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Abstract—We present in this paper a novel parallel binomial
algorithm that computes the price of an American option.
The algorithm partitions a binomial tree constructed for the
pricing into blocks of multiple levels of nodes, and assigns
each such block to multiple processors. Each of the processors
then computes the option’s values at its assigned nodes in
two phases. The algorithm is implemented and tested on a
heterogeneous system consisting of an Intel multi-core processor
and a NVIDIA GPU. The whole task is split and divided over
and the CPU and GPU so that the computations are performed
on the two processors simultaneously. In the hybrid processing,
the GPU is always assigned the last part of a block, and makes
use of a couple of buffers in the on-chip shared memory to
reduce the number of accesses to the off-chip device memory.
The performance of the hybrid processing is compared with an
optimised CPU serial code, a CPU parallel implementation and
a GPU standalone program.

Index Terms—Parallel computing, option pricing, binomial
method, graphics processing unit, heterogeneous processing

I. I NTRODUCTION

A N American call/put option is a financial contract that
gives the contract buyer the right, but not the obligation,

to buy/sell a unit of certain stock, whose current price isS0,
at any time until a future expiration dateT at a strike price
K agreed at the time the contract is established. If the buyer
of the contract chooses to exercise the right the option seller
must sell/buy a unit of the stock to/from the buyer at the
strike price. Since such a contract gives the buyer a right
without any obligation, the buyer of the contract must pay
the seller a certain amount of premium for this right. The
problem of option pricing is to compute the fair price of the
contract to both the seller and the buyer.

Black, Scholes and Merton studied this problem, and
published their work [1], [2] in 1973. They deduced closed-
form formulae for calculating the prices of European call
and put options. These options can only be exercised at the
expiration dateT . However, for American options, because
of the early exercise feature, no closed-form formula has
been found for computing their prices. Instead, their price
can be computed using numerical procedures, such as the
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binomial or trinomial methods, the finite-difference methods,
Monte Carlo simulations, etc.

Option pricing is a crucial problem for many financial
practices and so is to be completed with minimal delay.
Nowadays, as parallel computers become widely available,
many new developments have been advanced in applying
parallel computing to the problem of option pricing. Some
researchers developed parallel algorithms for various option
pricing problems on shared- and distributed-memory multi-
processor computers [3]–[6], and some developed algorithms
for option pricing on GPUs [7]–[9].

In this paper, we present a parallel algorithm for pricing
American options on a heterogeneous system which hosts
both a shared-memory multi-core processor and a NVIDIA
GPU. The algorithm computes the price of an American
option on a recombining binomial tree. The computation
is split and divided over the CPU cores and GPU. The
implementation was tested on a laptop system with an Intel
dual-core P8600 and a NVIDIA Quadro NVS 160M. The
performance of the algorithm was tested and analysed.

The contributions of our work are twofold. First, a novel
parallel binomial algorithm for option pricing was designed
and implemented. The algorithm is suitable for parallel CPU
processing and for CPU-GPU hybrid processing. Second, a
standalone GPU binomial pricing algorithm was developed
and tested. The algorithm improves the binomial option
pricing method found in NVIDIA’s CUDA SDK 4.0 by
removing the restrictions for certain parameter values.

Organisation of the rest of the paper: Section II
presents a brief literature review on the application of parallel
computing to option pricing. Section III discusses the valua-
tion of an American option on a recombining binomial tree.
Section IV presents the hardware configuration of the system
used in this work. Section V presents the parallel binomial
algorithm that we designed for pricing American options.
Section VI presents a CPU implementation of the parallel
algorithm and its performance. Section VII shows a GPU
binomial pricing algorithm and its implementation. Section
VIII presents the hybrid implementation of the parallel
algorithm on the CPU and the GPU, and its performance
comparison. Finally, conclusions are drawn in Section IX.

II. RELATED WORK

Gerbessiotis [3] presented a parallel algorithm that com-
putes the price of a European (or an American) option
on a recombining binomial tree. The algorithm partitions
a binomial tree into blocks of multiple levels. Each block
is further divided and assigned to distinct processors. A
processor partitions the sub-block of nodes that has been
assigned to it into two regions. Computation in one of the
two regions depends on results from nodes out of the region,



while that in the other does not have such external depen-
dency. In such a scheme, each block is processed in parallel
by multiple processors. The assignment of sub-blocks to
processors is fixed from the beginning of the computation.
The performance of the algorithm is analysed following
the bulk-synchronous parallel model. The implementation
of the algorithm is tested in a cluster of PC workstations
under a message-passing interface (MPI) and a non message-
passing interface. A similar parallel trinomial option pricing
algorithm was presented by Gerbessiotis in [4].

