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Abstract We consider the spectrally negative Lévy processes and determine
the joint laws for the quantities such as the first and last passage times over
a fixed level, the overshoots and undershoots at first passage, the minimum,
the maximum and the duration of negative values. We apply our results to
insurance risk theory to find an explicit expression for the generalized expected
discounted penalty function in terms of scale functions. Further, a new expres-
sion for the generalized Dickson’s formula is provided.
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1 Introduction

Let X = {X(t), t ≥ 0} be a real valued spectrally negative Lévy process, i.e. a
stochastic process with càdlàg paths without positive jumps that has stationary
independent increments defined on some filtered space (Ω,F , {Ft, t ≥ 0}, P )
where the filtration {Ft, t ≥ 0} satisfies the usual conditions of right continuity
and completion. The reader is referred to Bertoin [5], Kyprianou [25] and Doney
[12] for a general discussion to Lévy processes. Write Px for the probability law
of X when X(0) = x and Ex for the expectation with respect to Px. We simply

Received May 10, 2012; accepted October 10, 2013
Corresponding author: Chuancun YIN, E-mail: ccyin@mail.qfnu.edu.cn

http://arxiv.org/abs/1101.0445v4


2 Chuancun YIN, Kam C. YUEN

write P0 = P and E0 = E. As usual, we will exclude the case that X has
monotone paths. By the absence of positive jumps, the moment generating
function of X(t) exists for all α ≥ 0 and is given by EeαX(t) = etϕ(α), t ≥ 0,
where ϕ : [0,∞) → R is known as the Laplace exponent. It is given by the
Lévy-Khinchin formula

ϕ(α) = µα+
1

2
σ2α2 +

∫ 0

−∞

(eαx − 1− αx1(x>−1))Π(dx), (1.1)

where µ ∈ R, σ ≥ 0 and Π is a measure on (−∞, 0) known as the Lévy measure

satisfying
∫ 0
−∞

(x2 ∧ 1)Π(dx) < ∞. It is known that ϕ(x) is strictly convex

for x ≥ 0 and that ϕ(0) = 0 and limx→∞ ϕ(x) = ∞. Moreover, ϕ′(0+) =

E(X(1)) = µ +
∫ −1
−∞

xΠ(dx) ∈ [−∞,∞). Recall that X drifts to −∞ if and

only if ϕ′(0+) < 0. Such a spectrally negative Lévy process has sample paths

of bounded variation if and only if σ = 0 and
∫ 0
−1 |x|Π(dx) <∞.

Define the right inverse Φ(q) = sup{α ≥ 0 : ϕ(α) = q} for each q ≥ 0. If
ϕ′(0+) ≥ 0 then α = 0 is the unique solution to ϕ(α) = 0 and otherwise there
are two solutions with α = Φ(0) > 0 being the larger of the two, the other is
α = 0. The Laplace exponent ϕ is continuous and increasing over [Φ(0),∞), so
that limα→0+Φ(α) = Φ(0).

It is known that (see Ref. [3]) for any c such that ϕ(c) = logE[exp cX(1)]
is finite, the family Λt(c) = exp{c(X(t)− x)−ϕ(c)t} is a martingale under Px.

Let P
(c)
x denote the probability measure on F = σ {X(s) : 0 ≤ s <∞} defined

by

dP
(c)
x

dPx

∣

∣

∣

∣

Ft

=
Λt(c)

Λ0(c)
(1.2)

for all 0 ≤ t < ∞. Under the measure P
(c)
x , X remains within the class of

spectrally negative process and the Laplace exponent of X is given by ϕc(α) =
ϕ(α+ c)− ϕ(c), α ≥ −c.

When we set c = Φ(q) for q ≥ 0 we find that ϕ′
Φ(q)(0) = ϕ′(Φ(q)) ≥ 0.

Thus, E(Φ(q))(X(1)) = ϕ′(Φ(q)) > 0 for q > 0. In particular, under the measure
P (Φ(q)), X always drifts to ∞ for q > 0 (see Kyprianou [25, pp 213-214] for more
details).

