

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article xx, Publication date: Month YYYY

To appear in ACM Transactions on Autonomous and Adaptive Systems

Improving the Effectiveness of Testing Pervasive Software
via ContextDiversity

HUAI WANG, The University of Hong Kong

W.K. CHAN, City University of Hong Kong

T.H. TSE, The University of Hong Kong

Context-aware pervasive software is responsive to various contexts and their changes. A faulty

implementation of the context-aware features may lead to unpredictable behavior with adverse effects. In

software testing, one of the most important research issues is to determine the sufficiency of a test suite to

verify the software under test. Existing adequacy criteria for testing traditional software, however, have

not explored the dimension of serial test inputs and have not considered context changes when

constructing test suites. In this paper, we define the concept of context diversity to capture the extent of

context changes in serial inputs and propose three strategies to study how context diversity may improve

the effectiveness of the data flow testing criteria. Our case study shows that the strategy that uses test

cases with higher context diversity can significantly improve the effectiveness of existing data flow testing

criteria for context-aware pervasive software. In addition, test suites with higher context diversity are

found to execute significantly longer paths, which may provide a clue that reveals why context diversity

can contribute to the improvement of effectiveness of test suites.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging; D.2.8

[Software Engineering]: Metrics

General Terms: Verification, Experimentation, Measurement, Reliability

Additional Key Words and Phrases: Context-aware program, context diversity, test adequacy

ACM Reference Format:

Huai Wang, W.K. Chan, and T.H. Tse, 2013. Improving the effectiveness of testing pervasive software via

context diversity. ACM Transactions on Autonomous and Adaptive Systems.

1. INTRODUCTION

Context-aware pervasive software (CPS) applications capture the evolution of the

computing environment as contexts, and self-adapt their behavior dynamically

according to such contexts [Lu et al. 2008]. For example, a smart phone equipped

with sensors may continuously sample the user’s contexts such as locations and

activities, and use them as further inputs to switch among its modes: When receiving

This research is supported in part by the Early Career Scheme and the General Research Fund of the

Research Grants Council of Hong Kong (project numbers 123512, 717811, and 716612).

Authors’ addresses: Huai Wang and T.H. Tse, Department of Computer Science, The University of Hong

Kong, Pokfulam, Hong Kong, emails: {hwang, thtse}@cs.hku.hk; W.K. Chan (corresponding author),

Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, email:

wkchan@cityu.edu.hk.

This is the authors’ version of the work. The definitive version will be published in ACM Transactions on

Autonomous and Adaptive Systems.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax +1 (212) 869-0481, or permissions@acm.org.

© 2014 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

1

1:2 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

a coming call, it may vibrate silently when the user is presenting a report in a

meeting room, or may beep loudly when the user is watching a football game at home.

This class of applications is increasingly deployed in our everyday environments.

At the same time, their failures, if any, increasingly affect our daily living. It is

critical to assure their quality.

Software testing is the most widely used approach in the industry to assure the

quality of programs [Bertolino 2007]. In the testing process, test inputs known as test

cases are applied to the program under test to verify whether the execution results

agree with the expected outcomes. Any disagreement between the two shows that the

execution of the test case against the program reveals a failure of the program under

test. Every such failure is due to a fault, which means an incorrect step in a program.

However, it is well known that testing techniques can only reveal failures but

cannot prove the absence of faults [Ammann and Offutt 2008], and it is impractical to

exhaustively test the program with nontrivial input domains [Weyuker and Ostrand

1980]. As such, a central problem in software testing research is to determine when

to stop the testing process, which gives birth to research in test adequacy criteria

[Hutchins et al. 1994]. Specifically, a collection of test cases, known as a test suite, is

said to be adequate if it satisfies a specific test adequacy criterion. A simple test

adequacy criterion is statement coverage [Zhu et al. 1997], where every statement in

the code is executed at least once by the test suite. More advanced test adequacy

criteria have been introduced in the literature. An important class of such criteria is

the data flow testing criteria, which examine how well test cases cover the execution

paths between data definitions and their corresponding data usage in the program

under test [Frankl and Weyuker 1988]. Data flow testing criteria have been widely

regarded to be highly effective, which have been validated by numerous empirical

studies [Hutchins et al. 1994, Frankl and Weiss 1993, Offutt et al. 1996].

Traditional test adequacy criteria may, however, fail to perform effectively on

some classes of applications due to domain-specific features. As such, domain-specific

data flow testing criteria have been proposed to address this problem. Examples

include test adequacy criteria for database-driven applications [Kapfhammer and

Soffa, 2003], service-oriented workflow applications [Mei et al. 2008], and CPS

applications [Lai et al. 2008; Lu et al. 2006; 2008] to address the challenges due to

embedded SQL statements, XML and XPath constructs, and dynamic evolutions of

contexts in the program environment, respectively.

In general, test cases for CPS applications consist of sequences of context values.

For instance, the smart phone takes location, activity sequences such as meeting

room, present report and home, watch football as inputs. Context values are

usually noisy and error-prone [Chen et al. 2011]. CPS applications running with

reference to these context values are, however, expected to compute results that

agree with the users’ intuitions on CPS applications perceived from the surrounding

environment.

Our experience in conducting the experimentation for the above criteria for CPS

applications [Lu et al. 2006] show that CPS programs over different context

sequences serving as inputs may follow the same program path, and yet the fault

detection ability of these context sequences may be significantly different. This leads

us to develop our work in Wang and Chan [2009], which proposes the notion of

context diversity to measure the extent of context changes inherent in sequences of

context values. For example, the context diversity for the sequences meeting room,

present report and home, watch football is 2 after summing up the context changes

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:3

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

in the dimensions of location (where “meeting room” is different from “home”) and

activity (where “present report” is different from “watch football”).

This paper extends our previous work [Wang and Chan 2009] to study how

context diversity affects the effectiveness of data flow testing criteria in exposing

faults in CPS applications. Specifically, we study three strategies, namely, CARS-H,

CARS-L, and CARS-E, to select test cases with higher, lower, and more evenly

distributed context diversity in constructing test suites that are adequate with

respect to the data flow testing criteria. To study these effects, we report a new

multi-subject case study using the popular and representative data flow testing

criteria on the three CPS benchmarks with a total of 8,097 lines of code, 30,000 test

cases, 959 faulty versions produced through mutation analysis [Andrews et al. 2006;

Budd et al. 1980], and 43,200 adequate test suites. Our case study covers all the

benchmarks used in representative previous work such as Lu et al. [2008], Wang et

al. [2007], and Zhai et al. [2010; 2012].

The experimental results in the case study show that CARS-H and CARS-E can

improve the effectiveness of data flow testing criteria by 10.6−22.1% and 0.8−5.3%,

respectively, while CARS-L can be 2.0−22.2% less effective. Considering that data

flow testing criteria have been deemed by many researchers to be highly effective test

adequacy criteria to expose faults, the experimental results indicate that the

additional boost by CARS-H in terms of test effectiveness is significant. The contrast

between CARS-H and CARS-L further confirms that the difference is not by chance.

Moreover, the ineffectiveness of evenly distributed test case diversity (demonstrated

by CARS-E) in the CPS domain points out potential further research in random

testing and adaptive random testing.

The main contribution of this paper is threefold: (i) It is the first work to

formulate strategies to modify the context-awareness distribution of adequate test

suites. (ii) We report one of the largest case studies on the effectiveness and

ineffectiveness of testing strategies for CPS applications. (iii) We propose the notion

of context diversity and provide the first empirical evidence to demonstrate its

usefulness in enhancing the effectiveness of testing CPS applications.

The rest of the paper is organized as follows: Section 2 reviews related work.

Section 3 introduces the fundamental concepts in this paper and formulates our test

suite construction strategies. Section 4 presents the research questions and explains

the setup of the case study. Section 5 summarizes the analysis results. Section 7

discusses the applicability of traditional data flow adequacy criteria to pervasive

software, and Section 5.5 concludes the paper.

2. RELATED WORK

Many researchers proposed various verification techniques and methodologies to

assure the quality of CPS applications. Tse et al. [2004] advocated the use of

metamorphic relations among different contexts to alleviate the test oracle problem.

Lu et al. [2006; 2008] identified new data flow associations that projected the effects

of context changes on the traditional control flow graphs of CPS applications, and

proposed a family of test adequacy criteria. Wang et al. [2007] proposed to

manipulate the interleaving of multithreaded components with respect to a set of

program call sites where context changes may affect the program states, and further

recommended a set of control-flow testing criteria to exercise all these program

points. Lai et al. [2008] proposed a set of coverage-based test adequacy criteria to

expose interrupt-based faults in nesC programs while the programs re-adjusted their

behavior to new contexts. Our technique proposed in the present paper can be

1:4 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

integrated with these coverage-based criteria by selecting test cases with different

context-diversity optimization objectives when constructing the corresponding

adequate test suites.

To determine the adequacy of a test suite, a technique usually involves two

components. First, it should statically analyze the set of program elements to be

exercised by the test suite. Second, it should dynamically monitor the executions of

selected test cases against the program to determine the coverage achieved with

respect to the exercised program elements.

It is well known that static analysis to compute the data definition-usage

associations in a program suffers from severe problems [Santelices and Harrold 2007]

when program variables span across multiple procedures, when variables are aliased,

or if the program involves concurrent components. Fortunately, the scalability issues

in point-to analysis have been significantly alleviated in recent years [Lhotak and

Chung 2011; Kastrinis and Smaragdakis 2013]. They help make the static analysis

in data flow testing more practical.

When applying a data flow adequacy criterion, it generally requires executing test

cases against the program to determine the achieved coverage (Frankl and Weyuker,

1988, Hassan and Andrews 2013). Unfortunately, the overhead of runtime

monitoring with respect to data flow adequacy criteria is very high due to the need of

profiling data accesses in the course of program executions. For instance, to profile

the data accesses from the executions of C/C++ programs via the popular Pin

framework, the overhead can be as high as almost a 100-fold slowdown [Luk et al.

2005]. This high runtime overhead problem is further amplified by the fact that data

flow test adequacy criteria are demanding to be satisfied [Weyuker 1990, Hassan and

Andrews 2013]. Hence, blindly applying more test cases to a program may not

effectively exercise more program elements that are identified to be not covered by

previous executions. This issue still prevents these test adequacy criteria from being

adopted by the industry to test large-scale applications [Yang et al. 2009]. Significant

researches should be made so that data flow testing to assure CPS applications can

be applied in practice.

To address these issues, the present work contributes by studying the application

of context diversity. As we have described in Section 1, context diversity is a notion

that measures the properties of test cases without exercising the program and does

not rely on the source code of the program. Test case selection among a set of

candidates can be performed by simply using an effective mechanism to guide the

process. With respect to this selection problem, our case study shows that using the

CARS-H strategy can be significantly more effective than not using it.

Static verification approaches have been proposed to assure the quality of CPS

applications. Specification and Description Language (SDL) [Belina and Hogrefe

1989] and Message Sequence Charts (MSC) [Alur and Yannakakis 1999] are two

well-known formal techniques to model the interactions among system components of

pervasive software. They use formal analysis tools (such as the ObjectGeode1 tool set)

to verify specific objectives (such as deadlocks, livelocks, and the possibility of

reaching a particular state during exploration). Roman et al. [1997] modeled a mobile

software application in Mobile UNITY and verified the model against the specified

properties, particularly the mobility aspects of the software. Murphy et al. [2006]

proposed to represent contexts as tuples, and contexts are captured when constraints

on contexts are activated. Sama et al. [2010] verified the conformance between the

1 Available at http://www.verilog.org/.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:5

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

adaptive behavior of a program and a set of proposed patterns, which is concerned

with discovering faults in context-awareness and adaptation behavior of an

application. By dividing the whole adaptive program into non-adaptive functional

parts and adaptive ones, Zhang and Cheng [2006] proposed a model-driven approach

using Petri Nets for developing adaptive systems. Zhang et al. [2009] also presented

a modular A-LTL (an extension of Linear Temporal Logic with adapt operators)

model-checking approach to verifying the adaptation properties of such systems.

Kacem et al. [2009] proposed a coordination protocol for distributed adaptation of

component-based systems. They then used colored Petri nets to model the key

behavioral properties of coordination and conducted CTL (Computational Tree Logic)

model checking to assess the correctness of the models and protocols. Xu et al. [2013]

automatically inferred domain and environment models to suppress false alarms in

state transitions for rule-based context-aware systems. Yang et al. [2013] employed

logical time to model the temporal evolution of environment states as a lattice, used a

formal language to model the specification of dynamic properties over the traces of

environment state evolution, and applied the SurfMaint algorithm to achieve

runtime maintenance of the active surface of the lattice. Static verification

techniques, however, usually suffer from the scalability issue: They are only suitable

for small programs but not large scale applications [D’Silva et al. 2008]. Different

from these verification efforts, our technique does not assume the presence of model-

based artifacts and use runtime coverage information and context diversity to

facilitate the testing of CPS applications.

The idea of evaluating the quality of a test suite is not new. Harder et al. [2003]

proposed to add test cases to a test suite incrementally until the operational

abstraction of the test suite is not changed by the next candidate test case. On the

other hand, our technique selectively replaces an existing test case of a test suite by a

candidate test case if the context diversity of the test suite can be enhanced by such a

replacement. Jeffrey and Gupta [2007] employed multiple coverage-based testing

criteria to resolve tie cases. A key difference between our strategy and their work is

that they tried to retain all redundant test cases with respect to the primary test

adequacy criterion as long as they satisfy additional requirements with respect to

some complementary criteria. Lin and Huang [2009] proposed to control the sizes of

the reduced test suites by picking up only one test case that contributes the most to

the complementary criteria from all redundant test cases with respect to the primary

test adequacy criterion. Still, the reduced test suite produced by their algorithm may

be redundant with respect to the primary criterion. In contrast, the essential idea of

our proposed strategy is to replace one test case by another  it does not retain any

redundant test case with respect to any test adequacy criterion. More importantly,

our technique introduces much less overhead to testers because they can derive

context diversity from test inputs without program execution while all the other

techniques discussed in this paragraph need to execute programs to collect runtime

white-box information.

Last but not least, the strategy proposed in this paper is open to a variety of

choices of other test adequacy criteria. For instance, one may integrate our approach

with the ideas of Heimdahl and George [2004] to obtain testing items (such as

variables, transitions, and conditions/decisions) defined by formal software

specifications. One may also combine our approach with the idea of von Ronne [1999]

to derive requirements that each testing item needs to be covered multiple times

before they are considered sufficiently exercised. In addition, one may also combine

our approach with the failure-pursuit sampling strategy proposed by Leon and

1:6 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Podgurski [2003]. That is, after clustering all test cases based on their execution

profiles, one test case in each cluster is randomly selected to execute; if it succeeds to

find a failure, its k nearest neighbors (which may cross the boundary of clusters) are

also selected to execute. Thus, the idea of our approach is general and versatile.

3. FUNDAMENTAL CONCEPTS AND PROPOSED STRATEGIES

In this section, we present the fundamental concepts and notation in our model for

CPS applications and testing, as well as our proposed strategies.

3.1 Context-Aware Pervasive Software

A context variable v is a characterization of the contexts [Lu et al. 2006; 2008]. We

follow Xu et al. [2010] to model a context variable as a tuple field1, field2, …, fieldu

such that each fieldw (w = 1, 2, …, u) is an environmental attribute of a CPS

application. A context instance (denoted by ins(v)) is an instantiated context variable

such that every field in v is given a value. A context stream, denoted by cstream(v), is

an input to a CPS application. It is a time series of the form  , , …,

 , where each (for s = 1, 2, …, m and ts < ts+1) in cstream(v) is a

context instance sampled at time ts.

