Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

CPU-GPU Hybrid Parallel Binomial American
Option Pricing

Nan Zhang, Eng Gee Lim, Ka Lok Man and Chi-Un Lei

Abstract—We present in this paper a novel parallel binomial binomial or trinomial methods, the finite-difference medbp
algorithm that computes the price of an American option. Monte Carlo simulations, etc.
The algorithm partitions a binomial tree constructed for the Option pricing is a crucial problem for many financial
pricing into blocks of multiple levels of nodes, and assigns . d - b leted with minimal del
each such block to multiple processors. Each of the processo practices and so Is to be completed wit mlnlma _e ay.
then computes the option's values at its assigned nodes inNowadays, as parallel computers become widely available,
two phases. The algorithm is implemented and tested on a many new developments have been advanced in applying
heterogeneous system consisting of an Intel multi-core peessor parallel computing to the problem of option pricing. Some
and a NVIDIA GPU. The whole task is split and divided over = oqaq chers developed parallel algorithms for variousnpt

and the CPU and GPU so that the computations are performed . - L .
on the two processors simultaneously. In the hybrid processg, Pricing problems on shared- and distributed-memory multi-

the GPU is always assigned the last part of a block, and makes processor computers [3]-[6], and some developed algosithm
use of a couple of buffers in the on-chip shared memory to for option pricing on GPUs [7]-[9].

reduce the number of accesses to the off-chip device memory. | thjs paper, we present a parallel algorithm for pricing
The performance of the hybrid processing is compared with an - A o jcan options on a heterogeneous system which hosts
optimised CPU serial code, a CPU parallel implementation ad -
a GPU standalone program. both a shared-memory multi-core processor and a NVIDIA
GPU. The algorithm computes the price of an American
option on a recombining binomial tree. The computation
is split and divided over the CPU cores and GPU. The
implementation was tested on a laptop system with an Intel
|. INTRODUCTION dual-core P8600 and a NVIDIA Quadro NVS 160M. The
erformance of the algorithm was tested and analysed.
The contributions of our work are twofold. First, a novel

: : o2 rEJ'araIIeI binomial algorithm for option pricing was desighe
to buy/sell a unit of certain stock, whose current pricéids and implemented. The algorithm is suitable for parallel CPU

at any time until a future expiration dafe at a strike price rocessing and for CPU-GPU hybrid processing. Second, a

K agreed at the time the contract is established. If the bu &L ndalone GPU binomial pricing algorithm was developed

of the contract chO(_)ses to exercise the right the 0pt|0|erselgnd tested. The algorithm improves the binomial option
must sell/buy a unit of the stock to/from the buyer at IZ’E

trik ice. Si h tract ai the b - pricing method found in NVIDIAs CUDA SDK 4.0 by
SUrIKE price. since such a contract gives the buyer a i oving the restrictions for certain parameter values.
without any obligation, the buyer of the contract must pay

the seller a certain amount of premium for this right. The Organisation of the rest of the paper: Section I

problem of option pricing is to compute the fair price of th(%:) gﬁ;ﬂ:;g ?;I?)Ll;:g;a;?i:;eir:gvggcgzr:h|(|e| ?jﬁ)spg:j::stf; t?]ip:zslu
contract to both the seller and the buyer. '

Black Schol d Mert tudied thi bl tion of an American option on a recombining binomial tree.

blai ,d tﬁ oles iml 2er_onlgs7g I':'ah ('js dpro den|1, a8 ction IV presents the hardware configuration of the system
published their work [1], [] n - 1hey deduced Clos€qy e in this work. Section V presents the parallel binomial
form formulae for calculating the prices of European ca

} . : Igorithm that we designed for pricing American options.
and put options. These options can only be exercised at g 9 b 9 P

T . . ction VI presents a CPU implementation of the parallel
expiration datef’. However, for American options, l:)ecauS'E{'ilgorithm and its performance. Section VIl shows a GPU
of the early exercise feature, no closed-form formula h

Btnomial pricing algorithm and its implementation. Sentio

been found for computing their prices. Instead, their PIIGE presents the hybrid implementation of the parallel

can be computed using numerical procedures, such as gl]gorithm on the CPU and the GPU, and its performance

comparison. Finally, conclusions are drawn in Section IX.