Denote by I and S the past infimum and supremum of X respectively, that
is, It = inf0≤s≤tX(s) and St = sup0≤s≤tX(s). Define the first passage times
above and below a for X by T−

a = inf{t ≥ 0 : X(t) < a} and T+
a = inf{t ≥

0 : X(t) > a}. We simply write T for T−
0 . Finally, let T0 denote the time of

recovery: T0 = inf{t : t > T,X(t) = 0}.
The fluctuation theory for spectrally negative Lévy processes has been the

object of several studies over the last 40 years, among many others, see Emery
[15], Bingham [7] and Bertoin [6]; We refer to Kyprianou and Palmowaki [26]
and Pistorius [32] for exhaustive reviews. In a great variety of problems of ap-
plied fields such as actuarial mathematics, mathematical finance and queueing
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theory and so on one faces the consideration of the fluctuation theory for a class
of spectrally negative Lévy processes; For example, The exit problems have re-
cently been used by Avram et al. [3] in the context of finance in connection
with American and Canadian options. Alili and Kyprianou [1] provided, with
the help of a fluctuation identity, a generic link between a number of known
identities for the first passage time and overshoot above/below a fixed level of a
Lévy process to the American perpetual put optimal stopping problem. In the
theory of actuarial mathematics, the first passage problem is very important
to the ruin problems; see, for example, among others, Yang and Zhang [35],
Klüppelberg et al. [23], Huzak et al. [20], Zhou [36], Garrido and Morales [17],
Biffis and Kyprianou [8] and Billis and Morales [9].

Several recent papers have concerned the joint laws of overshoots and un-
dershoots of Lévy processes at the first and the last passage times of a constant
barrier. For example, Doney and Kyprianou [13] studied the problem for gen-
eral Lévy process X. They computed the quintuple law of the time of the first
passage relative to the time of the last maximum at the first passage, the time
of the last maximum at the first passage, the overshoot at the first passage, the
undershoot at the first passage and the undershoot of the last maximum at the
first passage, i.e. the law of (T+

x −G
T+
x −

, G
T+
x −

,X
T+
x
−x, x−X

T+
x −

, x−S
T+
x −

),

where Gt = sup{s < t,Xs = Ss}. Kyprianou, Pardo and Rivero (2010) ex-
tended above quintuple law to a family of related joint laws for Lévy processes,
Lévy processes conditioned to stay positive and positive self-similar Markov pro-
cesses at both first and last passage over a fixed level. Eder and Klüppelberg
[16] derived new results in fluctuation theory for sums of possibly dependent
Lévy processes. Chaumont, Kyprianou and Pardo [10] consider some special
classes of Lévy processes with no Gaussian component whose Lévy measure is
of the type Π(dx) = π(x)dx, where π(x) = eγxν(ex − 1).

Motivated by these interesting papers, we continue to study the fluctuation
theory of Lévy processes. In this paper, we restrict ourselves to the spectrally
negative Lévy processes. The advantage is that all results can be explicitly
expressed in terms of scale functions. The rest of the paper is organized as
follows. The next section reviews some preliminary results of spectrally negative
Lévy processes that will be needed later on. In Section 3 we determine the joint
laws of all or some of the quantities such as the first and last passage time over
a fixed level, the overshoots and undershoots at the first passage, the minimum,
the maximum and the duration of negative values. Applications in insurance
risk theory are discussed in Section 4.

2 Preliminaries

Let us now reviewing some preliminary results of spectrally negative Lévy pro-
cesses. We will assume that the measure Π has a density π, with respect to the
Lebesgue measure. So that the scale functions are differentiable. For details,
see Ref. [29].
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2.1 The scale functions and the survival probabilities

Scale functions are key object in the fluctuation theory of spectrally negative
Lévy processes and its applications, the survival probabilities are key object in
risk theory.

Definition 2.1 For q ≥ 0, the q-scale function W (q) : (−∞,∞) → [0,∞) is
the unique function whose restriction to (0,∞) is continuous and has Laplace
transform

∫ ∞

0
e−αxW (q)(x)dx =

1

ϕ(α) − q
, α > Φ(q)

and is defined to be identically zero for x < 0. For short we shall write W (0) =

W . Further, we shall use the notation W
(q)
c (x) to mean the q-scale function as

defined above for (X,P (c)).
For q ≥ 0, we define Z(q)(x) = 1 for x ≤ 0 and

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy for x > 0.

For x ≥ 0, define the survival probability

Q(c)(x) = 1−Q(c)(x) = P (c)
x (I∞ ≥ 0),

where Q(c)(0) = limx↓0Q(c)(x). When c = 0, we write Q(x) instead of Q(0)(x).
It is well known that (see Ref. [26]), under the condition ϕ′(0+) > 0,

W (x) = 1
ϕ′(0+)Px(I∞ ≥ 0). For q > 0 (ϕ′(0+) > 0 is not required), using the

fact that W (q)(x) = eΦ(q)xWΦ(q)(x), we also have

W (q)(x) =
1

ϕ′(Φ(q))
eΦ(q)xQ(Φ(q))(x). (2.1)

2.2 The triple law of T , X(T−) and X(T )

We denote the q-potential measure ofX killed on exiting [0,∞) with starting
point x by U (q)(x, dy). That is U (q)(x, dy) = dy