Peng et al. [5] presented a similar parallel option pricing
algorithm based on the binomial tree method. The parallel
program was implemented in C via MPI, and was tested on
a cluster of 16 Intel Xeon processors.

Zubair et al. [6] discussed two cache-friendly binomial
option pricing algorithms. These algorithms made ample
allowance for exploiting the benefit brought about by the
memory hierarchy available in today’s computers so as to
maximise locality for data access. These algorithms were
implemented on a single processor and a shared memory
multi-processor. A journal extension of this work is found in
[10].

All the above-mentioned algorithms parallelise a binomial
tree along the axis that represents the stock’s price. However
Ganesan et al. [11] presented an algorithm where the process-
ing of a binomial tree was parallelised along the time-axis.
The algorithm was implemented on a GeForce 8600GT GPU.
Since the way they implemented the algorithm and the 16KB
shared memory limitation, the implementation can only work
with a tree of maximumly 1024 time steps.

Solomon et al. [7] presented a GPU-based trinomial algo-
rithm for pricing European options and a binomial algorithm
for pricing American look-back options. The algorithms
were implemented and tested on a NVIDIA GTX260 GPU
using the CUDA [12] programming model. In pricing the
American look-back option on a binomial lattice, the authors
implemented a hybrid method where a threshold was pre-
set. As the backward computation proceeds from the leaf
nodes to the root, the level of parallelism reduces during the
course. So in their algorithm when the backward induction
passes over the threshold the computation was taken over
by the CPU. The assumption was that the CPU could likely
perform the later calculations faster than the GPU.

Dai et al. [8] presented an option pricing algorithm via
the solving of backward stochastic differential equations.
The equations were solved using a theta method plus Monte
Carlo simulations. The algorithm was implemented on a
NVIDIA Tesla C1060, and the performance of the GPU
implementation was compared against a CPU case.

Surkov [9] presented algorithms for GPU that prices
single- and multi-asset European and American options
with stock prices following exponential Ĺevy processes. The
algorithms were based on the Fourier space time-stepping
method.

For CPU and GPU to work side by side for hybrid parallel
processing several challenges have to be solved. Tomov et al.
[13] discussed ideas in this respect with the development of
a hybrid LU factorisation algorithm where the computation
was split over a multi-core and a graphics processor. Of such
challenges the synchronisation between CPU and GPU or
even between different thread blocks of a GPU execution
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Fig. 1: A recombining binomial tree of 3 time steps and 4 levels. The price
at each node is shown in the node. Note that in such a tree at anylevel
t = n, the number of nodes in that level isn+ 1.

is foremost. At the moment NVIDIA’s CUDA programming
environment does not provide any means by which inter-
block coordination can be easily handled. So when algo-
rithms are designed for NVIDIA GPUs, the computation task
must be decomposed in such a way that each thread block is
executed independent of other blocks. This restriction has
caused problems to the applications where explicit inter-
block synchronisation has to be employed. Some researchers
have been looking into this issue. For example, Xiao et
al. [14] developed three inter-block synchronisation schemes
for NVIDIA GPUs. As in the CUDA programming model
the execution of a thread block is non-preemptive, in the
schemes, they use an one-to-one mapping between thread
blocks and multi-processors (also known as streaming pro-
cessors). However, a very simple solution to this problem is
to stop the GPU kernel at a point where synchronisation
is needed and later re-start it. But this stopping and re-
launching of GPU kernels is a high-cost operation which
hurts performance. This is the synchronisation method we
adopted in the implementation of our hybrid algorithm.

III. B INOMIAL AMERICAN OPTION PRICING

The binomial tree model [15] is a widely-used numerical
solution to various problems in computational finance. A
recombining binomial tree models the dynamic change of a
stock price within the time frame from0 to T . For a binomial
tree ofN time steps there areN+1 node levels, correspond-
ing to theN + 1 time spots wheret = 0, 1, 2, . . . , N . Any
interior node (for example, denoting stock priceS) has two
successors – an up-move node (denoting priceuS) and a
down-move node (denoting pricedS). If the annual volatility
of the stock price isσ, we setu to beu = exp(σ

√

T/N)
andd = 1/u, so that the tree describes the discrete version of
the continuous price change. An example of a recombining
binomial tree of 3 time steps and 4 levels is shown in Fig. 1.