Index Terms—Parallel computing, option pricing, binomial
method, graphics processing unit, heterogeneous procesgi

A N American call/put option is a financial contract thaP
gives the contract buyer the right, but not the obligatio

Manuscript received December 10, 2011; revised Januar2@®2. This
work was supported in part by the XJTLU Research Developnkemtd
under Grant 10-03-08.

Nan Zhang is with the Department of Computer Science andn8odt Il. RELATED WORK
523.'33223%xﬁifgd”]ffﬁong Liverpool University (XJTQHChina. Email Gerbessiotis [3] presented a parallel algorithm that com-

Eng Gee Lim is with the Department of Electrical and Elecputes the price of a European (or an American) option
tronic Elﬂgig@e‘?trlinga Xi'an Jiaotong-Liverpool Universithina. Email: on g recombining binomial tree. The algorithm partitions
enggee.lim@xjtlu.edu.cn . - . .

Eg Lok Man’ is with the Department of Computer Science andv@of & binomial tree into blocks of multiple levels. Each block
Engineering, Xi'an Jiaotong-Liverpool University, Chinllyongji Univer- is further divided and assigned to distinct processors. A
sity, ISolgth Koréa almd (;3a|tic Institute of Advanced TechggldLithuania. processor partitions the sub-block of nodes that has been
Email: ka.man@xijtlu.edu.cn . L . . .

Chi-Un Lei is with Department of Electrical and Electroniadineering, aSSIQHe_d to it into two regions. Computation in one of t_he
the University of Hong Kong, Hong Kong. Email: culei@eeetlik two regions depends on results from nodes out of the region,

ISBN: 978-988-19251-9-0 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

Time step
t=3

while that in the other does not have such external depen-
dency. In such a scheme, each block is processed in parallel u3S
by multiple processors. The assignment of sub-blocks to

¢

processors is fixed from the beginning of the computation.
The performance of the algorithm is analysed following
the bulk-synchronous parallel model. The implementation
of the algorithm is tested in a cluster of PC workstations
under a message-passing interface (MPI) and a non message-
passing interface. A similar parallel trinomial optionging
algorithm was presented by Gerbessiotis in [4].

Peng et al. [5] presented a similar parallel option pricing
algorithm based on the binomial tree method. The parallel
program was implemented in C via MPI, and was tested on
a CIUSte_r of 16 Intel Xeon Processors. . . . Fig. 1: A recombining binomial tree of 3 time steps and 4 Isv@he price

Zubair et al. [6] discussed two cache-friendly binomial; each node is shown in the node. Note that in such a tree aleaely
option pricing algorithms. These algorithms made ample= n, the number of nodes in that level is+ 1.
allowance for exploiting the benefit brought about by the
memory hierarchy available in today’'s computers so as to
maximise locality for data access. These algorithms weigforemost. At the moment NVIDIAs CUDA programming
implemented on a single processor and a shared memenyironment does not provide any means by which inter-
multi-processor. A journal extension of this work is foumd i block coordination can be easily handled. So when algo-
[10]. rithms are designed for NVIDIA GPUs, the computation task

All the above-mentioned algorithms parallelise a binomiahust be decomposed in such a way that each thread block is
tree along the axis that represents the stock’s price. Heweexecuted independent of other blocks. This restriction has
Ganesan et al. [11] presented an algorithm where the procezised problems to the applications where explicit inter-
ing of a binomial tree was parallelised along the time-axilock synchronisation has to be employed. Some researchers
The algorithm was implemented on a GeForce 8600GT GPhave been looking into this issue. For example, Xiao et
Since the way they implemented the algorithm and the 16Ka. [14] developed three inter-block synchronisation scbe
shared memory limitation, the implementation can only worler NVIDIA GPUs. As in the CUDA programming model
with a tree of maximumly 1024 time steps. the execution of a thread block is non-preemptive, in the