For example, the smart phone mentioned above has a two-dimensional context

variable location, activity. When a user presents a report in a meeting room, the

context variable is initialized as a context instance meeting room, present report. As

time goes on, the context stream sequence captures a series of activities, beginning

with meeting room, present report, followed by meeting room, discuss, and finally

home, watch football.

3.2 Context Diversity

Context diversity (denoted by CD) [Wang and Chan 2009] measures the number of

context changes inherent in a context stream. For any given context stream

cstream(v), it computes the total Hamming distance2 [Hamming 1950, Forney 1966]

between all pairs of consecutive context instances, and is defined as:

Each is the Hamming distance between the pair of context

instances for i = 1, 2, ..., L–1, where L is the length of the context

stream. Consider the context stream example in Section 3.1. For the context stream

(meeting room, present report, meeting room, discuss, home, watch football), the

Hamming distance between meeting room, present report and meeting room,

discuss is 0 + 1 = 1, and that between meeting room, discuss and home, watch

football is 1 + 1 = 2. Hence, the context diversity of the sequence is given by the total

Hamming distance of 3.

3.3 Data Flow Testing Criteria

Data flow testing criteria can be defined in terms of a Control Flow Graph (CFG) that

models the program structure. A CFG is a directed graph that consists of a set N of

nodes and a set E N × N of directed edges between nodes. Each node represents a

2 Hamming distance was originally proposed by Hamming [1950] for binary tuples, but was generalized to

cover tuples of the form field1, field2, …, fieldu such that the number of possible values in each fieldi is

finite. See, for example, Forney [1966].

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:7

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

block of simple statements executed sequentially, and each edge represents execution

transfer among nodes. All the nodes in a CFG have both inward and outward edges

except the begin node and the end nodes. The begin node has no inward edge since it

defines where the execution starts, while an end node has no outward edge since it

defines where the execution ends. A complete path is a path from the begin node to an

end node. For instance, the CFG for computeAverage() is shown in Figure 1. It

returns the average of all the numbers in the input array within the range [MIN,

MAX]. The maximum size of the array is AS. The actual array size can be smaller

than AS, in which case the end of input is represented by –999. For ease of reading,

we label each node in Figure 1(b) as start, A, B, C, …, end.

A. i=0; ti=0;

tv=0;

sum=0;

B. ti<AS&&value[i]

!=-999

C. ti++;

true

D. value[i]>=MIN

&&value[i]!=-999

true

E. tv++;

 sum+=value[i];

F. i++;

false

G. tv>0

H.

av=(double)

sum/tv;

I.

av=(double)

-999;

J. return av;

false

true
false

start

end

(a) Source code (b) Control flow graph

Fig. 1. Source code and control flow graph for computeAverage().

Data flow testing criteria are related to the occurrences of variables within the

program. A variable x has a definition occurrence in node n if the value of x is stored

in a memory location during the execution of n. A variable x has a use occurrence in

node n if the value of x is fetched during the execution of n. A use occurrence of a

variable can be further classified as a predicate use (p-use) in a condition node (which

contains conditional statements such as if-statements or while-statements) or a

computation use (c-use). For example, the variables i, ti, tv, and sum are defined in

node A, while ti has a p-use in node B and a c-use in node C.

A path in a CFG is definition clear with respect to x if none of the nodes in the

path (other than the first and the last node) defines x. The relation def_clear(x, ni, nj)

double computeAverage(int[] values[], int AS, int

MIN, int MAX) {

int i, ti, tv, sum;

double av;

A. i = 0; ti = 0; tv = 0; sum = 0;

B. while (ti < AS && value[i] != –999) {

C. ti++;

D. if (value[i] >= MIN && value[i] != –999) {

E. tv++;

 sum += value[i];

 }

F. i++;

}

G. if (tv > 0)

H. av = (double) sum / tv;

else

I. av = (double) –999;

J. return av;

}

1:8 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

denotes a definition-clear path with respect to x from ni to nj. For this relation, a

definition of x at node ni is a reaching definition of node nj and a use of x at node nj is

a reaching use of node ni. A def-use association (du-association for short) is defined as

a triple (x, ni, nj) such that x is used at node nj, and ni is a reaching definition of node

nj. The triple (x, ni, nj) is covered by a path p if p is definition clear with respect to x

and both ni and nj are in p. For instance, there is a definition-clear path with respect

to values[] from node start to end because it does not redefine values[]. Hence, we

have a du-association (values[], start, end). In contrast, a path with respect to ti from

node A to C is not definition clear because ti is redefined in node C. Furthermore,

simple paths and loop-free paths are defined to avoid an infinite number of

definition-clear paths in programs with loops. A simple path is one in which all nodes,

except possibly the first and the last, are distinct. A loop-free path is one in which all

nodes are distinct.

Frankl and Weyuker [1988] proposed a family of data flow testing criteria. The

criterion All-Defs (AD) requires that for each definition of the variable x in node ni,

there is a complete path that includes a definition-clear path from ni to nj such that

there is a c-use of x in nj or a p-use of x immediately before nj. For example, the

variable tv is defined in node A and has a c-use in node E, and there is a definition-

clear path A–B–C–D–E from node A to E. It needs a complete path start–A–B–C–D–

E–F–G–H–J that includes the definition-clear path A–B–C–D–E to satisfy the AD

criterion. The criterion all-C-Uses (CU) requires that for each definition of the

variable x in node ni, there is a complete path that includes a definition-clear path

from ni to all the nodes nj such that there is a c-use of x at nj or a p-use of x

immediately before nj. For instance, the variable ti is defined in node A and has a c-

use in node C, and there is a definition-clear path A–B–C from A to C. We can find a

complete path start–A–B–C–D–E–F–G–H–J that includes the definition-clear path A–

B–C to satisfy the CU criterion. The criterion all-P-Uses (PU) is similar to CU, except

that it exercises all the p-uses of the variable in question. For example, the variable

tv is defined in node A and has a p-use in node G, and A–B–G is a definition-clear

path. We can find a complete path start–A–B–G–H–J that includes the definition-

clear path A–B–G to satisfy the PU criterion. The criterion all-P-Uses/some-C-Uses

(PUCU) is similarly defined. It is identical to the criterion PU when the variable has

no c-use, and reduces the criterion to some-c-uses if the variable has no p-use, such

that for each variable x, there are complete paths that include definition-clear paths

from the definition of x to some nodes that have a c-use of x. Consider the variable i

defined in node A that has no p-use but a c-use in statement 10. A complete path

start–A–B–C–D–F–G–H–J that includes the definition-clear path A–B–C–D–F can be

used to cover the criterion PUCU. Similarly, the criterion all-C-Uses/some-P-Uses

(CUPU) is equivalent to CU if a variable has no p-use, and reduces to the criterion

some-p-uses if the variable has no c-use. For instance, the variable value[] is defined

when computeAverage() is called and has no c-use but a p-use in node D. A complete

path start–A–B–C–D–E–F–G–H–J that includes the definition-clear path A–B–C–D

can be used to cover the criterion CUPU. The criterion All-Uses (AU) produces a set

of complete paths due to both the criteria PU and CU. The criterion all-DU-paths is

the strictest test adequacy criterion, namely, that for each variable x defined in any

node ni, test cases must traverse complete paths that include (a) all definition-clear

simple paths from ni to all the nodes nj such that there is a c-use of x in nj and (b) all

definition-clear loop-free paths from ni to all the nodes nj such that there is a p-use of

x immediately before nj.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:9

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

3.4 Baseline Test Suite Construction Strategy (BS)

We will compare our proposed strategies for enhancing the effectiveness of test suite

construction with a baseline strategy based on Frankl and Weyuker [1988]. First, we

present the baseline test suite construction strategy in Algorithm 1 below. It

constructs a random test suite with respect to a test adequacy criterion C. It first

initializes a test suite S as an empty set. It then randomly selects a test case t from

the test pool using the function randomSelect(1)3. We use another function coverage:

C  S  [0, 1] to return the percentage of coverage items (such as the percentage of

program statements for statement coverage) with respect to the criterion C fulfilled

by the test suite S. A test suite is said to be adequate if the returned value is 100%. If

the combined code coverage achieved by S  {t} against test adequacy criterion C via

the function coverage(C, S  {t}) is higher than that of S via coverage(C, S), the test

case t is added to S. The algorithm iterates until it either achieves 100% test

coverage or reaches an upper bound M of the number of selection trials. Following

the setting of [Lu et al. 2008], we set M = 2000. For ease of reference, we will refer to

Algorithm 1 as BS.

ALGORITHM 1. Baseline Strategy (BS) to Construct Test Suites

Inputs:

M: upper bound of the number of selection trials (a nonnegative integer)

C: test adequacy criterion

Output:

S: C-adequate test suite

a1: integer trial = 0; // no. of selection trials made

a2: S = { };

a3: while (coverage(C, S) < 100%  trial < M) {

a4: trial ++;

a5: t = randomSelect(1); // randomly select a test case from the

test pool

a6: if (coverage(C, S  {t}) > coverage(C, S))

a7: S = S  {t}; // keep the test case in S

a8: }

a9: return S;

Suppose, for example, that we would like to construct a test suite S to satisfy the

criterion AU for computeAverage() in Figure 1. At the beginning, coverage(AU, S) = 0

because no test case is included in S (= {}). Suppose AS, MIN, and MAX are global

constants that are shared by all test cases and are set to the values of 5, 0, and 100,

respectively. Then, a test case t = [1, 1, –999] increases the coverage of S with respect

to AU by exercising the complete path start–A–B–C–D–E–F–G–H–J, and hence t is

included in S (= {t}) based on condition a6. In contrast, the test case t' = [2, 3, –999] is

excluded from S because t' shares the same complete path with t and does not

increase coverage(AU, S).

BS not only selects test cases randomly, but also resolves ties randomly. In

essence, if both S  {t} and S  {t'} achieve the same coverage with respect to a

criterion C (that is, coverage(C, S  {t}) = coverage(C, S  {t'})), BS makes a random

selection between t and t' for inclusion in the updated test suite S.

3 In general, the function randomSelect(k) randomly selects k candidate test cases from the test pool of the

benchmark. We assume the existence of a test pool for data flow testing. Interested readers may refer to

Edvardsson [1999] for approaches to generate test cases for the test pool.

1:10 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

3.5 Context-Aware Refined Strategies (CARS)

We formulate a family of three strategies, each of which aims at changing the

concentration of context diversity in an adequate test suite during the construction of

that test suite. We refer to these three strategies as CARS-H (Context-Aware

Refined Strategy with High context diversity), CARS-L (Context-Aware Refined

Strategy with Low context diversity), and CARS-E (Context-Aware Refined Strategy

with Evenly-distributed context diversity).

The strategies are presented collectively in Algorithm 2. First, it initializes an

empty set S of test cases. It then calls select(k, T, strategy) to return a test case t. If

the coverage achieved by S  {t} is higher than that of S alone with respect to the

given criterion C, the test case t is added to S. The algorithm then iterates until

either the coverage achieved by S is 100% or the process has been repeated M times.

On the other hand, if the coverage achieved by S  {t} is not higher than that of S

alone, Algorithm 2 calls replace(C, S, t, strategy) to select a test case t' from S, remove

t' from S, and add t to S.

ALGORITHM 2. Context-Aware Refined Strategy (CARS) to Construct Test Suites

CARS(M, C, k) select(k, S, strategy) replace(C, S, t, strategy)

Inputs:

M: upper bound of the

number of selection trials

(a nonnegative integer)

C: test adequacy criterion

k: size of candidate test suite

Inputs:

k: size of candidate test suite

S: test suite under

construction

strategy: CARS-H, CARS-L,

or CARS-E

Inputs:

C: test adequacy criterion

S: C-adequate test suite

strategy: CARS-H, CARS-L, or

CARS-E,

t: a test case

Output: S: C-adequate test

suite

Output: x: a test case Output: y: a test case

b1: int trial = 0;

// no. of selection trials

b2: S = { };

b3: while (coverage(C, S) <

100% and trial < M) {

b4: trial ++;

b5: t = select(k, S, strategy);

b6: if (coverage(C, S  {t})

> coverage(C, S))

b7: S = S  {t};

b8: else {

b9: t' = replace(C, S, t,

strategy);

b10: if (t' is not empty)

b11: S = (S  {t}) \ {t'};

b12: }

b13: }

b14: return S;

c1: ;

c2: if strategy is CARS-H;

c3: such that

  for

all ;

c4: if strategy is CARS-L

c5: such that

  for

all ;

c6: if strategy is CARS-E

c7: such that

  for

all , where D(t, S)

= ∑ sS |CD(t) – CD(s)|;

c8: return x;

d1: R =

  ;

d2: if strategy is CARS-H

d3:

 ;

d4: if strategy is CARS-L

d5:

{ < };

d6: if strategy is CARS-E;

d7:

 

  and D(t, T) =

∑ sT |CD(t) – CD(s)|;

d8: return y;

The function select(k, S, strategy) first calls randomSelect(k) to construct a

candidate test suite T' by randomly selecting k candidate test cases from the test pool

and returns one specific test case from T' based on the chosen selection strategy: For

CARS-H (and CARS-L, respectively), it selects an element from T' with the

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:11

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

maximum (and minimum, respectively) context diversity. For CARS-E, it applies

adaptive random testing [Chen and Merkel 2008] that aims at spreading the context

diversity values of a test suite evenly, and selects an element from T' that maximizes

the sum of context diversity differences between this element and every test case in S.

Note that if one selects an element from T' randomly, it is simply the BS strategy.

The function replace(C, S, t, strategy) is to find a specific test case y from S to be

substituted by the candidate test case t identified by select(k, S, strategy) in order to

construct an updated test suite (in lines b10 and b11 of Algorithm 2), subject to the

condition that the coverage of the test suite S before and after this substitution

remains unchanged.

The function replace(C, S, t, strategy) first finds a test case t1 that can be

substituted by t without affecting the coverage achieved by S (that is, coverage(C, S)

= coverage(C, )), and adds t1 to test suite R. It then selects a test case y

from R based on the chosen strategy of Algorithm 2: For CARS-H, it selects a test

case tL from R with minimum context diversity (that is, min(U)) subject to the

condition that t1 must exhibit lower context diversity than the given test case t (that

is,). The selection criterion for CARS-L is similar to that of

CARS-H, except that it selects test cases with higher (instead of lower) context

diversity than t from R, and then replaces the test case t1 that has the maximum

(instead of minimum) context diversity with t. For CARS-E, it selects all the test

cases from R that have lower distances from the test set S  {t} than t does, and then

substitutes the test case t1 that has lowest distance from S  {t} by t.

Let us further explain CARS using our example in Section 3.5. Suppose we aim to

select test cases with high context diversity and hence prefer strategy CARS-H.

When k is set to a value of 2, we have two candidate test cases [2, 3, –999] and [3, 3,

–999] in T and f1(k, S) returns t = [2, 3, –999], which carries the highest context

diversity among test cases in T. Suppose S contains one test case t'= [1, 1, –999].