∫∞

0 e−qtPt(x, y)dt, for q ≥ 0

with U (0) = U , where Pt(x, y)dy = Px(T > t,X(t) ∈ dy). If a density of
U (q)(x, dy) exists with respect to the Lebesgue measure for each x ≥ 0 then we
call it the potential density and denoted it by u(q)(x, y) (with u(0) = u). It is
well known that (see Refs. [5, 12, 25])

u(q)(x, y) =W (q)(x)e−Φ(q)y −W (q)(x− y). (2.2)

For X(0) = x ≥ 0, let

f(y, z, t|x)dydzdt = Px(T ∈ dt,X(T−) ∈ dy, |X(T )| ∈ dz). (2.3)
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For q ≥ 0, define

fq(y, z|x) =

∫ ∞

0
e−qtf(y, z, t|x)dt, fq(y|x) =

∫ ∞

0
fq(y, z|x)dz.

It follows from Doney [12, Remark 5(i), p105] that (by letting a → ∞) for
x, y, z > 0,

Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz) = u(q)(x, y)π(−z − y)dzdy, (2.4)

and
∫ ∞

0
e−qtf(y, z, t|x)dt = π(−z − y)

∫ ∞

0
e−qtPt(x, y)dt.

So that
fq(y, z|x) = u(q)(x, y)π(−z − y), (2.5)

and
f(y, z, t|x) = Pt(x, y)π(−z − y).

From (2.1), (2.2) and (2.5) we obtain for y > 0, x > 0,

fq(y|x) = (Π(−∞,−y))(W (q)(x)e−Φ(q)y −W (q)(x− y))

= (Π(−∞,−y))
eΦ(q)(x−y)

ϕ′(Φ(q))

(

Q(Φ(q)(x)−Q(Φ(q)(x− y)
)

. (2.6)

If the paths of X are of bounded variation, then by (2.5) and (2.6)

fq(y, z|0) = b−1e−Φ(q)yπ(−z − y), fq(y|0) = (Π(−∞,−y))b−1e−Φ(q)y (2.7)

since W (q)(0+) = b−1, where b = µ −
∫ 0
−1 xΠ(dx). It follows from (2.5)-(2.7)

that

fq(y, z|x)

fq(y, z|0)
=
fq(y|x)

fq(y|0)
=

{

bW (q)(x), 0 ≤ x ≤ y,

b(W (q)(x)− eΦ(q)yW (q)(x− y)), x ≥ y > 0.
(2.8)

Finally, for q ≥ 0, define Φc(q) to be the largest real root of the equation
ϕc(θ) = q. Then we have the following important result which is due to Emery
[15]; See also Kyprianou [25].

Lemma 2.1. For any α ≥ 0 and β ≥ 0, the joint Laplace transform of T−
y and

X(T−
y ), with the initial condition X(0) = x > y, is given by

Ex(e
−αT−

y +βX(T−

y ), T <∞) = eβx
(

Z
(p)
β (x− y)−

p

Φβ(p)
W

(p)
β (x− y)

)

, (2.9)

where W
(p)
β and Z

(p)
β are scale functions with respect to the measure P (β), p =

α − ϕ(β), Φβ(p) = Φ(α) − β and p
Φβ(p)

is understand in the limiting sense if

p = 0.
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3 Joint laws for the spectrally negative Lévy pro-

cesses

The main purpose of this section is to investigate some joint laws for the spec-
trally negative Lévy process involving some or all of the first passage time, the
last passage time, the overshoots and undershoots at first passage, the mini-
mum, the maximum and the duration of negative values.

Theorem 3.1. For q ≥ 0 and for positive numbers x, y, z, a and b such that
b < a ∧ x ∧ y, a > x, a > y,

Ex (e−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, ST− ≤ a, T <∞)

= π(−z − y)

(

W (q)(x− b)

W (q)(a− b)
W (q)(a− y)−W (q)(x− y)

)

dydz. (3.1)

Proof Using the spatial homogeneity and the strong Markov property of
X(t), we obtain

Px(X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, ST− > a, T <∞)

= Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b, IT− > 0,X(T ) ≤ −b, ST− > a− b, T <∞)

= Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b, ST− > a− b, T <∞)

−Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b,X(T ) > −b, ST− > a− b, T <∞)

= Px−b(ST− > a− b)Pa−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b, T <∞)

=
W (x− b)

W (a− b)
f0(y − b, z + b|a− b)dydz,

Px(X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, T <∞)

= Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b, IT− > 0,X(T ) ≤ −b, T <∞)

= Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b, T <∞)

−Px−b(X(T−) ∈ dy − b, |X(T )| ∈ dz + b,X(T ) > −b, T <∞)

= f0(y − b, z + b|x− b)dydz,

where

f0(y, z|a)dydz = Pa(X(T−) ∈ dy, |X(T )| ∈ dz, T <∞)

= π(−z − y)(e−Φ(0)yW (a)−W (a− y))dydz.