Solomon et al. [7] presented a GPU-based trinomial alggchemes, they use an one-to-one mapping between thread
rithm for pricing European options and a binomial algorithrhlocks and multi-processors (also known as streaming pro-
for pricing American look-back options. The algorithmgessors). However, a very simple solution to this problem is
were implemented and tested on a NVIDIA GTX260 GPWo stop the GPU kernel at a point where synchronisation
using the CUDA [12] programming model. In pricing thds needed and later re-start it. But this stopping and re-
American look-back option on a binomial lattice, the aughotaunching of GPU kernels is a high-cost operation which
implemented a hybrid method where a threshold was ptedrts performance. This is the synchronisation method we
set. As the backward computation proceeds from the leadopted in the implementation of our hybrid algorithm.
nodes to the root, the level of parallelism reduces durirg th
course. So in their algorithm when the backward induction i
passes over the threshold the computation was taken over
by the CPU. The assumption was that the CPU could likely The binomial tree model [15] is a widely-used numerical
perform the later calculations faster than the GPU. solution to various problems in computational finance. A

Dai et al. [8] presented an option pricing algorithm viaecombining binomial tree models the dynamic change of a
the solving of backward stochastic differential equationstock price within the time frame frofto 7'. For a binomial
The equations were solved using a theta method plus Moittee of N time steps there ar® + 1 node levels, correspond-
Carlo simulations. The algorithm was implemented on iag to the N + 1 time spots whereé = 0,1,2,..., N. Any
NVIDIA Tesla C1060, and the performance of the GPlhterior node (for example, denoting stock prigg has two
implementation was compared against a CPU case. successors — an up-move node (denoting ptisg and a

Surkov [9] presented algorithms for GPU that pricedown-move node (denoting prieks). If the annual volatility
single- and multi-asset European and American option$ the stock price isr, we setu to beu = exp(o+/T/N)
with stock prices following exponentialékey processes. The andd = 1/u, so that the tree describes the discrete version of
algorithms were based on the Fourier space time-steppihg continuous price change. An example of a recombining
method. binomial tree of 3 time steps and 4 levels is shown in Fig. 1.

For CPU and GPU to work side by side for hybrid parallel To compute the price of an American option (expiration
processing several challenges have to be solved. Tomov etigl strike price K) on a stock (current pricé,), assuming
[13] discussed ideas in this respect with the developmentafinual continuous compound interest rdte we start by
a hybrid LU factorisation algorithm where the computationalculating the option’s payofPr (max(Sr — K,0) for a
was split over a multi-core and a graphics processor. Of sucll, andmax(K — St,0) for a put) at each leaf node. We
challenges the synchronisation between CPU and GPU sat the option’s valuer at each leaf node to be the option’s
even between different thread blocks of a GPU executigayoff Pr at that node. For an interior node (assuming the

. BINOMIAL AMERICAN OPTION PRICING

ISBN: 978-988-19251-9-0 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

CPU GPU Multiprocessor ullSpThreado Threadl ~ Thread2 §01u711
@) . . O
Core0 | Corel [8KBRegsterfie | 94 ' : |
- iVAVAVgavavaVeevdvavs
L R e :
3 c
>
| 16KB Shared memory | I.,/. 2
3MB L2 unified 256 MB Device memory| [I 1
FSB PCI I.’r P
1066 MHz | 8528 MB/s l.(/ o J
7 s =4
4GB dual channel DDR2-800 ‘ = 'I’
a
Fig. 2: The CPU-GPU heterogeneous system with an Intel P&Bs@Da _
NVIDIA Quadro NVS 160M. ‘L 51 _3 ©
p=9o, L= ®
of [node in phase 1 §‘
) . . node in phase 2| §
price at which isS;) we calculate the discounted expected 7 - np &
option valuer —'E(r|S;) at the nodeS; as: - ‘

