGuide, and TourApp, respectively. 

That is, regardless of benchmarks and test criteria, CARS-L is 2.0-22.2% less 

effective than BS. 

Combining with the result presented in Appendix A, we find that changing the 

context diversity of an adequate test suite using CARS-H and CARS-L does correlate 

with the change in test effectiveness. 

CARS-E in Figure A6 results in positive bars, which are shorter than those 

corresponding to CARS-H and CARS-L. In particular, for all the test criteria when k 

= 64, CARS-E can be more effective by 2.2-7.0%, 0.8-1.9%, and 1.4-5.3% for 

WalkPath, CityGuide and TourApp, respectively. The result suggests that CARS-E 

brings in less impact on the test effectiveness of test suites than CARS-H or CARS-L. 
 

Table A4. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites 
Constructed by Different Strategies for WalkPath 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 3–5 3–5 4–6 5–7 6–8 7–8 7–8 7–8 

PUCU 10–12 10–12 12–14 12–14 13–15 14–16 15–17 15–17 

CU 17–18 17–18 17–18 17–18 17–18 18–19 19–21 19–21 

CUPU 17–18 17–18 17–18 17–18 18–20 18–20 18–20 19–21 

AD 9–11 11–13 12–14 13–15 13–15 14–16 14–16 14–17 

AU 17–18 17–18 17–18 17–18 17–18 17–18 18–21 19–22 

C
A

R
S

-L
 

PU 1–2 1–2 1–2 1–2 1–2 1 1 1 

PUCU 7–9 7–8 5–8 5–7 4–6 4–6 2–4 2–4 

CU 13–15 12–15 12–13 11–13 10–12 9–11 8–10 8–10 

CUPU 14–16 12–15 12–14 11–13 10–12 10–12 8–10 8–10 

AD 7–9 7–8 6–8 4–6 4–5 3–5 2–4 2–4 

AU 13–15 12–15 12–13 11–13 10–12 9–11 8–9 8–9 

C
A

R
S

-E
 

PU 2–4 3–5 3–4 3–5 3–5 3–5 3–5 3–4 

PUCU 9–10 9–11 9–11 9–10 9–10 9–11 9–10 9–11 

CU 17–18 17–18 17–18 18 18–19 18–19 18–19 18–19 

CUPU 17–18 17–18 18 17–18 18–19 18–19 18–20 18–19 

AD 8–10 8–10 9–11 9–11 9–10 9–10 9–11 9–11 

AU 17–18 18 17–18 17–18 18–19 18 18–20 18–19 

B
S

 

PU 1–3 1–3 1–3 1–3 1–3 1–3 1–3 1–3 

PUCU 8–9 8–9 8–9 8–9 8–9 8–9 8–9 8–9 

CU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17 

CUPU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17 

AD 8–9 8–9 8–9 8–9 8–9 8–9 8–9 8–9 

AU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17 
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Table A5. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites 
Constructed by Different Strategies for CityGuide 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 11 11 11 11 11 11–12 11–12 11–12 

PUCU 11 11 11 11–12 11–12 11–12 11–12 11–13 

CU 11–12 11–12 11–12 11–12 11–13 11–13 11–13 11–13 

CUPU 11–12 11–12 11–12 11–12 11–12 11–12 11–13 11–13 

AD 11–12 11–12 11–12 11–12 11–12 11–12 11–12 11–13 

AU 11–12 11–12 11–12 11–12 11–13 11–13 11–13 11–13 

C
A

R
S

-L
 

PU 1–2 1–2 1–2 1 1 1 1 1 

PUCU 5–7 5–7 5–6 4–6 4–5 4–5 4–5 3–5 

CU 6–8 5–8 5–8 5–7 5–7 5–7 5–7 5–6 

CUPU 6–8 5–8 5–7 5–7 5–7 5–6 5–6 4–6 

AD 4–6 4–6 4–6 4–5 4–5 4–5 3–5 3–5 

AU 6–9 6–9 6–9 6–8 5–8 5–8 5–7 5–7 

C
A

R
S

-E
 

PU 2–3 2–3 1–3 2–3 2–3 2–4 2–3 2–3 

PUCU 5–7 5–8 6–8 6–8 6–8 6–8 6–8 6–8 

CU 6–9 6–9 7–9 7–10 7–10 7–10 7–10 7–10 

CUPU 6–9 6–9 7–9 7–10 7–10 7–10 7–10 7–10 

AD 5–7 5–7 5–7 5–7 5–7 5–7 5–7 5–7 

AU 7–9 7–9 7–9 7–10 7–10 7–10 7–10 7–10 

B
S

 