It follows that

Px (X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, ST− ≤ a, T <∞)

= π(−z − y)

(

W (x− b)

W (a− b)
W (a− y)−W (x− y)

)

dydz. (3.2)
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To prove (3.1), using (3.2) and applying the exponential change of measure we
get

Ex (e−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, ST− ≤ a, T <∞)

= ΠΦ(q)(−dz − y)e−Φ(q)(−z−x)

×

(

WΦ(q)(x− b)

WΦ(q)(a− b)
WΦ(q)(a− y)−WΦ(q)(x− y)

)

dy,

where WΦ(q) is the 0-scale function of X under P (Φ(q)). Recall that

W (q)(x) = eΦ(q)xWΦ(q)(x), ΠΦ(q)(−dx) = e−Φ(q)xΠ(−dx),

where ΠΦ(q) is the Lévy measure of U under P (Φ(q)), we complete the proof.
Letting a→ ∞ or b→ 0 in (3.1) and using the fact in Zhou [37]

lim
a→∞

W (q)(a− y)

W (q)(a− b)
= e−(y−b)Φ(q)

yield the following result.

Corollary 3.1. For q ≥ 0 and for positive numbers x, y, z, a and b such that
b < a ∧ x ∧ y, a > x, a > y,

(1). Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, IT− > b, T <∞)

= π(−z − y)
(

W (q)(x− b)e−(y−b)Φ(q) −W (q)(x− y)
)

dydz. (3.3)

(2). Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, ST− ≤ a, T <∞)

= π(−z − y)

(

W (q)(x)

W (q)(a)
W (q)(a− y)−W (q)(x− y)

)

dydz. (3.4)

Remark 3.1 Taking derivative with respect to b in (3.3) yields the following
result:

Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, IT− ∈ db, T <∞)

= π(−z − y)e−Φ(q)(y−b)(W (q)′(x− b)− Φ(q)W (q)(x− b))dydzdb.

In the case that X drifts to ∞, Biffis and Kyprianou [8] also found the result
based on a quintuple law in Doney and Kyprianou [13].

Theorem 3.2. For q, β ≥ 0 and for positive numbers x, y, z, a and b such that
z < b ≤ a ∧ x ∧ y, a > x, a > y,

Ex(e
−qT−β(T0−T ),X(T−) ∈ dy, |X(T )| ∈ dz, IT0 > −b, ST0 ≤ a, T0 <∞)

= Kx(y, z, a)
W (β)(−z + b)

W (β)(b)
dydz, (3.5)
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where

Kx(y, z, a) = π(−z − y)

(

W (q)(x)

W (q)(a)
W (q)(a− y)−W (q)(x− y)

)

.

Proof Applying the strong Markov property of {X(t)} at T we get that

Ex(e
−qT−β(T0−T ),X(T−) ∈ dy, |X(T )| ∈ dz, IT0 > −b, ST0 ≤ a, T0 <∞)

= Ex(e
−qT−β(T0−T ),X(T−) ∈ dy, |X(T )| ∈ dz,

inf
T≤t≤T0

X(t) > −b, ST− ≤ a, T0 <∞)

= Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, ST− ≤ a, T <∞)

×E−z(e
−βT0 , IT0 > −b, T0 <∞). (3.6)

Applying the exponential change of measure one gets

E−z(e
−βT0 , IT0 > −b, T0 <∞) = e−Φ(β)zE

Φ(β)
−z (IT0 > −b, T0 <∞)

= e−Φ(β)zWΦ(β)(−z + b)−WΦ(β)(−z)

WΦ(β)(b)

=
W (β)(−z + b)

W (β)(b)
. (3.7)

Now (3.5) follows from (3.4), (3.6) and (3.7). This completes the proof of
Theorem 3.2.

Letting a→ ∞ and b→ ∞ in (3.5) yield the following result.

Corollary 3.2. For q, β ≥ 0 and for positive numbers x, y, z we have

Ex(e
−qT−β(T0−T ),X(T−) ∈ dy, |X(T )| ∈ dz, T0 <∞)

= π(−z − y)e−Φ(β)zu(q)(x, y)dydz. (3.8)

The following result is an extension of Chiu and Yin [11, Theorem 3.2].