T_lE(Wt+1|St) = r_l(pﬂsz +(1 —p)ﬂ'gﬂ), (1)

wherer = exp(RT/N) is the one time-step interest rate= So
(r—d)/(u—d) is the risk-neutral probability of the up-move,
andr{, andn{, are the option’s values at the successive
up-move and down-move nodes, respectively. Then we set Round 0 (. = 3)
the option’s valuer; at nodesS; to be the maximum of the Bas
discounted expectation and the immediate pay®ffSo we

have:

Fig. 3: The parallel algorithm on a binomial tree of 11 timepst

7 = max(P;, r_lE(wt+1|St)). (2)

We apply these steps to all the interior nodes of the Round 1
binomial tree in the backward induction manner until we
getmy at the root node.

IV. THE CPU-GPUHETEROGENEOUS SYSTEM

The hardware platform.(Flg. 2).We used in our work w: ig. 4: The modulo wrapping around manner of the local bukiept by
a laptop system that equipped with a dual-core Intel P86@Skh processor.

(2.4GHz) and a NVIDIA Quadro NVS 160M. The NVIDIA
GPU has a single multi-processor that integrates 8 CUDA

cores. Their clock speed is 1.45GHz. On-chip the graphiggf (region A) of the sub-block which has no dependency on
processor has 8KB registers and 16KB shared memory. Qfsges out of the region. Once all the processors finish com-
chlp the processor has 256MB device memory m_stalleguting nodes in their region A, phase two begins in which
which serves as the local, global, constant memories, &i&ch processor computes at the nodes in the remaining half
Accessing the on-chip shared memory is much faster thﬁf@gion B) of the sub-block. After phase two is completed,
accessing the device memory. According to NVIDIAS mang| the processors move onto the next block. The parallel
ual [12] the Quadro NVS 160M is of compute capabilithrocessing on a binomial tree of 11 time steps is shown in
1.1, and so it only supports single-precision floating poirpiig_ 3.
arithmetic. Eight single-precision floating point opeoas In the algorithm we defined a paramefewhich specifies
can be performed per clock cycle per multi-processor. he maximum number of levels that a block can have.
However, the actual number of levels in a block is also
V. THE PARALLEL AMERICAN OPTION PRICING determined by the number of nodes that each processor gets
ALGORITHM in the base level. To save all the intermediate results each
To compute the price of an American option on a binomiglrocessor maintains a local buffer. The buffer is 6 1)
tree of NV time steps V41 time spots) the parallel algorithmrows and (v + 2) columns. To avoid excessive memory
partitions the tree into blocks of multiple levels of nodedransactions the buffer is used in a modulo wrapping around
Each block is further divided into equal-sized (except th@anner. Fig. 4 shows such an example where in round 0 the
last one) sub-blocks. The blocks are processed in a seqliertase level nodes are saved in row 0 of the buffer, and after
order backwards from the leaf nodes. However, within eathe block is processed the nodes saved in row 3 become the
block the sub-blocks are processed in parallel by distinkase level nodes of the next round. At this point, they are
processors. The parallel processing of a block consists ruit copied back to row O.
two phases. In phase one each processor computes at thiEhe synchronisation scheme used in the algorithm is

ISBN: 978-988-19251-9-0 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

Po p1 p2 p3 22.4
e}
2.2 W
Q.
Phase 1 92.0
1.8 Standalone speedu*;sf T
\ L6 ~—AS(L = 20) CPU
o o o 1.4 / o0—0 S’(L = 50) GPU—
1.2
Phase 2 1.0 17,,_43:]
0.8

T 0.6 e ——t—}
4 8 12 16 20 24 28 32 36 40 44 48 52 56
Po p3 : x103

L — — NumberN of time steps

p1 p2 ‘

Fig. 7: The speedups of the CPU parallel implementation dedGPU

Next round implementation.