Then, t shares the same complete path with test case t' and does not increase the

coverage of S with respect to AU, and hence we enter statements b9−b11 in Algorithm

2. The function R(AU, {t'}, t) produces {t} because coverage(AU, {t'}) = coverage(AU, {t})

and CD(t') = 1 < CD(t) = 2. The function f2(AU, {t'}, t) produces t' because t' carries

the lowest context diversity among test cases returned by R(AU, {t'}, t). (For this

particular example, in fact, R(AU, {t'}, t) returns only one test case t'.) Finally, we

replace t' by t in b11 and obtain S = {t}.

Different from BS (which is blind to context diversity), CARS uses the context

diversity of the test case in two different dimensions. In the data sampling stage, BS

simply randomly selects a test case from the test pool without reference to any

context diversity information (a5 in BS), while CARS aims to change the context

diversity distribution of the whole test set by favoring different test cases (b5 in

CARS()): If the goal is to achieve higher context diversity (c2 in select()), it favors test

cases with the highest context diversity (c3). It selects test cases with the lowest

context diversity (c5) if it aims to achieve lower context diversity (c4). It selects test

cases with the longest distances from the existing test suite (c7) if it targets to evenly

distribute the context diversity of the test suite. Moreover, when a selected test case

cannot improve the overall test coverage achieved by the test suite, BS simply drops

the test case (a7 and a8 in BS) while CARS uses the context diversity information of

the test case to solve the tie case (b8–b12 in CARS()): For CARS-H, it selects a test

case with the lowest context diversity to substitute (d3). In contrast, CARS-L selects

a test case with the highest context diversity to replace (d5). CARS-E picks up a test

case with the shortest distance from the existing test suite to replace (d7).

1:12 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

4. CASE STUDY

4.1 Research Questions

We study the following research questions in the case study:

RQ1: How do context changes inherent in individual test cases affect the test

effectiveness of coverage-based adequate test suites in assuring CPS applications?

RQ2: For test effectiveness, is there any correlation between the context diversity

and the white-box measures of the runs?

In general, some adequate test suites can achieve much higher test effectiveness

than other adequate test suites with respect to the same test adequacy criterion. It is

impossible, of course, to predict the effectiveness of a test suite before execution. On

the other hand, testers do not like to put in extra effort in constructing an adequate

test suite only to find that the test suite is ineffective. This problem is fundamental

and must be addressed. As such, we want to know whether there is any good method

that is likely to improve the probability of finding an adequate test suite with higher

test effectiveness than a test suite that minimally satisfies the same test adequacy

criterion.

RQ1 examines the input value dimension of individual test cases to determine

whether this dimension provides a good source of information to steer the selection of

adequate test suites with higher test effectiveness (compared with the average case).

To the best of our knowledge, our study of RQ1 contributes as the first work to

address the problem in the testing of CPS applications.

RQ2 attempts to deepen our understanding of why a black-box metric for CPS

applications can affect the fault detection capability of a white-box testing criterion.

It is well known that black-box metrics and white-box metrics have the potential to

complement each other. Nonetheless, to the best of our knowledge, no empirical

result has been reported in the literature (at least for the CPS domain).

4.2 Benchmarks

We used three benchmarks as subjects in our case study: WalkPath, TourApp, and

CityGuide, each of which was used as the benchmark in Lu et al. [2008], Wang et al.

[2007], and Zhai et al. [2010; 2012], respectively, published in such venues as

International Conference on Software Engineering and IEEE Transactions on

Services Computing. (Note that each of the papers used one subject in its evaluation.)

Table 1 summarizes the descriptive statistics of the three benchmarks.

Table 1. Descriptive Statistics of Benchmarks Used in the Case Study

Benchmark Description LOC4 Middleware
Program

Nature

No. of

Mutants5

WalkPath Path tracking 803 LANDMARC, Cabot Sequential 1676

TourApp Tour guide 3690 Context Toolkit Multithreaded 383

CityGuide POI recommendation 3604 jCOLIBRI Sequential 288

The benchmark WalkPath is a sequential program. It runs on the Cabot

middleware [Xu et al. 2010] deployed with a context inconsistency resolution service

component. The benchmark also contains a component that implements the classical

location-sensing algorithm LANDMARC [Ni et al. 2004], which reports a user’s

location based on RFID data. The program obtains a person’s location data by

4 Measured by JavaNCSS available at http://javancss.codehaus.org/.
5 Generated by MuClipse available at http://muclipse.sourceforge.net/.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:13

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

requesting LANDMARC to analyze the RFID data, further invokes the context

inconsistency resolution services to clean the location data if necessary, and finally

reports the person’s movement and data reliability based on the (cleaned) location

data. Therefore, the only context variable used in WalkPath is RFID location data.

The multithreaded benchmark TourApp is the largest application shipped with

the Context Toolkit middleware [Salber et al. 1999]. Context Toolkit consists of a

number of widgets (such as communication widgets that implement HTTP or TCP

protocols to transfer contextual data, assembling widgets that collect related contexts

into a group, and subscribe-and-callback widgets that allow the application tier

component of a CPS application to register interested context data and specify how to

react to changes in the subscribed context data). TourApp informs visitors who

attend a conference about demos of interest based on the visitors’ preferences and

location data. In the current empirical setting, TourApp uses the visitors’ activity

information such as login, enter room, view demo, logout as the only context

variable.

The benchmark CityGuide is a sequential program. It runs on the case-based-

reasoning middleware jCOLIBRI [Diaz-Agudo et al. 2007]. jCOLIBRI retrieves the

cases from a relational database and reasons about the provided contextual data

(which include user preferences such as payment methods, food styles, and room

types, as well as GPS location data in terms of latitudes and longitudes) to

recommend the best points of interest such as hotels and restaurants based on

similarity functions of the contextual data and user decision history. It then saves

the users’ confirmed decisions in the database. CityGuide captures multiple context

variables such as the users’ preferences (e.g., payment methods, food styles, and

room types) as well as GPS location data in terms of latitudes and longitudes. We

assign the same weight to each context variable so that they are treated identically

when calculating context diversity.

The sizes of WalkPath, TourApp, and CityGuide are 803, 3690, and 3604 lines of

code, respectively.

4.3 Faulty Versions

In mutation analysis [Andrews et al. 2006; Budd et al. 1980], a program mutant

refers to a variation of a program under test by a small syntactic change. It mimics a

simple fault in the program. Previous research such as Andrews et al. [2006] has

shown that more complex and real faults in the same program are strongly coupled

with these mutants, and test suites that kill these mutants are highly effective to

expose real and complex faults in the same program.

The process of mutation analysis involves the execution of test cases against a set

of program mutants. When executing a test case against the program under test and

executing the same test case against a program mutant produce a difference in

program output, the mutant is said to be killed.

We refer to the proportion of a test suite that can kill a mutant as the failure rate

of the mutant with respect to the test suite. We measure this rate as a proxy of the

probability that the mutant can be killed by at least one test case in the test suite.

We adopt mutation analysis to evaluate the techniques. We particularly note that,

to apply our techniques in practice, there is no need to generate any mutants to test

CPS applications.

Specifically, we generated mutants for each of our benchmarks and deemed them

as faulty versions of the corresponding benchmarks. Initially, we planned to use all

the mutants of each benchmark. After running the first ten mutants of TourApp,

1:14 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

however, we found it impractical because the test run of each mutant took much time

to complete. As such, we refined the methodology for TourApp by applying the

procedure recommended by Andrews et al. [2006]. Thus, we selected every 5th

mutant of TourApp. We retained all the mutants whose failure rates fell within the

range (0.06, 1.00). Our approach to excluding the results of faulty versions follows the

work of Lu et al. [2008]. In total, 475, 244, and 240 mutants were retained for

WalkPath, TourApp, and CityGuide, respectively, to be used as faulty versions of the

benchmarks for data analysis. The mean failure rates of the retained mutants for

WalkPath, TourApp, and CityGuide were 0.311, 0.369, and 0.150, respectively.

4.4 Test Adequacy Criteria

We used six data flow testing criteria introduced in Section 3.3 in our case study,

namely, AD, CU, PU, PUCU, CUPU, and AU. We did not investigate the all-DU-

paths criterion because the complexity of du-paths was not polynomial with respect

to the number of conditional statements encountered, which was intractable. To

circumscribe the cost of static analysis for data flow testing criteria discussed in

Section 2, we used a runtime monitoring technique to collect the du-associations for

any given criterion: We used the open-source tool Gretel 6 to instrument the program

under test, and monitored the execution path of each test case. Then, following

Misurda et al. [2005], we figured out the last definition of each usage of the same

memory location in each execution trace to analyze the du-associations of every test

case. Different from static analysis techniques, the test requirements inferred by

such dynamic analysis were all feasible in the sense that they were all reachable by

at least one test case. State-of-the-art test adequacy criteria have been proposed by

Lu et al. [2008] to test context-aware software with context inconsistency resolution

services. They are applicable only to WalkPath but not TourApp and CityGuide

because the latter two benchmarks do not have such services defined to clean noisy

contexts. To maintain consistency, therefore, we do not study the criteria proposed by

Lu et al. in our case study.

4.5 Preparation of Test Cases and Test Suites

We reused an existing test pool for WalkPath, which contained 20,000 distinct test

cases, each consisting of real-world data captured via RFID readers and used in

integration testing experiments [Lu et al. 2006; 2008]. For TourApp and CityGuide,

we developed a random input generation tool to generate 5,000 test cases such that

the benchmarks neither raised any unhandled exception nor resulted in infinite loops

(and, of course, each benchmark outputs a result in each case). Based on the practical

guidelines in Arcuri and Briand [2011], 5,000 test cases are sufficient in terms of

randomness to obtain a statistical conclusion.

When constructing adequate test suites for each benchmark, the upper bound M

of the number of selection trials for BS, CARS-H, CARS-L, and CARS-E were set to

2,000, which was the same as that in Lu et al. [2008]. Similar to the experiment in

Lu et al., we also configured our tool to use the random selection method as the test

case generator generate(1) in Algorithm 1 and generate(k) in Algorithm 2.

To conduct a controlled experiment to explore how context diversity affects test

effectiveness, we need to ensure that the test suites for comparison constructed by

different strategies (namely, BS, CARS-H, CARS-L, and CARS-E) achieve the same

coverage and are of the same size. We systematically varied the sizes of candidate

6 Available at http://sourceforge.net/projects/gretel/.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:15

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

test suites for k = 1, 2, 4, 8, 16, 32, 64, and 128. Our tool constructed 1000 adequate

test suites for each combination of test adequacy criterion, test suite construction

strategy, and size of the candidate test suite. As a result, 144,000 test suites were

constructed for each benchmark. For every criterion and every benchmark, we

collected the set of test suite sizes such that each can be attained by all adequate test

suites with respect to the given criterion regardless of the test suite construction

strategy (BS, CARS-H, CARS-L, or CARS-E) and the value of k (1, 2, 4, 8, 16, 32, 64,

or 128). We then picked up the largest among the set of test suite sizes as the

baseline test suite size for the criterion. Thus, the baseline test suite size for a specific

test adequacy criterion can be shared by all its adequate test suites irrespective of

test suite construction strategies and the setting of the sizes of candidate test suites.

We show the baseline test suite sizes for each criterion in Table 2.

Finally, for each benchmark, we constructed 100 test suites for each combination

of test adequacy criterion, context-aware refined strategy, and size of candidate test

suite. As such, we obtained 14,400 (= 100 × 6 × 3 × 8) adequate test suites for each

benchmark for the purpose of test effectiveness comparison. It took 1.5 months to

construct test suites for all the four strategies (CARS-H, CARS-L, CARS-E, BS),

eight values of k (1, 2, 4, 8, 16, 32, 64, 128), six data flow testing criteria (PU, PUCU,

CU, CUPU, AD, AU), and three subjects (WalkPath, CityGuide, TourApp). In the best

setting such that CARS outperformed BS the most (corresponding to the CARS-H

strategy, k = 64, and the PUCU testing criterion), it took about 1, 2, and 4 hours to

construct 100 adequate test suites for WalkPath, CityGuide, and TourApp,

respectively. The differences among subjects were due to different modes of program

executions. For example, TourApp employs the client/server model to implement the

business logic. A typical communication between clients and servers is: The clients

send context instances to the server via the network, and then the server analyzes

the context instances and returns the analysis results to the clients. Since network

communications usually take time, the execution of TourApp was the most time-

consuming. CityGuide accessed a database and hence its execution was faster than

TourApp, while WalkPath did not access any database or network and its execution

was the fastest.

Compared with the experiment by Lu et al. [2008], which uses one benchmark and

four criteria with 30 faulty versions, our experiment is significantly larger by two

orders of magnitude.

Table 2. Baseline Test Suite Sizes for each Criterion

 AD CU PU PUCU CUPU AU

WalkPath 10 15 5 10 16 18

CityGuide 9 13 5 5 13 14

TourApp 12 18 12 16 19 24

4.6 Construction of Interacting Finite State Machine

We used a finite state machine (FSM) to model the interactions between a CPS

application and its computing environment for the investigation of RQ2. For

WalkPath, whenever a context inconsistency resolution service [Lu et al. 2008] was

triggered to clean data, we modeled that the process as a transition from the current

location to the resolved location and labeled the transition with the input location.

For TourApp, whenever a new user activity was captured, we modeled the process as

a transition from the current user activity to the new one, and labeled the transition

with the user activity. For CityGuide, whenever a returned location was confirmed by

the user, we modeled the process as a transition from the current location to the

1:16 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

confirmed location, and labeled the transition with the outputted location. For each

benchmark, we constructed an interacting FSM from the corresponding test pool so

that the FSM can represent all the behavior that could be exercised by the test pool

against the benchmark. Table 3 shows the sizes of the interacting FSMs constructed

for the three benchmarks.

Table 3. Sizes of Interacting FSM for Benchmarks

Benchmark No. of States No. of Transitions

WalkPath 30 133

CityGuide 8 50

TourApp 4 16

4.7 Hardware Platform

We conducted the case study on 16 high-performance cluster nodes from the HKU

Gideon-II Cluster. Each cluster node was equipped with 16 x 2.53GHz quad core

Xeon processors with 16GB physical memory. The operation system for all the cluster

nodes was Linux version 2.6.9-82.ELsmp 64-bit. This cluster machine (without any

GPU usage) achieved the performance of 3.45 TFLOPS on the Linpack benchmark

with a peak performance of 5.181 TFLOPS. Each benchmark was written in Java and

executed under JRE version 1.6.0_23-b05 with the use of Java HotSpot (TM) Server

VM (build 19.0-b09, mixed mode).

4.8 Experimental Procedure

We first followed the procedure presented in Section 4.5 to prepare the test pool and

test suites for each benchmark. For each test case, we collected its context diversity

and the execution path length. Furthermore, we computed the test effectiveness of

each test adequacy criterion to analyze how it is affected by context diversity. Then,

we used MuClipse version 1.3 7 to generate a set of mutants for the benchmarks and

ruled out any syntactically equivalent mutants.

5. DATA ANALYSIS

This section presents the experimental results that tackle the research questions

raised in Section 4.1. More specifically, Section 5.1 investigates how our strategies

affect the context diversity of test suites, which validates the design goals of the

strategies. Section 5.2 addresses RQ1 that studies how context diversity affects the

effectiveness of test suites, and Sections 5.3 and 5.4 address RQ2 by correlating

context diversity with white-box testing criteria, namely, execution path lengths and

context-aware system interactions.