PU 1–3 1–3 1–3 1–3 1–3 1–3 1–3 1–3 

PUCU 5–7 5–7 5–7 5–7 5–7 5–7 5–7 5–7 

CU 6–8 6–8 6–8 6–8 6–8 6–8 6–8 6–8 

CUPU 6–9 6–9 6–9 6–9 6–9 6–9 6–9 6–9 

AD 5–6 5–6 5–6 5–6 5–6 5–6 5–6 5–6 

AU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9 

 
Table A6. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites 

Constructed by Different Strategies for TourApp 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 14–18 15–18 15–18 14–18 14–17 13–17 14–17 14–17 

PUCU 18–22 19–23 20–24 20–24 20–24 20–24 20–24 20–24 

CU 21–25 22–26 23–26 23–26 24–27 24–27 24–27 24–27 

CUPU 22–25 23–26 23–26 23–27 24–27 24–27 24–27 24–27 

AD 14–17 16–20 18–21 18–22 19–22 18–22 18–21 19–22 

AU 22–26 23–27 24–27 24–27 24–27 24–28 25–28 24–28 

C
A

R
S

-L
 

PU 6–9 4–6 3–6 1–4 1–3 1–2 1–2 1–2 

PUCU 10–13 7–10 5–9 6–10 5–8 5–9 5–8 5–8 

CU 13–17 12–16 10–14 10–13 9–12 9–12 8–11 8–11 

CUPU 13–16 12–16 12–14 11–14 10–14 10–13 10–13 9–12 

AD 4–7 2–5 1–4 1–3 1–3 1–2 1 1 

AU 14–18 13–17 12–15 12–15 11–14 10–14 10–13 9–12 

C
A

R
S

-E
 

PU 8–11 8–11 8–11 7–11 8–11 8–11 8–11 8–12 

PUCU 14–17 13–17 13–16 12–15 14–17 14–18 15–18 12–16 

CU 17–20 17–21 17–21 17–21 17–21 17–21 17–21 17–21 

CUPU 17–20 17–20 17–20 17–20 17–20 17–20 17–20 17–20 

AD 10–14 10–14 10–13 10–13 10–13 10–14 10–14 10–14 

AU 19–22 19–22 19–22 19–22 19–22 19–22 19–23 19–23 

B
S

 

PU 6–9 6–9 6–9 6–9 6–9 6–9 6–9 6–9 

PUCU 11–15 11–15 11–15 11–15 11–15 11–15 11–15 11–15 

CU 15–18 15–18 15–18 15–18 15–18 15–18 15–18 15–18 

CUPU 15–19 15–19 15–19 15–19 15–19 15–19 15–19 15–19 

AD 10–13 10–13 10–13 10–13 10–13 10–13 10–13 10–13 

AU 17–20 17–20 17–20 17–20 17–20 17–20 17–20 17–20 

 
To find out whether the results are statistically significant, we have also 

conducted Bonferroni multiple comparison analysis for every test suite construction 

strategy. The respective results for WalkPath, CityGuide, and TourApp are presented 
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in Tables A4, A5, and A6, which can be interpreted similarly to Tables A1, A2, and 

A3, where the highlighted cells indicate the rejection of the null hypothesis that “test 

suites constructed by the context-aware refined strategy share the same fault 

detection rate as the baseline strategy BS”. 

From Tables A4, A5, and A6, we observe that regardless of benchmarks and test 

criteria, CARS-H is likely to reject the null hypothesis. For example, CARS-H rejects 

the null hypothesis in 30, 48, and 48 out of 48 cases for WalkPath, CityGuide, and 

TourApp, respectively. This result confirms that CARS-H can outperform the BS 

strategy significantly in terms of fault detection rates achieved by test suites with a 

specific size and coverage. In contrast, CARS-L deteriorates the effectiveness of test 

suites significantly. For example, CARS-L rejects the null hypothesis in 28 and 38 

out of 48 cases for WalkPath and TourApp. Quite a number of outliers exist for 

CityGuide: CARS-L fails to reject the null hypothesis for all the cases. As shown in 

Table 5 in Section 6.2, owing to the low fault detection rates achieved by test suites 

constructed by the baseline strategy BS, CARS-L cannot deteriorate the test 

effectiveness further. Compared with CARS-H and CARS-L, CARS-E cannot be 

significantly distinguished from BS. For example, CARS-E fails to reject the null 

hypothesis in all the 48 cases for the three benchmarks.  