Fig. 5: The synchronisation between multiple threads.

P Intel's icpc 12.0 for Linux with optimisation options -O3 @&n
| Sl -ipo switched on. The POSIX thread library used was NPTL
o \ CPU 0 (native POSIX thread library) 2.12.1. The parallel speedup

in all the tests are plotted in Fig. 7. In the tests we observed
super-linear speedup in some of the tests. This must have
been caused by the caching effect and the more efficient

shown in Fig. 5. It is always the case that the last thre&t§€ Of the system bus. In this group of tests the maximum
does not have nodes to process in phase two. numberL of levels in a block was set to 20.

For a p-way parallelism g distinct processors are used)
on an N-step binomial tree, because procesggroughly VII. THE GPUALGORITHM AND ITS PERFORMANCE

processesl /p of the total nodes in the tree, the parallel Programming the same binomial American option pricin
runtimeTp = O(N?/p), the parallel speeduf = Ts/Tp = 9 g p pricing

O(p) (Ts is the serial runtime), the parallel efficienc;PrOt')(l.em o.nhthhe Qua(IJIro NVS 160M is vfery different f_rom
E =5/p= 0(1), and the cospTp of the parallel algorithm working with the Inte| P860O, beca_luse of the SIMT (single
is pTe — O(N?). So the parallel algorithm is COSt-OptimallnStrUCtlon multiple threads) execution modell of the NVADI
in that the cost has the same asymptotic growth rate as t%PU' The NVIDIA CUDA 4.0 SDK comes_wnh an example
. Wihere thousands of European calls are priced using the bino-
serial case. : ; :)
mial method. In the example, a single one-dimensional threa
block is used to price a single call option. The algorithm
VI. PERFORMANCE TESTING ON THEP8600 used in the pricing of a single call is briefly explained in
On the dual-core Intel P8600 we implemented the parallgl6]. To avoid frequent access to the off-chip global memory
algorithm and compared its performance with an optimisdulit to make use of the on-chip shared memory as much as
serial implementation of the binomial pricing. We used apossible, the algorithm partitions a binomial tree intodit®
American put option in the tests, where the parameters weremultiple levels. The partition pattern is very similarttoe
set as: current stock pricg, = 100, strike priceK = 100, one shown in Fig. 3, except that the NVIDIAS algorithm
option expiry dateI’ = 0.6, annual continuous compoundrequires that all the blocks have the same number of levels
interest rateR = 0.06 and annual volatilityc = 0.3. The and this number must be a multiple of two. The algorithm
numberN of time steps varied from x 102 to 56 x 103, also uses two buffers in the shared memory. The algorithm
with an increment of4000 in each test. In the parallel begins by allocating an one-dimensional buffer in the globa
implementation we used two threads and explicitly bourrdemory. All the threads in the thread block compute the
them onto each of the two cores of the CPU, as Fig. 6 shoveqition’s payoffs at the leaf nodes and save them into the
In computing the stock’s price at a node we did not udauffer. When processing a block of interior nodes, the ttisea
So. We know that the stock’s pric&? at the first node first load the computed option values from the global buffer
(at column 0) of a certain level where = n is, as it into one of the two shared buffers. Then the computation is
is shown in Fig. 1,50 = u"S,. So the priceS; at the carried out between the two shared buffers. After this the
j-th column in that level isS! = w252, So for the results are copied back to the appropriate positions in the
nodes in any levet = n we computedS? once and re- global buffer. The threads then move to the next part of the
used its value at the remaining nodes of the level. By thidock to repeat the same processing.
way we avoided repeatedly evaluating the same mathematical he algorithm we implemented on the Quadro NVS 160M
expression. This optimisation made noticeable improveémenodified the NVIDIA's algorithm by allowing arbitrary num-
to the performance of the implementation. ber of levels in a block. A run of our algorithm for NVIDIA
We used single-precision floats in the programs so th@PUs is shown in Fig. 8.
we could make comparisons between the performances ohe performance comparison between this GPU imple-
the CPU and on the GPU. The operating systems used wasntation and the CPU sequential program is plotted in
Ubuntu Linux 10.10 (64-bit version). The compiler used waiig. 7, where the same American put option example was

Fig. 6: Binding two threads onto the two cores of the CPU.