To compute the price of an American option (expiration
T , strike priceK) on a stock (current priceS0), assuming
annual continuous compound interest rateR, we start by
calculating the option’s payoffPT (max(ST − K, 0) for a
call, andmax(K − ST , 0) for a put) at each leaf node. We
set the option’s valueπT at each leaf node to be the option’s
payoff PT at that node. For an interior node (assuming the
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Fig. 2: The CPU-GPU heterogeneous system with an Intel P8600and a
NVIDIA Quadro NVS 160M.

price at which isSt) we calculate the discounted expected
option valuer−1

E(πt+1|St) at the nodeSt as:

r−1
E(πt+1|St) = r−1(pπu

t+1 + (1 − p)πd
t+1), (1)

wherer = exp(RT/N) is the one time-step interest rate,p =
(r−d)/(u−d) is the risk-neutral probability of the up-move,
and πu

t+1 and πd
t+1 are the option’s values at the successive

up-move and down-move nodes, respectively. Then we set
the option’s valueπt at nodeSt to be the maximum of the
discounted expectation and the immediate payoffPt. So we
have:

πt = max(Pt, r−1
E(πt+1|St)). (2)

We apply these steps to all the interior nodes of the
binomial tree in the backward induction manner until we
get π0 at the root node.

IV. T HE CPU-GPUHETEROGENEOUS SYSTEM

The hardware platform (Fig. 2) we used in our work was
a laptop system that equipped with a dual-core Intel P8600
(2.4GHz) and a NVIDIA Quadro NVS 160M. The NVIDIA
GPU has a single multi-processor that integrates 8 CUDA
cores. Their clock speed is 1.45GHz. On-chip the graphics
processor has 8KB registers and 16KB shared memory. Off-
chip the processor has 256MB device memory installed,
which serves as the local, global, constant memories, etc.
Accessing the on-chip shared memory is much faster than
accessing the device memory. According to NVIDIA’s man-
ual [12] the Quadro NVS 160M is of compute capability
1.1, and so it only supports single-precision floating point
arithmetic. Eight single-precision floating point operations
can be performed per clock cycle per multi-processor.

V. THE PARALLEL AMERICAN OPTION PRICING

ALGORITHM

To compute the price of an American option on a binomial
tree ofN time steps (N+1 time spots) the parallel algorithm
partitions the tree into blocks of multiple levels of nodes.
Each block is further divided into equal-sized (except the
last one) sub-blocks. The blocks are processed in a sequential
order backwards from the leaf nodes. However, within each
block the sub-blocks are processed in parallel by distinct
processors. The parallel processing of a block consists of
two phases. In phase one each processor computes at the
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Fig. 3: The parallel algorithm on a binomial tree of 11 time steps.
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Fig. 4: The modulo wrapping around manner of the local bufferkept by
each processor.

half (region A) of the sub-block which has no dependency on
nodes out of the region. Once all the processors finish com-
puting nodes in their region A, phase two begins in which
each processor computes at the nodes in the remaining half
(region B) of the sub-block. After phase two is completed,
all the processors move onto the next block. The parallel
processing on a binomial tree of 11 time steps is shown in
Fig. 3.

In the algorithm we defined a parameterL which specifies
the maximum number of levels that a block can have.
However, the actual number of levels in a block is also
determined by the number of nodes that each processor gets
in the base level. To save all the intermediate results each
processor maintains a local buffer. The buffer is of (L + 1)
rows and (N + 2) columns. To avoid excessive memory
transactions the buffer is used in a modulo wrapping around
manner. Fig. 4 shows such an example where in round 0 the
base level nodes are saved in row 0 of the buffer, and after
the block is processed the nodes saved in row 3 become the
base level nodes of the next round. At this point, they are
not copied back to row 0.

The synchronisation scheme used in the algorithm is
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Fig. 6: Binding two threads onto the two cores of the CPU.

shown in Fig. 5. It is always the case that the last thread
does not have nodes to process in phase two.

For a p-way parallelism (p distinct processors are used)
on anN -step binomial tree, because processorp0 roughly
processes1/p of the total nodes in the tree, the parallel
runtimeTP = O(N2/p), the parallel speedupS = TS/TP =
O(p) (TS is the serial runtime), the parallel efficiency
E = S/p = O(1), and the costpTP of the parallel algorithm
is pTP = O(N2). So the parallel algorithm is cost-optimal
in that the cost has the same asymptotic growth rate as the
serial case.