Theorem 3.3. Suppose that the Lévy process X with the Laplace exponent
(1.1) drifts to ∞. Denote by l = sup{t ≥ 0 : X(t) < 0} the last passage time
below level 0. For q, β ≥ 0 and for positive numbers x, y, z, a and b such that
z < b ≤ a ∧ x ∧ y, a > x, a > y, then

Ex(e
−qT−β(l−T ),X(T−) ∈ dy, |X(T )| ∈ dz, Il > −b, Sl < a, T <∞)

= Kx(y, z, a)R(z, a, b)dydz, (3.9)

where

Kx(y, z, a) = π(−z − y)

(

W (q)(x)

W (q)(a)
W (q)(a− y)−W (q)(x− y)

)

,
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R(z, a, b) = ϕ′(0+)e−Φ(β)(b−z)W (β)(b− z)− ϕ′(0+)Φ′(β)

+ϕ′(0+)
W (β)(b− z)

W (β)(a+ b)

(

W (β)(a) + Φ′(β)− e−(a+b)Φ(β)W (β)(a+ b)
)

.

Proof The strong Markov property of X yields that the left hand side of
(3.9) is equals to

Ex(e
−qT ,X(T−) ∈ dy, |X(T )| ∈ dz, ST < a, T <∞)

×E−z(e
−βl, Il > −b, Sl < a, l > 0) := Sx(y, z, a) ×R(z, a, b).

Letting β → 0 and b→ ∞ in (3.5) yield Sx(y, z, a) = Kx(y, z, a) sinceKx(y, z, {a}) =
0. Applying the strong Markov property of X one finds

R(z, a, b) = E−z(e
−βl, l < T+

a , T
−
−b = ∞)

= E−z(e
−βl, T−

−b = ∞)− E−z(e
−βl, l > T+

a , T
−
−b = ∞)

= E−z(e
−βl, l > 0)− E−z(e

−βl, T−
−b <∞)

−E−z

(

e−βT+
a Ea(e

−βl, l > 0, T−
−b = ∞), T+

a < T−
−b

)

= E−z(e
−βl, l > 0)− E−z(e

−βT−

−bEX(T−

−b
)(e

−βl, l > 0), T−
−b <∞)

−E−z(e
−βT+

a , T+
a < T−

−b)Ea(e
−βl, l > 0, T−

−b = ∞). (3.10)

Note that

Ea (e−βl, l > 0, T−
−b = ∞) = Ea(e

−βl, l > 0)

−Ea

(

e−βT−

−bEX(T−

−b
)(e

−βl, l > 0), T−
−b <∞

)

= Ea(e
−βl, l > 0)− ϕ′(0+)Φ′(β)Ea

(

e−βT−

−b
+Φ(β)X(T−

−b
), T−

−b <∞
)

= Ea(e
−βl, l > 0)− ϕ′(0+)Φ′(β)P (Φ(β))

a (T−
−b <∞),

and

E−z(e
−βT−

−bEX(T−

−b
)(e

−βl, l > 0), T−
−b <∞) = ϕ′(0+)Φ′(β)P

(Φ(β))
−z (T−

−b <∞),

where we have used the change of measure argument and the formula

Eu(e
−βl, l > 0) = ϕ′(0+)Φ′(β)eΦ(β)u, u ≤ 0.

See, Kyprianou [25, Ex. 8.10] or Chiu and Yin [11, (1.5) and Theorem 3.1].
It follows that

R(z, a, b) = E−z(e
−βl, l > 0)− ϕ′(0+)Φ′(β)P

(Φ(β))
−z (T−

−b <∞)

−E−z(e
−βT+

a , T+
a < T−

−b)

×
(

Ea(e
−βl, l > 0)− ϕ′(0+)Φ′(β)P (Φ(β))

a (T−
−b <∞)

)

.(3.11)
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Note that (cf. Kyprianou [25, Ex. 8.10]),

E−z(e
−βl, l > 0) = ϕ′(0+)Φ′(β)e−Φ(β)z, (3.12)

Ea(e
−βl, l > 0) = ϕ′(0+)Φ′(β)eaΦ(β) − ϕ′(0+)W (β)(a). (3.13)

and

E−z(e
−βT+

a , T+
a < T−

−b) =
W (β)(b− z)

W (β)(a+ b)
. (3.14)

Moreover, using a fact in Kyprianou and Palmowski [26] we get

P
(Φ(β))
−z (T−b <∞) = 1− ϕ′

Φ(β)(0+)WΦ(β)(b− z). (3.15)

Since (cf. Pistorius [32])

W (q)(x) = eΦ(q)xWΦ(q)(x), ϕΦ(q)(λ) = ϕ(Φ(q) + λ)− q,

we can rewrite (3.15) as

P
(Φ(β))
−z (T−b <∞) = 1− ϕ′(Φ(β))e−Φ(β)(b−z)W (β)(b− z). (3.16)

Inserting (3.12)-(3.16) in (3.11) completes the proof.
The following result generalized the corresponding result in Dos Reis [14]

and Zhang and Wu [38] in which the classical compound Poisson risk model
and the classical compound Poisson risk model perturbed by Brownian motion
were considered, respectively. A different approach can be found in Landriault,
Renaud and Zhou [21].