5.1 Effects of Different Strategies on Context Diversity

We first present the context diversity of test suites constructed by the BS strategy in

Table 4. The data shows that stronger test adequacy criteria (in terms of the

subsumption relationship proposed by Frankl and Weyuker [1988]) do not

necessarily exhibit higher context diversity than weaker test adequacy criteria. For

example, criterion PUCU is stronger than criterion PU, but for WalkPath, test suites

constructed by PUCU carry lower context diversity than test suites constructed by

PU. Similar observations can be found for CityGuide and TourApp. For instance, the

context diversity of test suites constructed by PUCU is the same as that of test suites

constructed by PU for CityGuide, whereas test suites constructed by a stronger

7 Available at http://muclipse.sourceforge.net/.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:17

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

criterion AU carry lower context diversity than test suites constructed by a weaker

criterion AD for TourApp. Furthermore, we find that test suites constructed by

different test adequacy criteria share very similar context diversity values. For

example, the largest difference in context diversity for test suites constructed by

different criteria is less than 0.3 for WalkPath, the largest difference never exceeds

2.1 for CityGuide, and the largest difference is 0.9 for TourApp. These observations

suggest that test adequacy criteria may be not a significant factor that affects the

context diversity of their adequate test suites.

Table 4. Context Diversity of Test Suites Constructed by BS

Test Adequacy Criterion WalkPath CityGuide TourApp

PU (all-P-Uses) 12.1 13.6 15.5

PUCU (all-P-Uses/some-C-Uses) 11.8 14.3 16.1

CU (all-C-Uses) 11.9 12.2 15.7

CUPU (all-C-Uses/some-P-Uses) 12.1 12.2 15.9

AD (All-Defs) 11.8 12.7 16.4

AU (All-Uses) 12.1 12.9 15.6

Figure 2 summarizes to what extent context diversity can be incorporated into

adequate test suites through different strategies with respect to the baseline strategy

BS. 8 Starting from top left and then clockwise, these nine subfigures show the

differences in context diversity of C-adequate test suites under different sizes (k =

1, …, 128) of the candidate sets compared with the context diversity using the BS

strategy, where criteria C are PU, PUCU, CU, AU, AD, and CUPU, respectively. For

instance, in the top left subfigure, when the candidate size is 1, the CARS-H for

TourApp is higher in context diversity than BS by 6.185.

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

-20

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

-20

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

-15

-10

-5

0

5

10

15

1 2 4 8 16 32 64 128

Size of candidate set Size of candidate set Size of candidate set

C
h
an

g
e

in
 c

o
n

te
x
t

d
iv

er
si

ty

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

C
o

n
te

xt
 D

iv
e

rs
it

y

Size of Candidate Set

CARS-H (TourApp) CARS-L (TourApp) CARS-E (TourApp)

CARS-H (CityGuide) CARS-L (CityGuide) CARS-E (CityGuide)

CARS-H (WalkPath) CARS-L (WalkPath) CARS-E (WalkPath)

Fig. 2. Differences in context diversity between CARS and BS.

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively.

8 Interested readers may refer to Figures A1−A3 in the online appendix for the data and analysis that

produce the curves in the figure.

1:18 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

In each subfigure, we observe that all the solid lines are above the x-axis, and

generally show upward trends as the x-value increases. It indicates that CARS-H

consistently achieves higher context diversity than BS, and the difference is

increasingly more noticeable with larger values of k. This observation follows the

design of CARS-H because every test case substitution made by CARS-H improves on

the context diversity of the adequate test suite being constructed, and a larger

candidate test suite should offer a high probability of a successful substitution. The

dashed-and-dotted lines are always positioned below the x-axis, and generally show

downward trends as the x-value increases. It shows that the CARS-L strategy always

results in worse context diversity. Moreover, we find that the difference in context

diversity resulting from the use of CARS-H and CARS-L on each test adequacy

criterion can be as large as 50−90% when the size of a candidate test suite is

relatively large (such as k = 32 or higher). The finding shows that it is feasible to

significantly modify the context diversity of an adequate test suite, which is

encouraging.

In Figure 2, CARS-E also leads to higher context diversity than BS, but the

magnitude is generally much less noticeable than CARS-H and CARS-L. The finding

indicates that the idea of evenly spreading test cases in the context diversity

dimension exhibits less effectiveness than CARS-H or CARS-L in the case study.

Table 5. No. of Cases that Rejects the Null Hypothesis for Context Diversity

Comparison for Various CARS Strategies and Benchmarks
Benchmark CARS-H CARS-L CARS-E

WalkPath 44 45 0

CityGuide 46 48 0

TourApp 48 48 0

To investigate whether the difference between various test suite construction

strategies and the baseline strategy is significant, we conduct hypothesis testing for

each test suite construction strategy with the null hypothesis “test suites constructed

by a specific context-aware refined strategy share the same context diversity with

those constructed by the baseline strategy BS” at a significance level of 5%. We

present the summarized results in Table 5. Interested readers may find the detailed

data from Table A2 in the appendix.

For each benchmark and for each CARS strategy, we evaluate 48 different cases

corresponding to all combinations of the 6 different criteria (namely, PU, PUCU, CU,

CUPU, AD, AU) and 8 different sizes of candidate sets (k = 1, 2, 4, 8, 16, 32, 64, 128).

Each cell in Table 4 shows the number of cases that successfully rejects the null

hypothesis. For example, for WalkPath using CARS-H, there are 44 out of 48 cases

successfully rejecting the null hypothesis. Table 5 shows that, regardless of

benchmarks and test adequacy criteria, both CARS-H and CARS-L are more likely to

reject the null hypothesis. For example, CARS-H rejects the null hypothesis for 44,

46, and 48 out of 48 cases on WalkPath, CityGuide, and TourApp, respectively.

CARS-L rejects the null hypotheses for 45, 48, and 48 out of 48 cases on WalkPath,

CityGuide, and TourApp, respectively. In contrast, CARS-E consistently fails to

reject the null hypothesis for candidate test suites of all sizes. This result validates

that both CARS-H and CARS-L have a significant effect on the context diversity of

the adequate test suites thus constructed, and the effect of CARS-E on the context

diversity of test suites is not statistically significant.

To sum up, stronger testing criteria do not necessarily lead to higher context diversity,

which motivates us to develop new strategies (such as CARS strategies presented in this

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:19

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

paper) to alter the mean context diversity of a test suite during the construction of the

test suite. Moreover, CARS-H (and CARS-L, respectively) tends to result in higher (and

lower, respectively) context diversity with the increase of the value of k. The observation

shows that our strategies successfully change the context diversity distribution of test

suites. In Sections 5.2 and 5.1, we will further use these test suites for the data analysis

to answer RQ1 and RQ2.

5.2 Effects of Different Strategies on Overall Test Effectiveness

Table 6. Fault Detection Rates of Test Suites Constructed by BS

Test Adequacy Criterion WalkPath CityGuide TourApp

PU (all-P-Uses) 0.218 0.163 0.651

PUCU (all-P-Uses/some-C-Uses) 0.414 0.247 0.752

CU (all-C-Uses) 0.622 0.264 0.812

CUPU (all-C-Uses/some-P-Uses) 0.218 0.163 0.651

AD (All-Defs) 0.414 0.247 0.752

AU (All-Uses) 0.622 0.264 0.812

We present in Table 6 the mean fault detection rate of each criterion using the

baseline strategy BS. In the table, for each of the three benchmarks, AU consistently

outperforms PUCU and CUPU, PUCU outperforms PU, and CUPU outperforms CU

in terms of attaining higher mean fault detection rates averaged over all mutants.

This finding is in line with the popular understanding on test adequacy criteria that

stronger criteria are generally more effective than weaker ones in exposing faults.

Figure 3 summarizes the changes in test effectiveness between the baseline

strategy BS and a context-aware refined strategy (CARS-H, CARS-L, and CARS-E,

respectively).9 Each subfigure can be interpreted in the same way as a subfigure in

Figure 2, except that the y-axis now stands for the change in fault detection rate

instead of the change in context diversity.

We observe from Figure 3 that all the solid lines in each subfigure are above the x-

axis. This indicates that CARS-H consistently improves the testing effectiveness in

terms of the mean fault detection rates regardless of benchmarks, test adequacy

criteria, and sizes of candidate test suites. Moreover, the effect of the size of the

candidate test suite seems to be saturated at k = 64 in the experiment. In particular,

when k = 64, the improvements in test effectiveness for all criteria induced by CARS-

H over BS are 10.6-21.9% for WalkPath, 12.3-22.1% for TourApp, and 12.6-14.5%

for CityGuide, respectively. In summary, irrespective of benchmarks and criteria,

when k = 64, CARS-H can bring about an improvement of 10.6-22.1% in test

effectiveness to the baseline strategy in terms of mean fault detection rates.

Considering that data flow testing is by itself a highly effective technique, the result

shows that the improvement made by CARS-H is significant.

Moreover, irrespective of benchmarks and test adequacy criteria, the lines for the

CARS-L strategy are always below the x-axis, indicating that this strategy

consistently performs less effectively than the BS strategy in terms of mean fault

detection rate.

Combined with the result presented in Section 5.1, we find that changing the

context diversity of an adequate test suite via CARS-H and CARS-L does correlate

with the change in test effectiveness. In contrast, CARS-E has less impact on test

effectiveness compared with CARS-H and CARS-L.

9 Interested readers may refer to Figures A4−A6 in the online appendix for the detailed data analysis.

1:20 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Size of candidate set Size of candidate set Size of candidate set

C
h
an

g
e

in
 f

au
lt

 d
et

ec
ti

o
n

 r
at

e

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 4 8 16 32 64 128

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8 16 32 64 128

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 4 8 16 32 64 128

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

C
o

n
te

xt
 D

iv
e

rs
it

y

Size of Candidate Set

CARS-H (TourApp) CARS-L (TourApp) CARS-E (TourApp)

CARS-H (CityGuide) CARS-L (CityGuide) CARS-E (CityGuide)

CARS-H (WalkPath) CARS-L (WalkPath) CARS-E (WalkPath)

Fig. 3. Differences in fault detection rates between CARS and BS.

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively.

Similar to Table 5, we also summarize the hypothesis testing results in Table 7.

Detailed data can be found in Table A7−A9 in the appendix. The null hypothesis is

“test suites constructed by a specific context-aware refined strategy share the same

fault detection rate with those constructed by the baseline strategy BS” and the

significance level is 5%.

Table 7. No. of Cases that Rejects the Null Hypothesis for Testing

Effectiveness Comparison for Various CARS Strategies and Benchmarks

Benchmark CARS-H CARS-L CARS-E

WalkPath 30 28 0

CityGuide 48 0 0

TourApp 48 38 0

The hypothesis testing results confirm that CARS-H can outperform the BS

strategy significantly in terms of the fault detection rates achieved by test suites with

a specific candidate suite size and coverage. For example, CARS-H rejects the null

hypothesis for 30, 48, and 48 out of 48 cases on WalkPath, CityGuide, and TourApp,

respectively. In contrast, CARS-L deteriorates the effectiveness of test suites

significantly. For example, CARS-L rejects the null hypotheses for 28 and 38 out of

48 cases on WalkPath and TourApp, respectively. We also find that quite a number of

outliers exist for CityGuide: CARS-L fails to reject the null hypothesis for all these

cases. As shown in Table 6, owing to the low fault detection rates achieved by test

suites constructed by the baseline strategy BS, it would be hard for CARS-L to

deteriorate the test effectiveness further. In contrast, CARS-E consistently fails to

reject the null hypothesis for candidate test suites of all sizes. This result validates

that both CARS-H and CARS-L can have significant impacts on testing effectiveness

of the adequate test suites constructed. The impact of CARS-E on the testing

effectiveness of test suites is not statistically significant compared with the test

suites constructed by the BS.

In this section, we have shown that across all benchmarks and all values of k, the

CARS-H (and CARS-L, respectively) strategy can significantly improve (and

deteriorate, respectively) the effectiveness of the evaluated data flow testing criteria.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:21

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

This result answers RQ1 directly: Context diversity of test cases can significantly

correlate with the test effectiveness of data flow adequate test suites for CPS

applications. This finding leads to two suggestions for test engineers when they test

CPS software: (a) better test effectiveness can be achieved by favoring test cases with

higher context diversity and (b) context diversity helps resolve tie cases in which

multiple test cases have the same contribution to test coverage. Note that it does not

need any code change of CPS software to apply CARS because context diversity can

be measured without knowledge of the source code. Moreover, we are aware of

context diversity before the execution of test cases, so our CARS strategies do not

need runtime profiling to access the current context diversity during program

execution.

5.1 Effects of Different Strategies on the Normalized Execution Path Length

Figure 4 presents the normalized execution path lengths of test suites constructed by

different strategies. 10 Each subfigure can be interpreted in the same way as a

subfigure in Figure 2, except that the y-axis is now the change in normalized

execution path length instead of the change in context diversity.

Table 8. Mean Normalized Execution Path Length of Test Suites
Constructed by BS

Test Adequacy Criteria WalkPath CityGuide TourApp

PU (all-P-Uses) 0.464 0.361 0.681

PUCU(all-P-Uses/some-C-Uses) 0.473 0.369 0.688

CU(all-C-Uses) 0.481 0.374 0.696

CUPU(all-C-Uses/some-P-Uses) 0.484 0.377 0.698

AD(All-Defs) 0.465 0.365 0.682

AU(All-Uses) 0.492 0.389 0.709

Size of candidate set Size of candidate set Size of candidate set

C
h
an

g
e

in
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

-0.2

-0.1

0

0.1

0.2

0.3

1 2 4 8 16 32 64 128

C
o

n
te

xt
 D

iv
e

rs
it

y

Size of Candidate Set

CARS-H (TourApp) CARS-L (TourApp) CARS-E (TourApp)

CARS-H (CityGuide) CARS-L (CityGuide) CARS-E (CityGuide)

CARS-H (WalkPath) CARS-L (WalkPath) CARS-E (WalkPath)

Fig. 4. Differences in normalized execution path lengths between CARS and BS.

From top left and then clockwise are the results of PU, PUCU, CU, AU, AD, and CUPU, respectively
 We first present the mean normalized execution path lengths of test suites

constructed by BS in Table 8. We define a normalized execution path length as the

10 Interested readers may refer to Figures A7−A9 in the online appendix for the data and analysis that

produce the curves in the figure.

1:22 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

ratio of the length of that path to the length of the longest execution path exercised

by the test cases in the test pool. We find that for all the benchmarks, AU always

leads the programs to execute the longest paths among all test adequacy criteria,

followed by CUPU, CU, PUCU, AD, and finally PU. This order is consistent with the

test effectiveness performance of the test adequacy criteria reported in Table 6,

which further suggests that the normalized execution path length contributes to the

effectiveness of test suites.

We find that for every subfigure in Figure 4, the solid lines are consistently above

the x-axis. This shows that for each size of candidate test suites, CARS-H

consistently exercises more statements than BS. In contrast, the lines for CARS-L

are always positioned below the x-axis. It shows that these test cases execute shorter

paths than BS on average. Moreover, CARS-E leads to longer execution paths than

BS, but only has much lighter effect than CARS-H in forcing test cases to traverse

longer paths.

Table 9. Number of Cases that Reject the Null Hypothesis for Comparing

Normalized Execution Path Lengths for Various CARS Strategies and Benchmarks

Benchmark CARS-H CARS-L CARS-E

WalkPath 44 39 0

CityGuide 44 48 0

TourApp 48 48 0

Similar to the previous two subsections, we also conduct hypothesis testing to

confirm our observation. The null hypothesis is “test suites constructed by a specific

context-aware refined strategy share the same normalized execution path lengths

with those constructed by the baseline strategy BS” and the significance level is 5%.