ISBN: 978-988-19251-9-0 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,
IMECS 2012, March 14 - 16, 2012, Hong Kong

e

Globalbuter [[[T T T [T T T T TT] | CPU1 |
P‘O pP1 P2 P3 P4 P5 Copy i GPU |

Shared buffer p1 CPU 1 ‘
Compute and compare Po Pr—— EP:UiO 77777

Sharedbuffer:lJ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Fig. 9: Using a CPU core to coordinate with the GPU. An equsithed
L_:3 workload is assigned to that core.
Sharedbufero. [[[[[[] *°

Sharedbuffer:lJ ‘ ‘ ‘ ‘ ‘ ‘ ‘

of each new round. Launching a new kernel every round is a
high-costly operation, but this is the price that one hasap p

in order to make the CPU and the GPU work side by side.
Algorithm 1 shows the steps performed by this coordinating
core of the CPU.

Po P1 P2 Copy back

Globalbuffer_ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Po P1 P2 P3 P4 P5 Next iteration

VWA

Shared buffer:lJ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Algorithm 1: Computational steps performed by the coordinating core.

/1 Initialisation

Shared bufferq ‘ ‘ ‘ | 1 [] 1 Compute option’s payoffs at the end-level nodes assignetieto
core and the GPU,;
‘ ‘ ‘ ‘ ‘ ‘ /1 _ Backv\@rd i nduction
2 while there is a next round do
/'l Phase 1
if GPU is needed then
|_ Launch kernel for the part assigned to the GPU;

Shared buffer

Shared buffer ﬂ ‘

Po P1 P2

~

~
ciobai boter NIRRT ;

Fig. 8: GPU binomial option pricing with double buffers inetfon-chip g Compute at region A of the sub-block assigned to the CPU
shared memory. Note that in this example we have 6 threads. core:

6 if GPU is needed then

7 Wait for the GPU to finish;
Copy data from the GPU buffer to the CPU buffer;

used. From the results we can see that the performance on?he))
Synchronise with the other CPU cores;

GPU was almost the same (or, slightly better in some casé’s)
as that on a single core of the CPU. Without the doublg-

/'l Phase 2
if there is region B then
Compute at region B of the sub-block assigned to the

buffer memory access optimisation the GPU’s performaniée :

was far worse. In all the GPU tests the paramdtefthe , ?%%S(Jirseheeded then

maximum number of levels in a block) was set to 50, mugh | Copy data from the CPU buffer to the GPU buffer;
increased from the CPU parallel tests whérgvas 20. This u
was to reduce the number of times that the GPU threads have
to access the buffer in the global memory. 15

Synchronise with the other CPU cores;
/1 For next round
Update variables and parameters;

end

VIIl. THE CPU-GPUHYBRID PROCESSING

To compute the parallel binomial algorithm (illustrated To see the performance of the hybrid algorithm we did
in Fig. 3) using both the CPU and the GPU in the laptopvo groups of tests wherg, the maximum number of levels
system (Fig. 2) we assigned the GPU the last sub-block (fiara block, was set to 20 and 50, respectively. The tests were
example, the part processed by thrgadn Fig. 3) in each made using the same American put option with the same
round, because the GPU algorithm is not suitable for a subarameter setting. The GPU kernel were launched with a
block that has nodes in region B. Moreover, as the GPUWsingle thread block of 512 threads. The speedups are plotted
performance (Fig. 7) on this pricing problem was almosh Fig. 10.
identical to a single core of the CPU, initially the workload From the results we can see that when= 20 the CPU
was divided equally among the two cores of the CPU arghrallel implementation with 2 working threads outperfedn
the GPU. the hybrid processing, but wheh = 50 the opposite