Theorem 3.4. Suppose that the Lévy process X, with the Laplace exponent
(1.1), drifts to ∞. Let D =

∫∞

0 1(X(t) < 0)dt denote the total duration for X
to stay below 0. Then for x > 0, β > 0,

Exe
−βD = ϕ′(0+)Φ(β)eΦ(β)x

∫ ∞

x

e−Φ(β)yW (y)dy. (3.17)

In particular,

E0e
−βD = ϕ′(0+)

Φ(β)

β
.

Proof The ideas of this proof were partly motivated by Dos Reis [14] and
Zhang and Wu [36]. For ε ≥ 0, define, with the convention that inf ∅ = ∞,

L1(ε) = inf{t ≥ 0 : X(t) < −ε}, R1(ε) = inf{t ≥ L1(ε) : X(t) = 0}.

In general, for k ≥ 2 recursively define

Lk(ε) = inf{t ≥ Rk−1(ε) : X(t) < −ε}, Rk(ε) = inf{t ≥ Lk(ε) : X(t) = 0}.
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If there exists some k such that {t ≥ Rk−1(ε) : X(t) < −ε} = ∅, then we define
Lk(ε) = ∞ (and consequently Rk(ε) = ∞) and Rk − Lk = 0.

We first consider the case where the paths ofX are of bounded variation. For
convenience we shall write Lk in place of Lk(0) and Rk in place of Rk(0). As the
paths of X are of bounded variation, then 0 ≤ T = L1 < R1 < L2 < R2 < · · · ,
and Rk−Lk represents the duration of the period of the surplus from k-th below
the level 0 to the time that X(t) first visits at 0 after Lk. Thus the random
variable D can be decomposed as follows:

D =

N
∑

k=1

(Rk − Lk),

where N = sup{k : Lk < ∞} (N = 0 if the set is empty). Note that N has a
geometric distribution,

Px(N = n) =

{

R(x), n = 0,
ψ(x)R(0)(ψ(0))n−1 , n = 1, 2, · · · ,

where R(x) = 1 − ψ(x) and ψ(x) = P (I∞ < 0|X(0) = x). The stationarity
and independence of increments of X imply that given N = n, {Rk − Lk, k =
1, · · · , n} are mutually independent and {Rk−Lk, k = 2, · · · , n} are identically
distributed. A simple argument by using the law of double expectation and the
strong Markov property yields

Ex(e
−βD) = Px(N = 0)Ex(e

−βD|N = 0)

+

∞
∑

n=1

Px(N = n)Ex(e
−β(R1−L1)|N = n)

×Ex

(

e−β
∑n

k=2(Rk−Lk)|N = n
)

= Px(N = 0) +
∞
∑

n=1

Px(N = n)Ex(e
−β(R1−L1)|Ln <∞, Ln+1 = ∞)

×
{

Ex

(

e−β(R2−L2)|Ln <∞, Ln+1 = ∞
)}n−1

= R(x) +R(0)Ex

(

eX(T )Φ(β), T <∞
)

∞
∑

n=1

{

E0

(

eX(T )Φ(β), T <∞
)}n−1

= R(x) + Ex

(

eX(T )Φ(β), T <∞
) R(0)

1− E0

(

eX(T )Φ(β), T <∞
) , (3.18)

where, in the third step, we have used

Ex(e
−β(R1−L1)|Ln <∞, Ln+1 = ∞) = Ex(EX(T )e

−βR1 , T <∞)/Px(T <∞)

= Ex

(

eX(T )Φ(β), T <∞
)

/Px(T <∞),
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and

Ex(e
−β(R2−L2)|Ln <∞, Ln+1 = ∞) = E0(EX(T )e

−βR1 , T <∞)/P0(T <∞)

= E0

(

eX(T )Φ(β), T <∞
)

/P0(T <∞).

By using (2.9) one finds that

Ex

(

eX(T )Φ(β), T <∞
)

= βeΦ(β)x

∫ ∞

x

e−Φ(β)yW (y)dy −
β

Φ(β)
W (x).

The result (3.17) follows, since R(x) = ϕ′(0+)W (x).
Next we consider the case where the paths of X are of unbounded variation.