VI. PERFORMANCE TESTING ON THEP8600

On the dual-core Intel P8600 we implemented the parallel
algorithm and compared its performance with an optimised
serial implementation of the binomial pricing. We used an
American put option in the tests, where the parameters were
set as: current stock priceS0 = 100, strike priceK = 100,
option expiry dateT = 0.6, annual continuous compound
interest rateR = 0.06 and annual volatilityσ = 0.3. The
numberN of time steps varied from4 × 103 to 56 × 103,
with an increment of4000 in each test. In the parallel
implementation we used two threads and explicitly bound
them onto each of the two cores of the CPU, as Fig. 6 shows.

In computing the stock’s price at a node we did not use
S0. We know that the stock’s priceS0

n at the first node
(at column 0) of a certain level wheret = n is, as it
is shown in Fig. 1,S0

n = unS0. So the priceSj
n at the

j-th column in that level isSj
n = u−2jS0

n. So for the
nodes in any levelt = n we computedS0

n once and re-
used its value at the remaining nodes of the level. By this
way we avoided repeatedly evaluating the same mathematical
expression. This optimisation made noticeable improvement
to the performance of the implementation.

We used single-precision floats in the programs so that
we could make comparisons between the performances on
the CPU and on the GPU. The operating systems used was
Ubuntu Linux 10.10 (64-bit version). The compiler used was
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Fig. 7: The speedups of the CPU parallel implementation and the GPU
implementation.

Intel’s icpc 12.0 for Linux with optimisation options -O3 and
-ipo switched on. The POSIX thread library used was NPTL
(native POSIX thread library) 2.12.1. The parallel speedups
in all the tests are plotted in Fig. 7. In the tests we observed
super-linear speedup in some of the tests. This must have
been caused by the caching effect and the more efficient
use of the system bus. In this group of tests the maximum
numberL of levels in a block was set to 20.

VII. T HE GPU ALGORITHM AND ITS PERFORMANCE

Programming the same binomial American option pricing
problem on the Quadro NVS 160M is very different from
working with the Intel P8600, because of the SIMT (single
instruction multiple threads) execution model of the NVIDIA
GPU. The NVIDIA CUDA 4.0 SDK comes with an example
where thousands of European calls are priced using the bino-
mial method. In the example, a single one-dimensional thread
block is used to price a single call option. The algorithm
used in the pricing of a single call is briefly explained in
[16]. To avoid frequent access to the off-chip global memory
but to make use of the on-chip shared memory as much as
possible, the algorithm partitions a binomial tree into blocks
of multiple levels. The partition pattern is very similar tothe
one shown in Fig. 3, except that the NVIDIA’s algorithm
requires that all the blocks have the same number of levels
and this number must be a multiple of two. The algorithm
also uses two buffers in the shared memory. The algorithm
begins by allocating an one-dimensional buffer in the global
memory. All the threads in the thread block compute the
option’s payoffs at the leaf nodes and save them into the
buffer. When processing a block of interior nodes, the threads
first load the computed option values from the global buffer
into one of the two shared buffers. Then the computation is
carried out between the two shared buffers. After this the
results are copied back to the appropriate positions in the
global buffer. The threads then move to the next part of the
block to repeat the same processing.

The algorithm we implemented on the Quadro NVS 160M
modified the NVIDIA’s algorithm by allowing arbitrary num-
ber of levels in a block. A run of our algorithm for NVIDIA
GPUs is shown in Fig. 8.

The performance comparison between this GPU imple-
mentation and the CPU sequential program is plotted in
Fig. 7, where the same American put option example was
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shared memory. Note that in this example we have 6 threads.

used. From the results we can see that the performance on the
GPU was almost the same (or, slightly better in some cases)
as that on a single core of the CPU. Without the double-
buffer memory access optimisation the GPU’s performance
was far worse. In all the GPU tests the parameterL (the
maximum number of levels in a block) was set to 50, much
increased from the CPU parallel tests whereL was 20. This
was to reduce the number of times that the GPU threads have
to access the buffer in the global memory.

VIII. T HE CPU-GPUHYBRID PROCESSING

To compute the parallel binomial algorithm (illustrated
in Fig. 3) using both the CPU and the GPU in the laptop
system (Fig. 2) we assigned the GPU the last sub-block (for
example, the part processed by threadp2 in Fig. 3) in each
round, because the GPU algorithm is not suitable for a sub-
block that has nodes in region B. Moreover, as the GPU’s
performance (Fig. 7) on this pricing problem was almost
identical to a single core of the CPU, initially the workload
was divided equally among the two cores of the CPU and
the GPU.