Appendix C 

In this appendix, we report to what extent the context diversity of test suites 

correlates with the execution of test suites in terms of the normalized execution path 

length expressed as the number of statements executed. We normalize the length of 

an execution path as the ratio of the length of that path to the length of the longest 

execution path executed by the test cases in the test pool. Figures A7, A8, and A9 

show the changes in the normalized execution path lengths between the baseline 

strategy BS and a context-aware refined strategy (CARS-H, CARS-L, and CARS-E, 

respectively). The x-axis of each plot in Figures A7 to A9 shows the size of the 

candidate test suite. Suppose y1 denotes the mean normalized execution path length 

of a criterion (such as PU, PUCU, CU, CUPU, AD, and AU) of the baseline strategy 

and y2 denotes that of a context-aware refined strategy CARS-H, CARS-L, or CARS-

E. Then, the y-axis represents y2 − y1, which is the difference between the 

normalized execution path length of a context-aware refined strategy and that of the 

baseline strategy with respect to a specific adequacy criterion. Note that a positive 

bar for a specific adequacy criterion indicates that a context-aware refined strategy 

exercises a longer path than the BS strategy. 

 

 
(a) WalkPath 

 
(b) CityGuide 

 
(c) TourApp 

Fig. A7. Differences in normalized execution path lengths between CARS-H and BS. 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

1
 

2
 

4
 

8
 

1
6

 

3
2

 

6
4

 

1
2

8
 D

if
fe

rn
ec

e 
in

 n
o
rm

al
iz

ed
 p

at
h
 l

en
g
th

 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

1
 

2
 

4
 

8
 

1
6

 

3
2

 

6
4

 

1
2

8
 D

if
fe

re
n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

1
 

2
 

4
 

8
 

1
6

 

3
2

 

6
4

 

1
2

8
 D

if
fe

re
n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

 

Size of candidate suite 

PU PUCU 

CU CUPU 

AD AU 



Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:39 
 

 

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY 

 
(a) WalkPath 

 
(b) CityGuide 

 
(c) TourApp 

Fig. A8. Differences in normalized execution path lengths between CARS-L and BS. 

 
(a) WalkPath 

 
(b) CityGuide 

 
(c) TourApp 

Fig. A9. Differences in normalized execution path lengths between CARS-E and BS. 

For each normalized execution path length shown in Figure A7, CARS-H always 

results in a positive bar, which indicates that test suites constructed by CARS-H 

consistently exercise more statements than those constructed by BS. For example, 

irrespective of test criteria, when varying k from 1 to 128, the minimum and 

maximum numbers of changes in the normalized execution path lengths brought by 

CARS-H to BS are 2.1% and 19.9% for WalkPath, 2.9% and 25.1% for CityGuide, and 

15.2% and 24.9% for TourApp, respectively. That is, the test suites constructed by 

CARS-H exercise 2.1−25.1% longer paths than those constructed by BS. In Figure A8, 

we observe that CARS-L always executes shorter paths than the baseline strategy 

BS. CARS-E in Figure A9 is associated with positive bars but the lengths are much 

shorter than those corresponding to CARS-H, which indicates that CARS-E has 

much less effect than CARS-H in forcing test suites to traverse longer paths. 

To investigate whether the changes due to various strategies over the BS strategy 

are attributed to chance, we have conducted Bonferroni multiple comparison analysis 

for every strategy. The results for WalkPath, CityGuide, and TourApp are presented 

in Tables A7, A8, and A9, respectively, where the highlighted cells reject the null 

hypothesis that “test suites constructed by a context-aware refined strategy traverse 

execution paths of the same lengths as test suites constructed by the baseline 

strategy BS”. 

We observe from Tables A7 to A9 that both CARS-H and CARS-L tend to reject 

the null hypothesis and CARS-E fails to reject the null hypothesis regardless of 

benchmarks, test criteria, and sizes of candidate test suites. For example, CARS-H 

rejects the null hypothesis in 44, 44, and 48 out of 48 cases for WalkPath, CityGuide, 
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and TourApp, CARS-L rejects the null hypothesis in 39, 48, and 48 out of 48 cases for 

the three benchmarks, and CARS-E fails to reject the null hypothesis in all 48 cases 

for the three benchmarks, respectively. The results imply that test suites constructed 

by CARS-H execute significantly more statements (in the statistical sense) than 

those constructed by the BS strategy, test suites constructed by CARS-L execute 

significantly less statements, and test suites constructed by CARS-E traverse similar 

number of statements. 