Note that, for ε > 0, 0 ≤ L1(ε) ≤ R1(ε) ≤ L2(ε) ≤ R2(ε) ≤ · · · , and Rk(ε) −
Lk(ε) represents the duration of the period of the surplus from k-th below the
level −ε to the time that X(t) first visits at 0 after Lk(ε). Let

D(ε) =

N(ε)
∑

k=1

(Rk(ε)− Lk(ε)),

where N(ε) = sup{k : Lk(ε) < ∞} (N(ε) = 0 if the set is empty), which has a
geometric distribution,

Px(N(ε) = n) =

{

R(x+ ε), n = 0,
ψ(x+ ε)R(ε)(ψ(ε))n−1 , n = 1, 2, · · · ,

where, as before, R(x) = 1− ψ(x) and ψ(x) = P (I∞ < 0|X(0) = x). As above,
given N(ε) = n, {Rk(ε) − Lk(ε), k = 1, · · · , n} are mutually independent and
{Rk(ε)− Lk(ε), k = 2, · · · , n} are identically distributed.

Using the same argument as above we have

Ex(e
−βD(ε)) = R(x+ ε) +

R(ε)Ex

(

eX(T−

−ε)Φ(β), T−
−ε <∞

)

1− E0

(

eX(T−

−ε)Φ(β), T−
−ε <∞

) . (3.19)

It follows from (2.9) that

lim
ε→0

R(ε)

1− E0

(

eX(T−

−ε)Φ(β), T−
−ε <∞

) = ϕ′(0+)
Φ(β)

β
.

From the right continuity of the sample paths of X(t), we have limε→0D(ε) =
D. Thus the result (3.17) follows by letting ε→ 0 in (3.19) and using (2.9) and
R(x) = ϕ′(0+)W (x). This ends the proof.

Remark 3.2 For a spectrally one-sided Lévy process, the double-integral
transforms of the duration of stay inside/outside the interval (0, B) (B > 0 is a
constant) before a fixed time have been obtained by Kadankov and Kadankova
[22]. However, our result can not deduced by the known result above.
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4 Applications to insurance risk theory

Spectrally negative Lévy processes have been considered recently in Refs. [4, 8,
16, 28, 30, 33], among others, in the context of insurance risk models. Motivated
by applications in option pricing and risk management, and inspired recent
developments in fluctuation theory for Lévy processes, Biffis and Kyprianou
[8] and Biffis and Morales [9] defined an extended version of the Gerber and
Shiu expected discounted penalty function introduced by Gerber and Shiu [18].
In addition to the surplus before ruin and the deficit at ruin, it includes the
information on the last minimum of the surplus before ruin IT , where T =
inf{t > 0 : X(t) < 0} denoting the ruin time of X. The analysis of the result is
mainly based on the quintuple law in Doney and Kyprianou [13].

Motivated by them, we now consider the other generalized version of the
Gerber-Shiu expected discounted penalty function:

φ(x; q, w) = Ex(e
−qTw(X(T−), |X(T )|, ST−, IT−)1(T <∞)), (4.1)

where x ≥ 0 is the initial surplus, q ≥ 0 can be interpreted as a force of interest,
w : R4 → [0,∞) is bounded measurable function. Using Theorem 3.1 we get
the following corollary:

Corollary 4.1. Suppose that X drifts to ∞, W (q)|(0,∞) ∈ C2(0,∞). Then the
function defined in (4.1) can be written as

φ(x; q, w) =

∫

[0,∞)4
w(y, z, a, b)

{

K(q)
x (y, z, a, b) + 1(σ 6=0)δ(y, z, a − x, b)K6

}

dydzdadb,

where δ is the multidimensional Dirac Delta function, and

K(q)
x (y, z, a, b) = 1(y ≥ b, a ≥ x, z > 0, b > 0)π(−z − y)

5
∑

i=1

Ki,

K1 =
W (q)′(x− b)W (q)′(a− y)

W (q)(a− b)
,

K2 = −
W (q)′(x− b)W (q)(a− y)W (q)′(a− b)

W (q)2(a− b)
,

K3 = −
W (q)(x− b)W (q)′′(a− b)W (q)(a− y)

W (q)2(a− b)
,

K4 = −
W (q)(x− b)W (q)′(a− b)W (q)′(a− y)

W (q)2(a− b)
,

K5 =
2W (q)′(a− b)W (q)(a− y)W (q)′(a− b)

W (q)3(a− b)
,

K6 = Z(q)(x)−
qW (q)(x)

Φ(q)
−

∫ ∞

0
u(q)(x, y)(Π(−y) −Π(−∞))dy.
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To end this section we rewrite the generalized Dickson’s formula for the
Cramér-Lundberg risk process (see Gerber and Shiu [18]) and for jump-diffusion
process (see Zhang and Wang [38]) in a more appealing form in terms of the
probabilities of ruin or the scale functions.

