Comparison of Acid and Alkaline Hydrogen-Bromine Fuel Cell Systems

Trung Van Nguyen^{a*}, Venkata Yarlagadda^a, Guangyu Lin^b, Guoming Weng^c, Vanessa Li^c, and Kwong-Yu Chan^c

^aDepartment of Chemical & Petroleum Engineering The University of Kansas Lawrence, KS, USA

> ^bTVN Systems, Inc. Lawrence, KS, USA

^cDepartment of Chemistry The University of Hong Kong Hong Kong SAR, China

*Corresponding Author: cptvn@ku.edu

Abstract

The hydrogen bromine (H₂-Br₂) fuel cell system is an attractive system for electrical energy storage because of its high round-trip conversion efficiency, high power density capability, and anticipated low costs.

The hydrogen-bromine fuel cell system can be operated in the acid or alkaline modes. The charge and discharge electrode reactions in an acid H_2 - Br_2 fuel cell system are as follows:

Bromine Electrode:

$$\text{Br}_{2\;(\text{aq})} + 2\text{e-} \begin{array}{c} \textit{Discharge} \\ \longleftrightarrow \\ \textit{Charge} \end{array} 2 \text{Br}^{\text{-}}_{(\text{aq})}, \textit{\textbf{E}}^{o} = +1.09\; \text{\textbf{V}}$$

Hydrogen Electrode:

$$\begin{array}{ccc} \textit{Discharge} \\ \text{H}_{2\,(g)} & \longleftrightarrow & 2\text{H}^{+}_{\,\,(aq)} + 2\text{e-, } \textbf{\textit{E}}^{o} = +\textbf{0.0 V} \end{array}$$

The H⁺ ions migrate from the hydrogen side across a proton conducting membrane to the bromine side during discharge to combine with the Br⁻ ions to form hydrobromic acid.

Overall Reaction:

$$H_{2(g)} + Br_{2(aq)} \xrightarrow{Charge} 2HBr_{(aq)}, \textbf{\textit{E}}^o = +1.09 \text{ V}$$

The charge and discharge electrode reactions in an alkaline H_2 -Br₂ fuel cell system are as follows:

Bromine Electrode:

$$\begin{array}{c} \textit{Discharge} \\ \text{Br}_{2 \, (\text{aq})} + 2\text{e-} & \longleftrightarrow \\ \textit{Charge} & 2\text{Br}^{\text{-}}_{\, (\text{aq})}, \textit{\textbf{E}}^o = +1.09 \text{ V} \end{array}$$

Hydrogen Electrode:

$${
m H_{2\,(g)}} + 2{
m OH^{-}}_{
m (aq)} \stackrel{Discharge}{\longleftrightarrow} 2{
m H_{2}O} + 2{
m e}$$
-, ${\it E^o}$ = +0.83 V

The cations (e.g., K^+), associated with the OH ions, migrate from the hydrogen electrode across a cation (K^+) conducting membrane to the bromine side and combine with the Br ions to form KBr as shown in the overall reaction.

Overall Reaction:

$$\begin{array}{c} \textit{Discharge} \\ \text{H}_{2\,(\text{g})} + \text{Br}_{2\,(\text{aq})} + 2\text{KOH}_{(\text{aq})} & \longleftrightarrow \\ \textit{Charge} \\ \textit{E}^{o} = +1.92 \text{ V} \end{array} 2\text{H}_{2}\text{O} + 2\text{KBr}_{(\text{aq})},$$

Based on the reactions shown above the alkaline system offers a higher cell voltage, which is an advantage because of potentially higher power output. However, the hydrogen reactions in this system are two-phase reactions involving gaseous hydrogen and liquid-phase hydroxide ion reactants and will require more complex electrode structure and fuel cell design. The other advantages of this system include the fact that non-noble catalysts can be used for the hydrogen reactions and lower corrosiveness.

This presentation will discuss the advantages and disadvantages of the alkaline and acid H_2 -Br₂ fuel cell systems and compare the discharge and charge performance of both systems.

Acknowledgements

This work was funded in part by the National Science Foundation through grant number EFRI-1038234 and the Research Grants Council of Hong Kong through a General Research Fund (GRF HKU 700210P). A Visiting Professorship to Trung Nguyen was provided by the Initiative on Clean Energy and Environment (ICEE), University of Hong Kong.