The results of the hypothesis testing are shown in Table 9. CARS-H rejects the

null hypothesis for 44, 44, and 48 out of 48 cases on WalkPath, CityGuide, and

TourApp, respectively. CARS-L rejects the null hypothesis for 39, 48, and 48 out of 48

cases on these three benchmarks, respectively. However, CARS-E fails to reject any

null hypothesis in all cases. We find that the effect of CARS-H is more consistent

than that of CARS-L (albeit in modifying the normalized execution path lengths in

the opposite directions), and CARS-E appears to be neutral.

In summary, to answer RQ2, we find that test suites having higher context

diversity can lead to longer execution paths. Since various test suites with different

context diversity may be constructed to achieve the same code coverage, code

coverage appears not to be an explanation for the better effectiveness observed in the

case study. In contrast, as shown in our previous work [Wang et al. 2010], the

execution times and execution sequence of context-related statements can correlate

with test effectiveness, and longer execution paths may lead to more diverse

execution times. Our results thus indicate that in the domain of CPS applications,

apart from test adequacy criteria, context changes inherent in test suites can be a

promising research dimension to harvest so as to improve the effectiveness of the test

suites constructed.

5.3 Effects of Different Strategies on System Interactions

In this section, we report to what extent the context diversity of a test case correlates

with the state coverage and transition coverage achieved by the test case against the

corresponding interacting FSM.

Different programs have different ranges of context diversity. To facilitate

comparisons across the three benchmarks, we have normalized the context diversity

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:23

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

of each test case by dividing the actual context diversity by the maximum e for the

respective benchmark. For brevity, we will refer to such kind of context diversity as

normalized context diversity.

Fig. 5. State coverage (SC) and transition coverage (TC) vs. normalized context diversity

We report in Figure 5 how the normalized context diversity correlates with the

state and transition coverage of interacting FSMs. In Figure 5, the state coverage

increases from 0.46 to 0.80 (by a factor of 1.7) when the normalized context diversity

increases from 0.37 to 1.00 (by a factor of 2.7) for WalkPath. For CityGuide, the state

coverage increases from 0.48 to 1.00 (a factor of 2.1) when the normalized context

diversity increases from 0.36 to 1.00 (a factor of 2.8). For TourApp, however, the state

coverage can only increases from 0.99 to 1.00 (a factor of 1.01) when the normalized

context diversity increases from 0.33 to 1.00 (a factor of 3.0).

In addition, we conduct Pearson’s correlation test [Pearson 1920] to determine the

strength of the correlation if a linear regression trend indeed exists between the two

variables. Although there is no golden criterion to interpret the results of Pearson’s

correlation tests in software engineering research, we use the following definition: If

the absolute value of Pearson’s correlation coefficient (PCC) is greater than 0.8, the

correlation is regarded as strong. If the absolute value is more than 0.1 but less than

0.5, the correlation is considered mild. If the absolute value is at most 0.1, there is no

correlation. Otherwise, the correlation is said to be moderate. A similar

interpretation is also used in the experiment in Binkley and Harman [2004]. The

PCC result for the correlation between mutation scores and statement coverage is

shown in Table 10. The results in the table consistently show that, regardless of the

benchmark, PCC values estimated by each metric is higher than 0.7. This suggests

that context diversity of a test case has a moderate to strong correlation with both

state coverage and transition coverage.

Table 10 Pearson’s Correlation Coefficient between context diversity

and state coverage and transition coverage of interacting FSMs

Coverage WalkPath CityGuide TourApp

State 0.998 0.981 0.745

Transition 0.998 0.980 0.945

In summary, to answer RQ2, we find that there exists a moderate to strong

correlation between context diversity and state and transition coverage of interacting

FSMs. It suggests that higher context diversity tend to increase the interactions

between CPS applications and its computing environment.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
o

v
er

ag
e

Normalized context diversity

SC_CityGuide TC_CityGuide SC_TourApp

TC_TourApp SC_WalkPath TC_WalkPath

1:24 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

5.4 Threats to Validity

Threats to construct validity. Construct validity relates to whether our defined

metrics really measure the properties we intend to capture. We used fault detection

rate to measure the effectiveness of a test suite. The use of other metrics such as the

time needed to generate an adequate test suite may produce different comparison

results. To minimize potential threats from inherent stochastic fault detection

behavior of individual test suites, we constructed a sufficiently large number of

adequate test suites per test adequacy criterion to compute the corresponding fault

detection rates.

Another concern is that we use mutation faults rather than real-life faults in our

experiment. The “competent programmer hypothesis” in mutation analysis is

supported by both empirical and theoretical results [Budd et al. 1980]. Andrews et al.

[2006] has further validated that test results of coverage-based testing criteria with

respect to mutation faults can be generalized to those with respect to real-life faults.

Threats to internal validity. Internal validity is concerned with whether there is

any bias in the experimental design that can affect the causal relationship under

study. We have implemented a tool to construct test suites and computed the context

diversity and coverage information of test suites, as well as the failure rates of

mutants. The correctness of this tool would determine whether there is any potential

implementation bias in our experiment. We have tested the tool with small programs

and spot-checked the results for larger programs to ensure that it works as expected.

The test pool used in the experiment can also introduce a bias. Different test case

generation techniques may introduce different biases in the results due to differences

in the levels of code coverage. Because we focus on assessing the impact of context

diversity on the fault detection capability of test adequacy criteria, we employ the

random test case selection method used in the experiment of Lu et al. [2008] as the

test input generators generate(1) in Algorithm 1 and generate(k) in Algorithm 2. We

only retain those generated mutants with failure rates higher than 0.06 as candidate

faulty versions of the benchmarks in the case study. The use of mutants with

different failure rates may produce different results. To ensure that the experiment

ends within manageable time, we follow the sampling strategy in Andrews et al.

[2006] to include every 5th mutant of TourApp in the experimentation. The inclusion

of more mutants would significantly lengthen the experimentation. To strike a

balance between the effort and the representativeness of the experiment, we settle

for the current strategy.

We have used random test case selection as the baseline strategy for comparison.

The use of more advanced strategies as the baseline would produce different

improvement results. However, according to Harman and McMinn [2010],

“sophisticated search techniques such as Evolutionary Testing [most commonly

implemented as genetic algorithms] can often be outperformed by far simpler search

techniques”. In their paper, the authors proposed hill climbing as a “far simpler

search technique”, and found that “Where test data generation scenarios do not have

a Royal Road property, Hill Climbing performs far better than Evolutionary Testing”.

The CARS algorithms in our paper are similar to hill climbing, except that CARS

terminates after a number of trials instead of one trial.

Threats to external validity. External validity refers to the extent that we can

generalize our empirical results to other benchmarks. In our case study, we use the

40 Java mutation operators proposed in Ma et al. [2006] to generate candidate

mutation faults for experimentation. Other mutation operators for different

programming languages may produce different results. We have included three

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:25

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

benchmarks in our case study. They do not represent all types of CPS applications.

Although the use of more benchmarks would certainly increase the power of data

analysis, the current experiment has taken more than three months to run

continuously on high-performance clustered machines, and hence it would be

unrealistic to include additional benchmarks in the case study. The

representativeness of the test process used may also impact the generalization of our

results. It will be beneficial to complement our case study with industrial case

studies in the future. It will also be interesting to study other algorithms and

strategies in the future.

5.5 Discussions of the Applicability of Traditional Test Adequacy Criteria to Pervasive
Software

A real-life program receives system inputs via system calls or API callback functions.

Only trivial programs do not make system or API calls. In pervasive software,

environmental contexts constitute part of the system inputs. The same sequence of

statements may maintain different pointer values or system constants in the same

variables. When the values of these variables are passed to a context-aware system

call, the system will respond with an adaptive function. In Android systems, for

instance, the values of possible types of wireless channels (such as WiFi, 3G, and

Bluetooth) are context values. The choice of specific values will allow the application

to adapt to different media for data transmission.

Traditional test adequacy criteria can be applied to assure pervasive programs,

but since the former do not consider changes due to context-aware system calls, they

do not measure whether the adequacy with respect to such contexts has been fulfilled.

In theory, one can conduct program analysis of the entire system so that all the data

flows from the sensor device level to the application level can be reviewed. In practice,

however, the scale of such program analysis is intractable. Lu et al. [2006] takes a

projection approach. They abstract all the intermediate code between the sensor and

the application, and just model it minimally as an environmental node. In this way,

they provide an innovative approach to address the data flow testing problem for

pervasive systems. Unfortunately, the dynamic analysis of context-aware data flow

coverage is still complex in real life despite the abstraction.

In this paper, we propose the use of traditional data flow coverage criteria to test

pervasive software, thus bypassing the complexity of intermediate code coverage in

Lu et al. Context manipulation in terms of diversity is a means to enhance the

effectiveness. Compared with an arbitrary change of context, the difference is

whether the change affects the context-aware API. In real life, a context change

usually causes the program to exercise other paths instead of forcing the same path

to use new contexts. Thus, within a program, a context variable behaves like a global

variable.
However, the scope of influence (in terms of the number of program statements

affected) of a context variable is more intensive that of a local variable. A context is

usually not a simple value precisely representing the captured behavior. Hence, in a

context-aware program, such contexts are usually used in a statistical way or

portrayed as ranges of values. Thus, a higher discrepancy in the context space will

lead to a higher probability in producing failures. This may explain why the three

strategies proposed in our paper expose failures at different levels of effectiveness,

namely, that CARS-H performs better than CARS-E, which performs better than

CARS-L.

1:26 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

6. CONCLUSION

This paper has proposed the notion of test case substitution in constructing adequate

test suites, and has studied three strategies to take context changes into account

during such construction. The basic idea is to annotate each test case with the

amount of its context changes, and to select the appropriate test cases based on such

amounts whenever choices can be made. The paper has also formulated the notion of

context diversity as a means to represent the amount of context changes in a test

case. We have conducted a multi-subject case study to investigate how context

changes may be injected into adequate test suites and to what extent such test case

substitution can contribute to the effectiveness of the data flow test adequacy criteria.

We have studied six test adequacy criteria, including PU, PUCU, CU, CUPU, AD,

and AU as summarized in Section 4.4. We have used three benchmarks with a total

of 8,097 lines of code, 30,000 test cases, 959 mutants, and 43,200 adequate test suites

for data analysis. To the best of our knowledge, we have presented one of the largest

test adequacy experiments on the testing of CPS applications. The experimental

results show that the context-aware refined strategies can be successful in changing

the context diversity of test suites and can affect the effectiveness of a test adequacy

criterion. In particular, we have found in the case study that the CARS-H strategy

can improve the mean test effectiveness of existing data flow testing criteria by 10.6

to 22.1%, which is significant. On the other hand, CARS-L reduces the mean test

effectiveness by 2.0 to 22.2% while CARS-E can only have a marginal effect.

Furthermore, the test suites constructed by CARS-H can execute longer paths in a

statistically significant way. They provide a clue in understanding the contribution

brought by CARS-H to the test effectiveness of adequate test suites. Test suites

constructed by CARS-L tend to execute shorter paths, and CARS-E seems to have no

significant impact on the execution path lengths of test suites. The experiment also

finds that context diversity moderately to strongly correlates with the scope of

interactions between CPS applications and their computing environments (in terms

of coverage of interacting finite state machines).

In the future, we plan to extend the presented notion of context diversity to model

richer information such as complex context representation (e.g., context instances with

uncertainty levels), associations among context variables (e.g., a constraint between

the location “meeting room” and the activity “watch football”), and different weights of

context variables based on their importance to CPS applications. Moreover, we will

further study the connection between context changes and program debugging.

Context diversity is a black-box metric and it can improve the test effectiveness of

adequate test suite. Mutation testing is very time consuming. As indicated in our

previous work [Wang et al. 2010], we are also interested in studying the relationship

between mutation analysis and context diversity. We will report our findings in the

future.

ACKNOWLEDGMENTS

We are grateful to researchers of the System Research Group of the Department of Computer Science in

The University of Hong Kong for their great help in setting up the high-performance cluster environment

to complete the experiment.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:27

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

REFERENCES

Alur, R. and Yannakakis, M. 1999. Model checking of message sequence charts. In Proceedings of the 10th

International Conference on Concurrency Theory (CONCUR ’99). Springer, London, UK, 114–129.

Ammann, P. and Offutt, J. 2008. Introduction to Software Testing, Cambridge University Press, New York,

NY.

Andrews, J.H., Briand, L.C., Labiche, Y., and Siami Namin, A. 2006. Using mutation analysis for

assessing and comparing testing coverage criteria. IEEE Transactions on Software Engineering 32 (8),

608–624.

Arcuri, A. and Briand, L.C. 2011. A practical guide for using statistical tests to assess randomized

algorithms in software engineering. In Proceedings of the 33rd ACM/IEEE International Conference

on Software Engineering (ICSE ’11). ACM, New York, NY, 1–10.

Belina, F. and Hogrefe, D. 1989. The CCITT-specification and description language SDL. Computer

Networks and ISDN Systems 16 (4), 311–341.

Bertolino, A. 2007. Software testing research: achievements, challenges, dreams. In Proceedings of Future

of Software Engineering (FOSE ’07) (in conjunction with the 29th International Conference on Software

Engineering (ICSE ’07)). IEEE Computer Society, Los Alamitos, CA, 85–103.

Binkley, D and Harman, M. 2004. Analysis and visualization of predicate dependence on formal parameters

and global variables. IEEE Transactions on Software Engineering 30 (11), 715–735.

Budd, T.A., DeMillo, R.A., Lipton, R.J., and Sayward, F.G. 1980. Theoretical and empirical studies on

using program mutation to test the functional correctness of programs. In Proceedings of the 7th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’80). ACM, New

York, NY, 220–233.

Chen, C., Ye, C., and Jacobsen, H.-A. 2011. Hybrid context inconsistency resolution for context-aware

services. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and

Communications (PerCom ’11). IEEE Computer Society, Los Alamitos, CA, 10–19.

Chen, T.Y. and Merkel, R.G. 2008. An upper bound on software testing effectiveness. ACM Transactions

on Software Engineering and Methodology 17 (3), 16:1–16:27.

Diaz-Agudo, B., Gonzalez-Calero, P.A., RECIO-GARCIA, J.A., AND SANCHEZ-RUIZ-GRANADOS, A.A. 2007.

Building CBR systems with jCOLIBRI. Science of Computer Programming 69 (1–3), 68–75.

D’Silva, V., Kroening, D., and Weissenbacher, G. 2008. A survey of automated techniques for formal

software verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 27 (7), 1165–1178.

Edvardsson, J. 1999. A survey on automatic test data generation. In Proceedings of the 2nd Conference on

Computer Science and Engineering in Linöping (ECSEL ’99). Linöping, Sweden, 21–28.

Forney, G., Jr. 1966. Generalized minimum distance decoding. IEEE Transactions on Information Theory

12 (2), 125–131.

Frankl, P.G. and Weiss, S.N. 1993. An experimental comparison of the effectiveness of branch testing and

data flow testing. IEEE Transactions on Software Engineering 19 (8), 774–787.

Frankl, P.G. and Weyuker, E.J. 1988. An applicable family of data flow testing criteria. IEEE Transactions

on Software Engineering 14 (10), 1483–1498.