Consider the jump-diffusion risk process:

X(t) = x+ ct−

N(t)
∑

j=1

Xj + σB(t), t ≥ 0, (4.2)

where x is the insurer’s initial capital, c is the premium rate, {N(t), t ≥ 0}
is a Poisson process with parameter λ and {Xk}k≥1 are independent random
variables with common distribution P = 1−P , which has density p, mean µ and
P (0) = 0, {B(t), t ≥ 0} is a Brownian motion. Moreover, we assume that c > λµ
and, {N(t), t ≥ 0}, {Xk}k≥1 and {B(t), t ≥ 0} are assumed to be independent.
When σ = 0, (4.2) is called the Cramér-Lundberg risk process. Those two
processes correspond to the cases of spectrally negative Lévy processes with
Π{(−∞, 0)} < ∞ and, with or without Gaussian component. For details of
risk theory, we refer the readers to Asmussen [2] and Rolski et al. [34].

Obviously, X is a spectrally negative Lévy process with Eeα(X(t)−x) = etϕ(α),
where ϕ is defined as

ϕ(α) = cα+
1

2
σ2α2 + λ{p̂(α)− 1}.

The following generalized Dickson’s formula for the Cramér-Lundberg risk
process is due to Gerber and Shiu [18, (6.5) and (6.6)]:

fq(y|x) =







fq(x|0)
eΦ(q)x−Ψ(x)

1−Ψ(0) , y > x ≥ 0,

fq(y|0)
eΦ(q)xΨ(x−y)−Ψ(x)

1−Ψ(0) , 0 < y ≤ x,
(4.3)

where Ψ(x) = Ex(e
−qT+Φ(q)X(T )1(T <∞)), and

fq(y|0) = λc−1e−Φ(q)y(1− P (y)), Ψ(0) = λc−1

∫ ∞

0
xe−Φ(q)xp(x)dx.

Using (1.2), we can write Ψ(x) as Ψ(x) = eΦ(q)xP
(Φ(q))
x (T < ∞). Furthermore,

c(1−Ψ(0)) = E(Φ(q))X(1) = ϕ′(Φ(q)). As a result, we can rewrite the general-
ized Dickson’s formula (4.3) as

fq(y|x) =







λP (y)e
Φ(q)(x−y)

ϕ′(Φ(q)) P
(Φ(q))
x (T = ∞), y > x ≥ 0,

λP (y)e
Φ(q)(x−y)

ϕ′(Φ(q))

(

P
(Φ(q))
x (T = ∞)− P

(Φ(q))
x−y (T = ∞)

)

, 0 < y ≤ x.

(4.4)
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The generalized Dickson’s formula for jump-diffusion is due to Zhang and Wang
[39]:

fq(y|x) =

{

λP (y)Φ′(q)e−Φ(q)y
(

eΦ(q)x −M(x)
)

, y > x ≥ 0,

λP (y)Φ′(q)e−Φ(q)y
(

eΦ(q)xM(x− y)−M(x)
)

, 0 < y ≤ x,
(4.5)

where M(x) = Exe
−qT0 . From Chiu and Yin [11, Theorem 2.3] we have

M(x) = Ex

(

e−qT+Φ(q)X(T )1(T <∞)
)

.

By (1.2), M(x) = eΦ(q)xP
(Φ(q))
x (T < ∞). Therefore, (4.5) can be rewritten

as

fq(y|x) =







λP (y)e
Φ(q)(x−y)

ϕ′(Φ(q)) P
(Φ(q))
x (T = ∞), y > x ≥ 0,

λP (y)e
Φ(q)(x−y)

ϕ′(Φ(q))

(

P
(Φ(q))
x (T = ∞)− P

(Φ(q))
x−y (T = ∞)

)

, 0 < y ≤ x,

(4.6)
where we have used Φ′(q) · ϕ′(Φ(q)) = 1.

Remark 4.1 The results (4.4) and (4.6) can also be expressed in terms of
the scale functions by using (1.2). We remark that the positive safety loading
condition is not required in the case q > 0. Thus the corresponding conditions
can be removed here.

Acknowledgements Both authors thank two anonymous referees for their constructive

suggestions which have led to much improvement on the paper. The first author is grateful

to Professor Xiaowen Zhou for useful discussions. The research of Yuen was supported by a

university research grant of the University of Hong Kong. The research of Yin was supported

by the National Natural Science Foundation of China (No. 11171179), the Research Fund for

the Doctoral Program of Higher Education of China (No. 20133705110002) and the Program

for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

References

1. Alili L, Kyprianou A E. Some remarks on first passage of Lévy processes, the American
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33. Renaud J F, Zhou X. Distribution of the present value of dividend payments in a Lévy
risk model. J Appl Probab, 2007, 44 (2): 420-427

34. Rolski T, Schmidli H, Schmidt V, Teugels, J. Stochastic Processes for Insurance and
Finance. Chichester: Wiley, 1999

35. Yang H L, Zhang L Z. Spectrally negative Lévy processes with applications in risk
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