To coordinate the GPU with the two cores of the CPWituation was observed. The reason for the first observation
we have to use one of the two cores for the communicatioras that the repetitive launching of GPU kernels reduced
and the synchronisation. Since the launch of a kernel ¢me performance of the hybrid processing. WHes- 50, the
the GPU is asynchronous, that is, control is returned to thember of launchings was reduced so that the performance of
CPU before the task on the GPU is completed, we did ntite hybrid processing was improved. However, wiies 50
leave the coordinating core of the CPU idle while the kernéte CPU parallel code became poorly performed. The reason
is executed on the GPU. We assigned an equal part of thas that the local buffer that saved the intermediate result
total workload to the coordinating core. This distributioh at the CPU side became less efficient for caching when
workload on the CPU and GPU is illustrated in Fig. 9. L became large. According to the theoretical analysis the

The parallel algorithm (Fig. 3) requires all the threadspeedupS of this parallel algorithm isS = O(p). However,
working at block: to finish before the processing of blockthe performance of the hybrid processing after adding the
i+ 1 to start. So at the end of each round the GPU kern@PU did not show significant enhancement over the CPU
had to be ended and a new kernel was launched at the spatallel code. We believe that this was due to the coordinati

ISBN: 978-988-19251-9-0 IMECS 2012

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,

IMECS 2012, March 14 - 16, 2012, Hong Kong

caused much overhead and reduced the performance of the
hybrid processing.

As a future work, the proposed algorithms in this paper
may be implemented as a customised integrated circuit (IC)
using the FPGA technology. Such an IC will be expected to
improve significantly the runtime performance of the prigin

S2.4
822 M
3.]
2.0 °
1.8 / e s \
1.6 / -/./' “5cPU]
1.4 rd 1S GPU |
1.2 —e 5"’ CPU+GPU ||
1.0 S !
0.8 Speedupsl; = 20 |>
0.6 F—p—tpmp—_—t—tttt [1]
4 8 12 16 20 24 28 32 36 40 44 48 52 56
NumberN of time steps x10? 2
(@ L =20
3]
22.4
3
$2.2 a
2.0
1.8
¥ 5]
1.6 A—S CPU M
/
1.4 0—0 S’ GPU
1.2 &— 5" CPU+GP]
1.0 T vy S S Sy Wy S S

0.8 Speedupsf = 50 |»
0.6 [iI L L L L L L L L L

4 8 12 16 20 24 28 32 36 40 44 48 52 56
x103

(7]

NumberN of time steps
(b) L =50

Fig. 10: Speedup plots of the CPU parallel implementatiod e hybrid
implementation.

(8]

El

overhead between the CPU and the GPU. [10]

IX. CONCLUSION (11

We have presented a parallel algorithm that computes the
price of an American option on a recombining binomial
tree. The tree is partitioned into blocks of multiple levelgi2]
of nodes. A block is divided into sub-blocks and these suEl—3
blocks are assigned to distinct processors to be proces eb
in parallel. The processing of a block by multiple processor
consists of two phases. In phase one, the processing isadarf4]
out on the nodes at which the computation has no external

algorithms.

REFERENCES

F. Black and M. Scholes, “The Pricing of Options and Cogte
Liabilities,” The Journal of Political Economy, vol. 81, no. 3, pp. 637—
659, 1973.

R. Merton, “Theory of Rational Option Pricing,Bell Journal of
Economics and Management Science, vol. 4, no. 1, pp. 141-183, 1973.
A. V. Gerbessiotis, “Architecture Independent PalaBeéomial Tree
Option Price Valuations,Parallel Computing, vol. 30, pp. 301-316,
2004.