Hamming, R.W. 1950. Error detecting and error correcting codes. Bell System Technical Journal 29 (1),

147–160.

Harder, M., Mellen, J., and Ernst, M.D. 2003. Improving test suites via operational abstraction. In

Proceedings of the 25th International Conference on Software Engineering (ICSE ’03). IEEE Computer

Society, Los Alamitos, CA, 60–71.

Harman, M. and McMinn, P. 2010. A theoretical and empirical study of search-based testing: local, global,

and hybrid search. IEEE Transactions on Software Engineering 36 (2), 226–247.

Hassan, M.M. and Andrews, J.H. 2013. Comparing multi-point stride coverage and dataflow coverage. In

Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). IEEE,

Piscataway, NJ, 172–181.

Heimdahl, M.P.E. and George, D. 2004. Test-suite reduction for model based tests: effects on test quality

and implications for testing. In Proceedings of the 19th IEEE International Conference on Automated

Software Engineering (ASE ’04). IEEE Computer Society, Los Alamitos, CA, 176–185.

Hutchins, M., Foster, H., Goradia, T., and Ostrand, T. 1994. Experiments on the effectiveness of dataflow-

and controlflow-based test adequacy criteria. In Proceedings of the 16th International Conference on

Software Engineering (ICSE ’94). IEEE Computer Society, Los Alamitos, CA, 191–200.

1:28 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Jeffrey, D. and Gupta, N. 2007. Improving fault detection capability by selectively retaining test cases

during test suite reduction. IEEE Transactions on Software Engineering 33 (2), 108–123.

Kacem, N.H., Kacem, A.H., and Drira, K. 2009. A formal model of a multi-step coordination protocol for

self-adaptive software using coloured Petri nets. International Journal of Computing and Information

Sciences 7 (1).

Kapfhammer, G.M. and Soffa, M.L. 2003. A family of test adequacy criteria for database-driven

applications. In Proceedings of the Joint 9th European Software Engineering Conference and 11th ACM

SIGSOFT International Symposium on Foundations of Software Engineering (ESEC ’03/FSE-11).

ACM, New York, NY, 98–107.

Kastrinis, G. and Smaragdakis, Y. 2013. Hybrid context-sensitivity for points-to analysis. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI

’13). ACM, New York, NY, 423–434.

Lai, Z., Cheung, S.C., and Chan, W.K. 2008. Inter-context control-flow and data-flow test adequacy criteria

for nesC applications. In Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (SIGSOFT ’08/FSE-16). ACM, New York, NY, 94–104.

Leon, D. and Podgurski, A. 2003. A comparison of coverage-based and distribution-based techniques for

filtering and prioritizing test cases. In Proceedings of the 14th International Symposium on Software

Reliability Engineering (ISSRE ’03). IEEE Computer Society, Los Alamitos, CA, 442–453.

Lhoták, O. and Chung, K.-C.A. 2011. Points-to analysis with efficient strong updates. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

’11). ACM, New York, NY, 3–16.

Lin, J.-W. and Huang, C.-Y. 2009. Analysis of test suite reduction with enhanced tie-breaking techniques.

Information and Software Technology 51 (4), 679–690.

LIU, Y., XU, C., and CHEUNG, S.C. 2013. AFChecker: effective model checking for context-aware adaptive

applications. Journal of Systems and Software 86 (3), 854–867.

Lu, H., Chan, W.K., and Tse, T.H. 2006. Testing context-aware middleware-centric programs: a data flow

approach and an RFID-based experimentation. In Proceedings of the 14th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14). ACM, New

York, NY, 242–252.

Lu, H., Chan, W.K., and Tse, T.H. 2008. Testing pervasive software in the presence of context

inconsistency resolution services. In Proceedings of the 30th International Conference on Software

Engineering (ICSE ’08). ACM, New York, NY, 61–70.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V., and Hazelwood,

K. 2005. Pin: building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN conference on Programming Language Design and

Implementation (PLDI ’05). ACM, New York, NY, 190–200.

Ma, Y.-S., Offutt, J., and Kwon, Y.-R. 2006. MuJava: a mutation system for Java. In Proceedings of the

28th International Conference on Software Engineering (ICSE ’06). ACM, New York, NY, 827–830.

Mei, L., Chan, W.K., and Tse, T.H. 2008. Data flow testing of service-oriented workflow applications. In

Proceedings of the 30th International Conference on Software Engineering (ICSE ’08). ACM, New York,

NY, 371–380.

Misurda, J., Clause, J.A., Reed, J.L., Childers, B.R., and Soffa, M.L. 2005. Demand-driven structural

testing with dynamic instrumentation. In Proceedings of the 27th International Conference on Software

Engineering (ICSE ’05). ACM, New York, NY, 156–165.

Murphy, A.L., Picco, G.P., and Roman, G.-C. 2006. LIME: a coordination model and middleware

supporting mobility of hosts and agents. ACM Transactions on Software Engineering and Methodology

15 (3), 279–328.

Ni, L.M., Liu, Y., Lau, Y.C., and Patil, A.P. 2004. LANDMARC: indoor location sensing using active RFID.

ACM Wireless Networks 10 (6), 701–710.

Offutt, J., Pan, J., Tewary, K., and Zhang, T. 1996. An experimental evaluation of data flow and mutation

testing. Software: Practice and Experience 26 (2), 165–176.

Pearson, K. 1920. Notes on the history of correlation. Biometrika 13 (1), 25–45.

Roman, G.-C., McCann, P.J., and Plun, J.Y. 1997. Mobile UNITY: reasoning and specification in mobile

computing. ACM Transactions on Software Engineering and Methodology 6 (3), 250–282.

Salber, D., Dey, A.K., and Abowd, G.D. 1999. The context toolkit: aiding the development of context-

enabled applications. In The CHI is the Limit: Proceeding of the CHI ’99 Conference on Human Factors

in Computing Systems. ACM, New York, NY, 434–441.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:29

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Sama, M., Elbaum, S.G., Raimondi, F., Rosenblum, D.S., and Wang, Z. 2010. Context-aware adaptive

applications: fault patterns and their automated identification. IEEE Transactions on Software

Engineering 36 (5), 644–661.

Santelices, R. and Harrold, M.J. 2007. Efficiently monitoring data-flow test coverage. In Proceedings of the

22nd IEEE/ACM International Conference on Automated Software Engineering (ASE ’07). ACM, New

York, NY, 343–352.

Tse, T.H., Yau, S.S., Chan, W.K., Lu, H., and Chen, T.Y. 2004. Testing context-sensitive middleware-based

software applications. In Proceedings of the 28th Annual International Computer Software and

Applications Conference (COMPSAC ’04), Vol. 1. IEEE Computer Society, Los Alamitos, CA, 458–465.

von Ronne, J. 1999. Test Suite Minimization: an Empirical Investigation. BSCS Thesis, Oregon State

University, Corvallis, OR.

Wang, H. and Chan, W.K. 2009. Weaving context sensitivity into test suite construction. In Proceedings of

the 24th IEEE/ACM International Conference on Automated Software Engineering (ASE ’09). IEEE

Computer Society, Los Alamitos, CA, 610–614.

Wang, H., Zhai, K., and Tse, T.H. 2010. Correlating context-awareness and mutation analysis for

pervasive computing systems. In Proceedings of the 10th International Conference on Quality Software

(QSIC ’10). IEEE Computer Society, Los Alamitos, CA, 151–160.

Wang, Z., Elbaum, S.G., and Rosenblum, D.S. 2007. Automated generation of context-aware tests. In

Proceedings of the 29th International Conference on Software Engineering (ICSE ’07). IEEE Computer

Society, Los Alamitos, CA, 406–415.

Weyuker, E.J. 1990. The cost of data flow testing: an empirical study. IEEE Transactions on Software

Engineering 16 (2), 121–128.

Weyuker, E.J. and Ostrand, T.J. 1980. Theories of program testing and the application of revealing

subdomains. IEEE Transactions on Software Engineering 6 (3), 236–246.

Xu, C., Cheung, S.C., Chan, W.K., and Ye, C. 2008. Heuristics-based strategies for resolving context

inconsistencies in pervasive computing applications. In Proceedings of the 28th International

Conference on Distributed Computing Systems (ICDCS ’08). IEEE Computer Society, Los Alamitos, CA,

713–721.

Xu, C., Cheung, S.C., Chan, W.K., and Ye, C. 2010. Partial constraint checking for context consistency in

pervasive computing. ACM Transactions on Software Engineering and Methodology 19 (3), article no.

9.

Yang, Q., Li, J.J., and Weiss, D. 2006. A survey of coverage based testing tools. In Proceedings of the 2006

International Workshop on Automation of Software Test (AST ’06). ACM, New York, NY, 99–103.

Yang, Y., Huang, Y., Cao, J., Ma, X., and Lu, J. 2013. Formal specification and runtime detection of

dynamic properties in asynchronous pervasive computing environments. IEEE Transactions on

Parallel and Distributed Systems 24 (8), 1546–1555.

Zhai, K., Jiang, B., and Chan, W.K. 2012. Prioritizing test cases for regression testing of location-based

services: metrics, techniques and case study. IEEE Transactions on Services Computing. doi:

10.1109/TSC.2012.40.

Zhai, K., Jiang, B., Chan, W.K., and Tse, T.H. 2010. Taking advantage of service selection: a study on the

testing of location-based web services through test case prioritization. In Proceedings of the IEEE

International Conference on Web Services (ICWS ’10). IEEE Computer Society, Los Alamitos, CA, 211–

218.

Zhang, J. and Cheng, B.H.C. 2006. Model-based development of dynamically adaptive software. In

Proceedings of the 28th International Conference on Software Engineering (ICSE ’06). ACM, New York,

NY, 371–380.

Zhang, J., Goldsby, H.J., and Cheng, B.H.C. 2009. Modular verification of dynamically adaptive systems.

In Proceedings of the 8th ACM International Conference on Aspect-Oriented Software Development

(AOSD ’09). ACM, New York, NY, 161–172.

Zhu, H., Hall, P.A.V., and May, J.H.R. 1997. Software unit test coverage and adequacy. ACM Computing

Surveys 29 (4), 366–427.

Received February 2013; revised December 2013; accepted January 2014

1:30 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Appendix to:
Improvingthe Effectiveness of Testing Pervasive Software
via ContextDiversity

HUAI WANG, The University of Hong Kong

W.K. CHAN, City University of Hong Kong

T.H. TSE, The University of Hong Kong

Appendix A

This appendix reports to what extent context diversity can be incorporated into

adequate test suites through different strategies. For every benchmark, we have

computed the mean context diversity of all the adequate test suites for each

combination of adequacy criterion, test suite construction strategy, and size of

candidate test suite.

The results for the respective benchmarks are shown in Figures A1, A2, and A3.

In each bar chart, the x-axis represents the size of the candidate test suite. Suppose

y1 denotes the mean context diversity of test suites constructed by the baseline

strategy BS and y2 denotes that constructed by a context-aware refined strategy

CARS-H, CARS-L, or CARS-E. Then, the y-axis represents y2 − y1, which measures

the improvement in mean context diversity of the test suites constructed by a

context-aware-refined strategy over that constructed by the baseline strategy. A

positive (negative, respectively) bar means that the test suites constructed by the

corresponding strategy exhibit higher (lower, respectively) context diversity than

that constructed by BS.

All the bars for the CARS-H strategy in Figure A1 are above the x-axis, which

indicates that the test suites constructed by CARS-H consistently have higher

context diversity than those constructed by BS strategy regardless of benchmarks,

test criteria, and sizes of candidate test suites. The bars of CARS-H for larger

candidate test suites are longer than those for smaller candidate test suites. It

indicates that higher context diversity can be achieved by larger candidate test suites.

This observation agrees with the design of CARS-H because every test case

substitution made by CARS-H increases the context diversity of the adequate test

suite being constructed, and a larger candidate test suite should provide more trials

for a successful substitution. On the other hand, all the bars for the CARS-L strategy

in Figure A2 are below the x-axis. We find that the difference in context diversity

resulting from the use of CARS-H and CARS-L on each adequacy criterion can be

50−90% when the size of a candidate test suite is relatively large (such as k = 32 or

higher). The finding shows that it is feasible to significantly modify the context

diversity of an adequate test suite.

We also find that the lengths of the bars for CARS-L in Figure A2 tend to be

longer than those for CARS-H in Figure A1. The result indicates that it can be easier

to reduce the context diversity of an adequate test suite than to increase it. Since the

two strategies are designed to be symmetric, the asymmetric result thus obtained is

interesting. The underlying reason is still unclear. We will leave the explanation to a

future study.

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:31

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(a) WalkPath

(b) CityGuide (c) TourApp

Fig. A1. Differences in context diversity between CARS-H and BS.

(a) WalkPath (b) CityGuide (c) TourApp

Fig. A2. Differences in context diversity between CARS-L and BS.

(a) WalkPath (b) CityGuide (c) TourApp

Fig. A3. Differences in context diversity between CARS-E and BS.

Although all the bars for CARS-E in Figure A3 are above the x-axis, they are

much shorter than the corresponding bars in both Figures A1 and A2. Compared

with the context diversity of the adequate test suites produced by BS, the lengths of

the bars for CARS-E in Figure A3 only indicate a difference of 7−27%, which is

noticeable but less significant than CARS-H and CARS-L in general. The finding

indicates that the idea of evenly spreading test cases in the context diversity

dimension exhibits less effectiveness than CARS-H and CARS-L in the case study.