 
Table A7. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths Exercised by 

Test Suites Constructed by Different Strategies for WalkPath 

Strategy Criterion Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 8–12 10–14 12–16 13–17 15–19 15–20 16–21 17–21 

PUCU 9–14 11–15 12–16 14–18 15–19 16–20 16–21 16–21 

CU 13–16 13–17 14–18 15–19 15–20 16–21 16–21 16–21 

CUPU 13–15 13–17 14–18 15–19 15–20 16–21 16–21 16–21 

AD 9–13 11–15 12–16 14–18 15–19 15–20 16–21 16–21 

AU 13–15 13–17 14–18 15–19 15–19 16–20 16–21 17–21 

C
A

R
S

-L
 

PU 6–10 4–8 2–6 1–5 1–3 1–2 1–2 1 

PUCU 6–10 4–8 1–6 1–5 1–4 1–3 1–2 1 

CU 5–9 2–7 1–5 1–4 1–3 1–2 1–2 1 

CUPU 5–9 2–7 1–5 1–4 1–3 1–2 1 1 

AD 6–10 4–8 1–6 1–5 1–4 1–2 1–2 1 

AU 5–9 2–7 1–5 1–4 1–3 1–2 1 1 

C
A

R
S

-E
 

PU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 8–11 

PUCU 8–11 8–11 8–11 8–12 8–12 8–12 8–12 8–12 

CU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12 

CUPU 9–13 9–13 9–13 9–13 9–13 9–13 9–13 9–13 

AD 7–11 7–11 7–11 8–11 8–11 8–11 8–11 8–12 

AU 8–12 8–12 8–12 8–13 8–13 9–13 8–13 9–13 

B
S

 

PU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11 

PUCU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11 

CU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12 

CUPU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12 

AD 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11 

AU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12 
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Table A8. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths 
Exercised by Test Suites Constructed by Different Strategies for CityGuide 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 
C

A
R

S
-H

 
PU 7–8 8–10 9–11 11–13 12–14 13–15 13–15 13–15 

PUCU 7–8 8–10 9–11 11–13 12–14 13–15 13–15 13–15 

CU 9–11 10–12 11–13 12–14 12–14 12–14 13–15 12–15 

CUPU 8–11 10–12 11–13 12–14 12–14 12–14 13–15 13–15 

AD 7–9 9–11 10–12 11–13 12–14 13–15 13–15 13–15 

AU 9–11 10–12 11–13 12–14 12–14 12–14 12–14 13–15 

C
A

R
S

-L
 

PU 5–6 3–5 2–4 1–3 1–3 1–2 1 1 

PUCU 5–6 4–5 2–4 1–3 1–2 1–2 1 1 

CU 4–5 2–4 1–3 1–2 1–2 1 1 1 

CUPU 4–5 2–4 1–3 1–2 1–2 1 1 1 

AD 5–6 3–5 2–4 1–3 1–2 1 1 1 

AU 4–5 2–4 1–3 1–2 1–2 1 1 1 

C
A

R
S

-E
 

PU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9 

PUCU 7–8 7–8 7–8 7–9 7–9 7–9 7–9 7–9 

CU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9 

CUPU 7–10 7–10 7–10 7–10 7–10 7–10 7–10 8–10 

AD 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9 

AU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9 

B
S

 

PU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

PUCU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

CU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

CUPU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

AD 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

AU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8 

 
Table A9. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths Exercised by Test 

Suites Constructed by Different Strategies for TourApp 

Strategy Criterion 
Sizes of Candidate Test Suites 

1 2 4 8 16 32 64 128 

C
A

R
S

-H
 

PU 13 13 13–14 13–15 13–15 13–15 13–16 14–16 

PUCU 13 13 13–14 13–15 13–15 13–15 13–16 14–16 

CU 13 13–14 13–14 13–15 13–15 13–15 13–15 13–15 

CUPU 13 13–14 13–14 13–15 13–15 13–15 13–15 13–15 

AD 13 13–14 13–14 13–15 13–15 13–15 13–15 14–16 

AU 13 13 13–14 13–15 13–15 13–15 13–15 13–15 

C
A

R
S

-L
 

PU 6–7 4–5 1–3 1 1 1 1 1 

PUCU 6–8 4–5 1–2 1 1 1 1 1 

CU 6–7 4–5 1–2 1 1 1 1 1 

CUPU 6–7 4–5 1–2 1 1 1 1 1 

AD 8–9 5–6 1–4 1–2 1–2 1 1 1 

AU 6 3–5 1–2 1 1 1 1 1 

C
A

R
S

-E
 

PU 10 10 10 10 10–11 10–11 10–11 10–12 

PUCU 10 10 10–11 10–11 10–11 10–12 10–12 10–12 

CU 10 10 10 10 10–11 10–11 10–11 10–12 

CUPU 10 10 10–11 10–11 10–11 10–11 10–11 10–12 

AD 10–11 10–11 10–11 10–11 10–12 10–12 10–12 10–12 

AU 10 10 10 10 10–11 10–11 10–11 10–12 

B
S

 

PU 10 10 10 10 10 10 10 10 

PUCU 10 10 10 10 10 10 10 10 

CU 10 10 10 10 10 10 10 10 

CUPU 10 10 10 10 10 10 10 10 

AD 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11 

AU 10 10 10 10 10 10 10 10 

 