——, “Parallel Option Price Valuations with the Explidtinite Differ-
ence Method,International Journal of Parallel Programming, vol. 38,
pp. 159-182, 2010.

Y. Peng, B. Gong, H. Liu, and Y. Zhang, “Parallel Compagtin
for Option Pricing Based on the Backward Stochastic Diffiéed
Equation,” Lecture Notes in Computer Science, vol. 5938, pp. 325—
330, 2010.

M. Zubair and R. Mukkamala, “High Performance Implenatiun of
Binomial Option Pricing,”Lecture Notes in Computer Science, vol.
5072, pp. 852-866, 2008.

S. Solomon, R. K. Thulasiram, and P. Thulasiraman, “@ptPric-
ing on the GPU,” inProceedings of the 12th |IEEE International
Conference on High Performance Computing and Communications,
Melbourne, Australia, sep 2010, pp. 289-296.

B. Dai, Y. Peng, and B. Gong, “Parallel Option Pricing viBSDE
Method on GPU,” inProceedings of the 9th International Conference
on Grid and Cloud Computing, Nanjing, China, nov 2010, pp. 191-
195.

V. Surkov, “Parallel Option Pricing with Fourier Spacénie-stepping
Method on Graphics Processing Unit®arallel Computing, vol. 36,
no. 7, pp. 372-380, jul 2010.

J. E. Savage and M. Zubair, “Cache-Optimal Algorithnes ©ption
Pricing,” ACM Transactions on Mathematical Software, vol. 37, no. 1,
pp. 7:1-7:30, jan 2010.

N. Ganesan, R. D. Chamberlain, and J. Buhler, “AccélagaOptions
Pricing Calculations via Parallelization along Time-awris a GPU,”
in Proceedings of the 1st Symposium on Application Acceleration and
High Performance Computing (SAAHPC '09), Urbana-Champaign,
lllinois, jun 2009.

NVIDIA CUDA C Programming Guide (version 4.0), NVIDIA Corpo-
ration, 2011.

S. Tomoyv, J. Dongarra, and M. Baboulin, “Towards Denseeér
Algebra for Hybrid GPU Accelerated Manycore Systenfdiallel
Computing, vol. 36, no. 5-6, pp. 232-240, jun 2010.

S. Xiao and W. chun Feng, “Inter-block GPU Communicatiga Fast
Barrier Synchronization,” irProceedings of 2010 |EEE International
Symposium on Parallel & Distributed Processing (IPDPS), Atlanta,

dependency, and in phase two, the nodes are processed wheresA, apr 2010, pp. 1-12.

such dependency exists and has been resolved in phase Bak

The parallel algorithm dynamically adjusts the assignment
of sub-blocks to processors since the level of parallelisis]

J. C. Cox, S. A Ross, and M. Rubinstein, “Option Pricing

Simplified Approach,"Journal of Financial Economics, vol. 7, no. 3,
pp. 229-263, sep 1979.
C. Kolb and M. Pharr, “Options Pricing on the GPU,” BPU

decreases as the computation proceeds from the leaf nodesems 2 Programming Techniques for High-Performance Graphics

to the root.

The parallel algorithm was implemented on the dual-core
CPU. In some of the test cases super-linear speedups were
observed against an optimised serial CPU code. A GPU
binomial pricing algorithm was then discussed, where deubl
buffers in the on-chip shared memory are used to reduce the
number of accesses to the off-chip device memory.

The parallel algorithm was then adapted to the dual-core
CPU and the GPU. The partition of a binomial tree is in
such a way that the GPU is always given the last sub-block
to compute. To coordinate the GPU with the CPU we had
to use one of two CPU cores to repeatedly launch the GPU
kernel and then stop it at the synchronisation point. Thi ha

ISBN: 978-988-19251-9-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

and General-Purpose Computation, M. Pharr and R. Fernando, Eds.
Addison-Wesley, 2005, ch. 45.

IMECS 2012