0

2

4

6

8

10

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

2

4

6

8

10

12

1

2

4

8

1
6

3
2

6
4

1
2
8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

2

4

6

8

10

12

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU
CU CUPU
AD AU

-10

-8

-6

-4

-2

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU

CU CUPU

AD AU -14

-12

-10

-8

-6

-4

-2

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU
CU CUPU
AD AU -16

-14

-12

-10

-8

-6

-4

-2

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU
CU CUPU
AD AU

0

0.2

0.4

0.6

0.8

1

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU
CU CUPU
AD AU

0

0.5

1

1.5

2

1

2

4

8

1
6

3
2

6
4

1
2
8
 D

if
fe

re
n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.5

1

1.5

2

2.5

3

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 c

o
n
te

x
t

d
iv

er
si

ty

Size of candidate suite

PU PUCU
CU CUPU
AD AU

1:32 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

Table A1. Bonferroni Multiple Comparisons of Context Diversity of Test Suites
Constructed by Different Strategies for WalkPath

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128
C

A
R

S
-H

PU 17–21 18–22 22–25 25–28 27–30 29–32 31–33 32–35

PUCU 17–21 21–23 23–26 26–29 29–32 31–34 33–36 32–35

CU 21–24 23–26 26–29 28–31 30–33 32–35 34–37 36–38

CUPU 21–24 23–26 26–28 28–31 30–33 32–35 34–37 36–38

AD 17–20 21–24 24–27 26–29 28–31 30–33 33–36 32–35

AU 22–24 23–26 26–29 28–31 30–33 32–35 34–37 36–38

C
A

R
S

-L

PU 15–16 12–14 10–12 8–10 6–9 4–7 2–5 1–4

PUCU 13–15 11–13 9–11 6–9 4–7 3–6 1–4 1–3

CU 12–14 9–11 6–9 4–7 2–5 1–3 1–2 1

CUPU 12–14 9–11 6–9 3–7 2–5 1–3 1–2 1

AD 13–15 10–13 9–11 6–9 4–8 3–6 1–4 1–3

AU 12–14 9–11 6–9 4–7 2–5 1–3 1–2 1

C
A

R
S

-E

PU 16–18 16–18 16–18 16–18 16–19 16–19 16–19 17–19

PUCU 15–17 16–17 16–17 16–17 16–18 16–18 16–19 16–19

CU 16–17 16–17 16–18 16–19 16–18 17–19 17–20 17–20

CUPU 16–18 16–18 16–18 16–18 16–18 17–19 17–19 17–20

AD 16–17 15–17 16–17 16–18 16–18 16–19 16–19 17–20

AU 16–18 16–18 16–18 16–18 16–18 16–19 17–20 17–20

B
S

PU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18

PUCU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17

CU 16–17 16–17 16–17 16–17 16–17 16–17 16–17 16–17

CUPU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18

AD 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17

AU 16–18 16–18 16–18 16–18 16–18 16–18 16–18 16–18

Table A2. Bonferroni Multiple Comparisons of Context Diversity of Test Suites

Constructed by Different Strategies for CityGuide

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 14–18 20–22 22–24 24–26 24–28 25–29 25–29 25–29

PUCU 14–20 20–22 22–24 24–27 24–28 25–29 25–29 25–29

CU 21–23 22–24 23–26 24–27 25–28 25–28 25–29 25–29

CUPU 21–22 22–24 23–25 24–27 25–28 25–29 25–29 25–29

AD 17–21 21–23 22–25 24–27 24–28 25–29 25–29 25–29

AU 21–23 22–24 23–26 24–27 25–28 25–29 25–29 25–29

C
A

R
S

-L

PU 11–13 8–11 6–9 3–7 1–5 1–3 1 1

PUCU 11–13 9–11 6–8 3–7 1–5 1–3 1 1

CU 9–11 6–9 2–6 1–4 1–3 1–2 1–2 1–2

CUPU 8–10 6–8 3–6 1–4 1–3 1–2 1–2 1–2

AD 10–12 8–10 5–8 3–6 1–4 1–2 1 1

AU 8–11 5–8 2–6 1–4 1–3 1–2 1–2 1–2

C
A

R
S

-E

PU 14–17 14–18 14–17 14–18 14–18 15–18 15–19 15–19

PUCU 14–16 14–16 14–16 14–16 14–17 14–17 14–17 14–18

CU 14–15 14–15 14–15 14–15 14–15 14–16 14–16 14–16

CUPU 14–17 14–17 14–17 14–18 14–18 14–18 15–19 15–19

AD 14 14 14 14–15 14–15 14–15 14–15 14–16

AU 14–15 14–16 14–16 14–16 14–16 14–17 14–17 14–17

B
S

PU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15

PUCU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15

CU 14 14 14 14 14 14 14 14

CUPU 14–15 14–15 14–15 14–15 14–15 14–15 14–15 14–15

AD 14 14 14 14 14 14 14 14

AU 14 14 14 14 14 14 14 14

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:33

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Table A3. Bonferroni Multiple Comparisons of Context Diversity of Test Suites
Constructed by Different Strategies for TourApp

Strategy Criterion
Sizes of Candidate Test suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 14–16 15–16 16–17 16–18 16–19 16–19 16–19 17–20

PUCU 15–16 16–17 16–18 16–19 16–20 16–20 16–20 17–21

CU 14–16 15–17 16–18 16–18 16–19 16–19 16–19 16–20

CUPU 14–16 15–17 16–18 16–18 16–19 16–19 16–19 16–20

AD 14–16 15–17 16–18 16–18 16–19 16–20 16–20 17–20

AU 14–16 15–17 16–18 16–19 16–19 16–19 16–19 16–20

C
A

R
S

-L

PU 6–7 3–5 1–3 1 1 1 1 1

PUCU 6–8 3–5 1–3 1–2 1 1 1 1

CU 5–7 3–5 1–3 1–2 1 1 1 1

CUPU 6–7 3–5 1–3 1–2 1 1 1 1

AD 7–9 5–6 1–4 1–3 1–2 1 1 1

AU 5–6 3–5 1–3 1 1 1 1 1

C
A

R
S

-E

PU 10–11 10–12 10–12 10–12 10–12 10–12 10–12 10–11

PUCU 10–13 10–13 10–13 10–12 10–14 10–14 10–14 10–13

CU 10–13 10–13 10–13 10–13 10–12 10–12 10–12 10–12

CUPU 10–14 10–14 10–13 10–13 10–13 10–13 10–13 10–13

AD 10–15 11–15 10–14 10–14 10–14 10–14 10–14 10–13

AU 10–12 10–12 10–12 10–12 10–12 10–12 10–11 10–11

B
S

PU 10 10 10 10 10 10 10 10

PUCU 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11

CU 10 10 10 10 10 10 10 10

CUPU 10 10 10 10 10 10 10 10

AD 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11

AU 10 10 10 10 10 10 10 10

Moreover, for all benchmarks and test criteria in Figure A1, CARS-H always

brings in the smallest increase in context diversity when k = 1. Note that when k =1,

the candidate test suite defined in Figure A1 contains only one test case, and the

context-aware sampling strategy degrades into the random strategy. However,

CARS-H may still has a chance to increase context diversity of the test suites by

solving tie cases during test suite construction: According to the definition of the

replace() function in Algorithm 2, the context diversity of the test suite being

constructed will be increased when a test case is replaced. The positive bars for k = 1

suggests that the tie case solving strategy employed by CARS-H (and implemented

by the replace() function) contributes to an increase in context diversity. When k > 1,

the candidate test suite contains more than one test case and has more chances to

select test cases with higher context diversity. The higher context diversity for k > 1

than for k = 1 suggests that nontrivial candidate test suites (implemented by the

select() function) contributes to an increase in context diversity. Similarly, the

negative bars for k = 1 in Figure A2 suggest that the replace() function in CARS-L

tends to reduce context diversity, and the lower context diversity for k > 1 than for k

= 1 suggests that the select() function in CARS-L tends to reduce context diversity

also.

To investigate whether the difference between various test suite construction

strategies and the baseline strategy is significant, we have conducted Bonferroni

multiple comparison analysis for every test suite construction strategy. The results

for WalkPath, CityGuide, and TourApp are presented in Tables A1, A2, and A3. For

any candidate test suite size, if the range of numbers in the cell of a refined strategy

has an overlap with the range of numbers in the cell of the baseline strategy, then

there is no significant difference in the mean context diversity at a confidence level of

95% and thus fail to reject the null hypothesis that “test suites constructed by a

1:34 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

specific context-aware refined strategy share the same context diversity with those

constructed by the baseline strategy BS”. Otherwise, the difference is significant and

the corresponding cells reject the null hypothesis. For example, for the test criterion

PU and the candidate test suite size = 1 in Table A1, test suites constructed by

CARS-H do not have significant different context diversity from that constructed by

BS because the ranges of numbers in their respective cells has an overlap of the

numbers 17 and 18. However, for the test criterion CU, test suites constructed by

CARS-H have significant different context diversity from that constructed by BS

because the ranges of numbers in their respective cells has no overlap. For ease of

recognition, we have highlighted the cells that reject the null hypothesis.

From Tables A1, A2, and A3, we find that regardless of benchmarks and test

criteria, both CARS-H and CARS-L are more likely to reject the null hypothesis. For

example, CARS-H rejects the null hypothesis in 44, 46, and 48 out of 48 cases for

WalkPath, CityGuide, and TourApp, respectively. CARS-L can reject the null

hypotheses in 45, 48, and 48 out of 48 cases for WalkPath, CityGuide, and TourApp,

respectively. In contrast, CARS-E consistently fails to reject the null hypothesis for

candidate test suites of all sizes. This result validates that both CARS-H and CARS-

L have a significant impact on the context diversity of test suites, and the impact of

CARS-E to the context diversity of test suites is not statistically significant.

Appendix B

To study the test effectiveness enhanced by context diversity considerations using

different strategies, we compare the strategies at the criterion level. Figures A4, A5,

and A6 show the changes in test effectiveness between the baseline strategy BS and a

context-aware refined strategy CARS-H, CARS-L, and CARS-E, respectively. The x-

axis of each plot in Figures A4 to A6 shows the size of candidate test suites. Suppose

y1 denotes the mean fault detection rate of a criterion (such as PU, PUCU, CU,

CUPU, AD, and AU) of the baseline strategy and y2 denotes that of a context-aware

refined strategy CARS-H, CARS-L, or CARS-E. Then, the y-axis represents y2 − y1,

which is the difference between the fault detection rate of a context-aware refined

strategy and that of the baseline strategy with respect to a specific adequacy

criterion. Note that a positive bar for a specific adequacy criterion indicates that a

context-aware refined strategy is more effective than the BS strategy in exposing

faults.

(a) WalkPath

(b) CityGuide (c) TourApp

Fig. A4. Differences in fault detection rates between CARS-H and BS.

0

0.05

0.1

0.15

0.2

0.25

1

2

4

8

1
6

3

2

6
4

1

2
8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.05

0.1

0.15

0.2

0.25

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n

 r
at

e

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.05

0.1

0.15

0.2

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 f

au
lt

e
d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU

CU CUPU

AD AU

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:35

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(a) WalkPath (b) CityGuide

(c) TourApp

Fig. A5. Differences in fault detection rates between CARS-L and BS.

(a) WalkPath (b) CityGuide

(c) TourApp

Fig. A6. Differences in fault detection rates between CARS-E and BS.

When analyzing the mean fault detection rates of various criteria paired with

CARS-H, we find that all the bars in Figure A4 are positive. This observation implies

that an adequacy criterion paired with the CARS-H strategy can be more effective

than that paired with the baseline strategy BS in terms of fault detection rates. For

WalkPath, for instance, when k varies from 1 to 128, CARS-H outperforms BS by

6.1-17.1% for PU, 8.2-22% for PUCU, 4.5-12.4% for CU, 5.2-10.6% for CUPU,

6.9-20% for AD, and 3.5-10.6% for AU. Similar observations can be found for

CityGuide and TourApp. In other words, CARS-H can consistently improve the test

effectiveness in terms of the mean fault detection rate regardless of benchmarks, test

criteria, and sizes of candidate test suites. Considering that data flow testing is by

itself a highly effective technique, the result shows that the improvement made by

CARS-H is significant.

Furthermore, for CARS-H, the lengths of bars become longer and longer when the

value of k increases, and the effect of k seems to be saturated at k = 64 in the

experiment. For example, the maximum difference in test effectiveness between k =

64 and k = 128 never exceeds 2.4%, 0.3%, and 1.3% for WalkPath, CityGuide,

TourApp, respectively, regardless of the adequacy criterion. In particular, when k =

64, the improvement of test effectiveness for all criteria induced by CARS-H over BS

is 10.6-21.9% for WalkPath, 12.3-22.1% for TourApp, and 12.6-14.5% for CityGuide.

In summary, irrespective of benchmarks and criteria, when k = 64, CARS-H can

bring about an improvement of 10.6-22.1% in test effectiveness to the baseline

strategy in terms of the mean fault detection rate.

In Figure A5, all the bars of CARS-L are negative. This suggests that irrespective

of benchmarks and test criteria, the CARS-L strategy always performs less

-0.25

-0.2

-0.15

-0.1

-0.05

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU
CU CUPU
AD AU -0.05

-0.04

-0.03

-0.02

-0.01

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU

CU CUPU

AD AU -0.25

-0.2

-0.15

-0.1

-0.05

0

1

2

4

8

1
6

3

2

6
4

1

2
8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.005

0.01

0.015

0.02

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU
CU CUPU
AD AU

0

0.01

0.02

0.03

0.04

0.05

0.06

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 f

au
lt

 d
et

ec
ti

o
n
 r

at
e

Size of candidate suite

PU PUCU
CU CUPU
AD AU

1:36 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

effectively than the BS strategy in terms of achieving the mean fault detection rates.

In particular, for all the criteria when k = 64, CARS-L is 5.4-21%, 2.0-3.9%, and

9.8-22.2% less effective than BS for WalkPath, CityGuide, and TourApp, respectively.

That is, regardless of benchmarks and test criteria, CARS-L is 2.0-22.2% less

effective than BS.

Combining with the result presented in Appendix A, we find that changing the

context diversity of an adequate test suite using CARS-H and CARS-L does correlate

with the change in test effectiveness.

CARS-E in Figure A6 results in positive bars, which are shorter than those

corresponding to CARS-H and CARS-L. In particular, for all the test criteria when k

= 64, CARS-E can be more effective by 2.2-7.0%, 0.8-1.9%, and 1.4-5.3% for

WalkPath, CityGuide and TourApp, respectively. The result suggests that CARS-E

brings in less impact on the test effectiveness of test suites than CARS-H or CARS-L.

Table A4. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites
Constructed by Different Strategies for WalkPath

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 3–5 3–5 4–6 5–7 6–8 7–8 7–8 7–8

PUCU 10–12 10–12 12–14 12–14 13–15 14–16 15–17 15–17

CU 17–18 17–18 17–18 17–18 17–18 18–19 19–21 19–21

CUPU 17–18 17–18 17–18 17–18 18–20 18–20 18–20 19–21

AD 9–11 11–13 12–14 13–15 13–15 14–16 14–16 14–17

AU 17–18 17–18 17–18 17–18 17–18 17–18 18–21 19–22

C
A

R
S

-L

PU 1–2 1–2 1–2 1–2 1–2 1 1 1

PUCU 7–9 7–8 5–8 5–7 4–6 4–6 2–4 2–4

CU 13–15 12–15 12–13 11–13 10–12 9–11 8–10 8–10

CUPU 14–16 12–15 12–14 11–13 10–12 10–12 8–10 8–10

AD 7–9 7–8 6–8 4–6 4–5 3–5 2–4 2–4

AU 13–15 12–15 12–13 11–13 10–12 9–11 8–9 8–9

C
A

R
S

-E

PU 2–4 3–5 3–4 3–5 3–5 3–5 3–5 3–4

PUCU 9–10 9–11 9–11 9–10 9–10 9–11 9–10 9–11

CU 17–18 17–18 17–18 18 18–19 18–19 18–19 18–19

CUPU 17–18 17–18 18 17–18 18–19 18–19 18–20 18–19

AD 8–10 8–10 9–11 9–11 9–10 9–10 9–11 9–11

AU 17–18 18 17–18 17–18 18–19 18 18–20 18–19

B
S

PU 1–3 1–3 1–3 1–3 1–3 1–3 1–3 1–3

PUCU 8–9 8–9 8–9 8–9 8–9 8–9 8–9 8–9

CU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17

CUPU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17

AD 8–9 8–9 8–9 8–9 8–9 8–9 8–9 8–9

AU 15–17 15–17 15–17 15–17 15–17 15–17 15–17 15–17

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:37

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Table A5. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites
Constructed by Different Strategies for CityGuide

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 11 11 11 11 11 11–12 11–12 11–12

PUCU 11 11 11 11–12 11–12 11–12 11–12 11–13

CU 11–12 11–12 11–12 11–12 11–13 11–13 11–13 11–13

CUPU 11–12 11–12 11–12 11–12 11–12 11–12 11–13 11–13

AD 11–12 11–12 11–12 11–12 11–12 11–12 11–12 11–13

AU 11–12 11–12 11–12 11–12 11–13 11–13 11–13 11–13

C
A

R
S

-L

PU 1–2 1–2 1–2 1 1 1 1 1

PUCU 5–7 5–7 5–6 4–6 4–5 4–5 4–5 3–5

CU 6–8 5–8 5–8 5–7 5–7 5–7 5–7 5–6

CUPU 6–8 5–8 5–7 5–7 5–7 5–6 5–6 4–6

AD 4–6 4–6 4–6 4–5 4–5 4–5 3–5 3–5

AU 6–9 6–9 6–9 6–8 5–8 5–8 5–7 5–7

C
A

R
S

-E

PU 2–3 2–3 1–3 2–3 2–3 2–4 2–3 2–3

PUCU 5–7 5–8 6–8 6–8 6–8 6–8 6–8 6–8

CU 6–9 6–9 7–9 7–10 7–10 7–10 7–10 7–10

CUPU 6–9 6–9 7–9 7–10 7–10 7–10 7–10 7–10

AD 5–7 5–7 5–7 5–7 5–7 5–7 5–7 5–7

AU 7–9 7–9 7–9 7–10 7–10 7–10 7–10 7–10

B
S

PU 1–3 1–3 1–3 1–3 1–3 1–3 1–3 1–3

PUCU 5–7 5–7 5–7 5–7 5–7 5–7 5–7 5–7

CU 6–8 6–8 6–8 6–8 6–8 6–8 6–8 6–8

CUPU 6–9 6–9 6–9 6–9 6–9 6–9 6–9 6–9

AD 5–6 5–6 5–6 5–6 5–6 5–6 5–6 5–6

AU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9

Table A6. Bonferroni Multiple Comparisons of Fault Detection Rates of Test Suites

Constructed by Different Strategies for TourApp

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 14–18 15–18 15–18 14–18 14–17 13–17 14–17 14–17

PUCU 18–22 19–23 20–24 20–24 20–24 20–24 20–24 20–24

CU 21–25 22–26 23–26 23–26 24–27 24–27 24–27 24–27

CUPU 22–25 23–26 23–26 23–27 24–27 24–27 24–27 24–27

AD 14–17 16–20 18–21 18–22 19–22 18–22 18–21 19–22

AU 22–26 23–27 24–27 24–27 24–27 24–28 25–28 24–28

C
A

R
S

-L

PU 6–9 4–6 3–6 1–4 1–3 1–2 1–2 1–2

PUCU 10–13 7–10 5–9 6–10 5–8 5–9 5–8 5–8

CU 13–17 12–16 10–14 10–13 9–12 9–12 8–11 8–11

CUPU 13–16 12–16 12–14 11–14 10–14 10–13 10–13 9–12

AD 4–7 2–5 1–4 1–3 1–3 1–2 1 1

AU 14–18 13–17 12–15 12–15 11–14 10–14 10–13 9–12

C
A

R
S

-E

PU 8–11 8–11 8–11 7–11 8–11 8–11 8–11 8–12

PUCU 14–17 13–17 13–16 12–15 14–17 14–18 15–18 12–16

CU 17–20 17–21 17–21 17–21 17–21 17–21 17–21 17–21

CUPU 17–20 17–20 17–20 17–20 17–20 17–20 17–20 17–20

AD 10–14 10–14 10–13 10–13 10–13 10–14 10–14 10–14

AU 19–22 19–22 19–22 19–22 19–22 19–22 19–23 19–23

B
S

PU 6–9 6–9 6–9 6–9 6–9 6–9 6–9 6–9

PUCU 11–15 11–15 11–15 11–15 11–15 11–15 11–15 11–15

CU 15–18 15–18 15–18 15–18 15–18 15–18 15–18 15–18

CUPU 15–19 15–19 15–19 15–19 15–19 15–19 15–19 15–19

AD 10–13 10–13 10–13 10–13 10–13 10–13 10–13 10–13

AU 17–20 17–20 17–20 17–20 17–20 17–20 17–20 17–20

To find out whether the results are statistically significant, we have also

conducted Bonferroni multiple comparison analysis for every test suite construction

strategy. The respective results for WalkPath, CityGuide, and TourApp are presented

1:38 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

in Tables A4, A5, and A6, which can be interpreted similarly to Tables A1, A2, and

A3, where the highlighted cells indicate the rejection of the null hypothesis that “test

suites constructed by the context-aware refined strategy share the same fault

detection rate as the baseline strategy BS”.

From Tables A4, A5, and A6, we observe that regardless of benchmarks and test

criteria, CARS-H is likely to reject the null hypothesis. For example, CARS-H rejects

the null hypothesis in 30, 48, and 48 out of 48 cases for WalkPath, CityGuide, and

TourApp, respectively. This result confirms that CARS-H can outperform the BS

strategy significantly in terms of fault detection rates achieved by test suites with a

specific size and coverage. In contrast, CARS-L deteriorates the effectiveness of test

suites significantly. For example, CARS-L rejects the null hypothesis in 28 and 38

out of 48 cases for WalkPath and TourApp. Quite a number of outliers exist for

CityGuide: CARS-L fails to reject the null hypothesis for all the cases. As shown in

Table 5 in Section 6.2, owing to the low fault detection rates achieved by test suites

constructed by the baseline strategy BS, CARS-L cannot deteriorate the test

effectiveness further. Compared with CARS-H and CARS-L, CARS-E cannot be

significantly distinguished from BS. For example, CARS-E fails to reject the null

hypothesis in all the 48 cases for the three benchmarks.

Appendix C

In this appendix, we report to what extent the context diversity of test suites

correlates with the execution of test suites in terms of the normalized execution path

length expressed as the number of statements executed. We normalize the length of

an execution path as the ratio of the length of that path to the length of the longest

execution path executed by the test cases in the test pool. Figures A7, A8, and A9

show the changes in the normalized execution path lengths between the baseline

strategy BS and a context-aware refined strategy (CARS-H, CARS-L, and CARS-E,

respectively). The x-axis of each plot in Figures A7 to A9 shows the size of the

candidate test suite. Suppose y1 denotes the mean normalized execution path length

of a criterion (such as PU, PUCU, CU, CUPU, AD, and AU) of the baseline strategy

and y2 denotes that of a context-aware refined strategy CARS-H, CARS-L, or CARS-

E. Then, the y-axis represents y2 − y1, which is the difference between the

normalized execution path length of a context-aware refined strategy and that of the

baseline strategy with respect to a specific adequacy criterion. Note that a positive

bar for a specific adequacy criterion indicates that a context-aware refined strategy

exercises a longer path than the BS strategy.

(a) WalkPath

(b) CityGuide

(c) TourApp

Fig. A7. Differences in normalized execution path lengths between CARS-H and BS.

0

0.05

0.1

0.15

0.2

0.25

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

rn
ec

e
in

 n
o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.05

0.1

0.15

0.2

0.25

0.3

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU

CU CUPU

AD AU

0

0.05

0.1

0.15

0.2

0.25

0.3

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU

CU CUPU

AD AU

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:39

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

(a) WalkPath

(b) CityGuide

(c) TourApp

Fig. A8. Differences in normalized execution path lengths between CARS-L and BS.

(a) WalkPath

(b) CityGuide

(c) TourApp

Fig. A9. Differences in normalized execution path lengths between CARS-E and BS.

For each normalized execution path length shown in Figure A7, CARS-H always

results in a positive bar, which indicates that test suites constructed by CARS-H

consistently exercise more statements than those constructed by BS. For example,

irrespective of test criteria, when varying k from 1 to 128, the minimum and

maximum numbers of changes in the normalized execution path lengths brought by

CARS-H to BS are 2.1% and 19.9% for WalkPath, 2.9% and 25.1% for CityGuide, and

15.2% and 24.9% for TourApp, respectively. That is, the test suites constructed by

CARS-H exercise 2.1−25.1% longer paths than those constructed by BS. In Figure A8,

we observe that CARS-L always executes shorter paths than the baseline strategy

BS. CARS-E in Figure A9 is associated with positive bars but the lengths are much

shorter than those corresponding to CARS-H, which indicates that CARS-E has

much less effect than CARS-H in forcing test suites to traverse longer paths.

To investigate whether the changes due to various strategies over the BS strategy

are attributed to chance, we have conducted Bonferroni multiple comparison analysis

for every strategy. The results for WalkPath, CityGuide, and TourApp are presented

in Tables A7, A8, and A9, respectively, where the highlighted cells reject the null

hypothesis that “test suites constructed by a context-aware refined strategy traverse

execution paths of the same lengths as test suites constructed by the baseline

strategy BS”.

We observe from Tables A7 to A9 that both CARS-H and CARS-L tend to reject

the null hypothesis and CARS-E fails to reject the null hypothesis regardless of

benchmarks, test criteria, and sizes of candidate test suites. For example, CARS-H

rejects the null hypothesis in 44, 44, and 48 out of 48 cases for WalkPath, CityGuide,

-0.25

-0.2

-0.15

-0.1

-0.05

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU

CUPU AD AU -0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU
CUPU AD AU -0.5

-0.4

-0.3

-0.2

-0.1

0

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU

CUPU AD AU

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1

2

4

8

1
6

3
2

6
4

1
2

8
 D

if
fe

re
n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU

CUPU AD AU

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU
CUPU AD AU

0

0.01

0.02

0.03

0.04

0.05

0.06

1

2

4

8

1
6

3
2

6
4

1
2

8

D
if

fe
re

n
ce

 i
n
 n

o
rm

al
iz

ed
 p

at
h
 l

en
g
th

Size of candidate suite

PU PUCU CU

CUPU AD AU

1:40 Huai Wang, W.K. Chan, and T.H. Tse

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. x, Article x, Publication date: Month YYYY

and TourApp, CARS-L rejects the null hypothesis in 39, 48, and 48 out of 48 cases for

the three benchmarks, and CARS-E fails to reject the null hypothesis in all 48 cases

for the three benchmarks, respectively. The results imply that test suites constructed

by CARS-H execute significantly more statements (in the statistical sense) than

those constructed by the BS strategy, test suites constructed by CARS-L execute

significantly less statements, and test suites constructed by CARS-E traverse similar

number of statements.

Table A7. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths Exercised by

Test Suites Constructed by Different Strategies for WalkPath

Strategy Criterion Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 8–12 10–14 12–16 13–17 15–19 15–20 16–21 17–21

PUCU 9–14 11–15 12–16 14–18 15–19 16–20 16–21 16–21

CU 13–16 13–17 14–18 15–19 15–20 16–21 16–21 16–21

CUPU 13–15 13–17 14–18 15–19 15–20 16–21 16–21 16–21

AD 9–13 11–15 12–16 14–18 15–19 15–20 16–21 16–21

AU 13–15 13–17 14–18 15–19 15–19 16–20 16–21 17–21

C
A

R
S

-L

PU 6–10 4–8 2–6 1–5 1–3 1–2 1–2 1

PUCU 6–10 4–8 1–6 1–5 1–4 1–3 1–2 1

CU 5–9 2–7 1–5 1–4 1–3 1–2 1–2 1

CUPU 5–9 2–7 1–5 1–4 1–3 1–2 1 1

AD 6–10 4–8 1–6 1–5 1–4 1–2 1–2 1

AU 5–9 2–7 1–5 1–4 1–3 1–2 1 1

C
A

R
S

-E

PU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 8–11

PUCU 8–11 8–11 8–11 8–12 8–12 8–12 8–12 8–12

CU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12

CUPU 9–13 9–13 9–13 9–13 9–13 9–13 9–13 9–13

AD 7–11 7–11 7–11 8–11 8–11 8–11 8–11 8–12

AU 8–12 8–12 8–12 8–13 8–13 9–13 8–13 9–13

B
S

PU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11

PUCU 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11

CU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12

CUPU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12

AD 7–11 7–11 7–11 7–11 7–11 7–11 7–11 7–11

AU 8–12 8–12 8–12 8–12 8–12 8–12 8–12 8–12

Improving the Effectiveness of Testing Pervasive Software via Context Diversity 1:41

ACM Transactions on Autonomous and Adaptive Systems, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Table A8. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths
Exercised by Test Suites Constructed by Different Strategies for CityGuide

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128
C

A
R

S
-H

PU 7–8 8–10 9–11 11–13 12–14 13–15 13–15 13–15

PUCU 7–8 8–10 9–11 11–13 12–14 13–15 13–15 13–15

CU 9–11 10–12 11–13 12–14 12–14 12–14 13–15 12–15

CUPU 8–11 10–12 11–13 12–14 12–14 12–14 13–15 13–15

AD 7–9 9–11 10–12 11–13 12–14 13–15 13–15 13–15

AU 9–11 10–12 11–13 12–14 12–14 12–14 12–14 13–15

C
A

R
S

-L

PU 5–6 3–5 2–4 1–3 1–3 1–2 1 1

PUCU 5–6 4–5 2–4 1–3 1–2 1–2 1 1

CU 4–5 2–4 1–3 1–2 1–2 1 1 1

CUPU 4–5 2–4 1–3 1–2 1–2 1 1 1

AD 5–6 3–5 2–4 1–3 1–2 1 1 1

AU 4–5 2–4 1–3 1–2 1–2 1 1 1

C
A

R
S

-E

PU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9

PUCU 7–8 7–8 7–8 7–9 7–9 7–9 7–9 7–9

CU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9

CUPU 7–10 7–10 7–10 7–10 7–10 7–10 7–10 8–10

AD 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9

AU 7–9 7–9 7–9 7–9 7–9 7–9 7–9 7–9

B
S

PU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

PUCU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

CU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

CUPU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

AD 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

AU 7–8 7–8 7–8 7–8 7–8 7–8 7–8 7–8

Table A9. Bonferroni Multiple Comparisons of Normalized Execution Path Lengths Exercised by Test

Suites Constructed by Different Strategies for TourApp

Strategy Criterion
Sizes of Candidate Test Suites

1 2 4 8 16 32 64 128

C
A

R
S

-H

PU 13 13 13–14 13–15 13–15 13–15 13–16 14–16

PUCU 13 13 13–14 13–15 13–15 13–15 13–16 14–16

CU 13 13–14 13–14 13–15 13–15 13–15 13–15 13–15

CUPU 13 13–14 13–14 13–15 13–15 13–15 13–15 13–15

AD 13 13–14 13–14 13–15 13–15 13–15 13–15 14–16

AU 13 13 13–14 13–15 13–15 13–15 13–15 13–15

C
A

R
S

-L

PU 6–7 4–5 1–3 1 1 1 1 1

PUCU 6–8 4–5 1–2 1 1 1 1 1

CU 6–7 4–5 1–2 1 1 1 1 1

CUPU 6–7 4–5 1–2 1 1 1 1 1

AD 8–9 5–6 1–4 1–2 1–2 1 1 1

AU 6 3–5 1–2 1 1 1 1 1

C
A

R
S

-E

PU 10 10 10 10 10–11 10–11 10–11 10–12

PUCU 10 10 10–11 10–11 10–11 10–12 10–12 10–12

CU 10 10 10 10 10–11 10–11 10–11 10–12

CUPU 10 10 10–11 10–11 10–11 10–11 10–11 10–12

AD 10–11 10–11 10–11 10–11 10–12 10–12 10–12 10–12

AU 10 10 10 10 10–11 10–11 10–11 10–12

B
S

PU 10 10 10 10 10 10 10 10

PUCU 10 10 10 10 10 10 10 10

CU 10 10 10 10 10 10 10 10

CUPU 10 10 10 10 10 10 10 10

AD 10–11 10–11 10–11 10–11 10–11 10–11 10–11 10–11

AU 10 10 10 10 10 10 10 10