To coordinate the GPU with the two cores of the CPU
we have to use one of the two cores for the communication
and the synchronisation. Since the launch of a kernel on
the GPU is asynchronous, that is, control is returned to the
CPU before the task on the GPU is completed, we did not
leave the coordinating core of the CPU idle while the kernel
is executed on the GPU. We assigned an equal part of the
total workload to the coordinating core. This distributionof
workload on the CPU and GPU is illustrated in Fig. 9.

The parallel algorithm (Fig. 3) requires all the threads
working at blocki to finish before the processing of block
i + 1 to start. So at the end of each round the GPU kernel
had to be ended and a new kernel was launched at the start

CPU 0

CPU 1

CPU 1

p0

p1

GPU

Fig. 9: Using a CPU core to coordinate with the GPU. An equally-sized
workload is assigned to that core.

of each new round. Launching a new kernel every round is a
high-costly operation, but this is the price that one has to pay
in order to make the CPU and the GPU work side by side.
Algorithm 1 shows the steps performed by this coordinating
core of the CPU.

Algorithm 1 : Computational steps performed by the coordinating core.

begin
// Initialisation
Compute option’s payoffs at the end-level nodes assigned tothe1
core and the GPU;
// Backward induction
while there is a next round do2

// Phase 1
if GPU is needed then3

Launch kernel for the part assigned to the GPU;4

Compute at region A of the sub-block assigned to the CPU5
core;
if GPU is needed then6

Wait for the GPU to finish;7
Copy data from the GPU buffer to the CPU buffer;8

Synchronise with the other CPU cores;9
// Phase 2
if there is region B then10

Compute at region B of the sub-block assigned to the11
CPU core;
if GPU is needed then12

Copy data from the CPU buffer to the GPU buffer;13

Synchronise with the other CPU cores;14
// For next round
Update variables and parameters;15

end

To see the performance of the hybrid algorithm we did
two groups of tests whereL, the maximum number of levels
in a block, was set to 20 and 50, respectively. The tests were
made using the same American put option with the same
parameter setting. The GPU kernel were launched with a
single thread block of 512 threads. The speedups are plotted
in Fig. 10.

From the results we can see that whenL = 20 the CPU
parallel implementation with 2 working threads outperformed
the hybrid processing, but whenL = 50 the opposite
situation was observed. The reason for the first observation
was that the repetitive launching of GPU kernels reduced
the performance of the hybrid processing. WhenL = 50, the
number of launchings was reduced so that the performance of
the hybrid processing was improved. However, whenL = 50
the CPU parallel code became poorly performed. The reason
was that the local buffer that saved the intermediate results
at the CPU side became less efficient for caching when
L became large. According to the theoretical analysis the
speedupS of this parallel algorithm isS = O(p). However,
the performance of the hybrid processing after adding the
GPU did not show significant enhancement over the CPU
parallel code. We believe that this was due to the coordination
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Fig. 10: Speedup plots of the CPU parallel implementation and the hybrid
implementation.

overhead between the CPU and the GPU.

IX. CONCLUSION

We have presented a parallel algorithm that computes the
price of an American option on a recombining binomial
tree. The tree is partitioned into blocks of multiple levels
of nodes. A block is divided into sub-blocks and these sub-
blocks are assigned to distinct processors to be processed
in parallel. The processing of a block by multiple processors
consists of two phases. In phase one, the processing is carried
out on the nodes at which the computation has no external
dependency, and in phase two, the nodes are processed where
such dependency exists and has been resolved in phase one.
The parallel algorithm dynamically adjusts the assignment
of sub-blocks to processors since the level of parallelism
decreases as the computation proceeds from the leaf nodes
to the root.

The parallel algorithm was implemented on the dual-core
CPU. In some of the test cases super-linear speedups were
observed against an optimised serial CPU code. A GPU
binomial pricing algorithm was then discussed, where double
buffers in the on-chip shared memory are used to reduce the
number of accesses to the off-chip device memory.

The parallel algorithm was then adapted to the dual-core
CPU and the GPU. The partition of a binomial tree is in
such a way that the GPU is always given the last sub-block
to compute. To coordinate the GPU with the CPU we had
to use one of two CPU cores to repeatedly launch the GPU
kernel and then stop it at the synchronisation point. This has

caused much overhead and reduced the performance of the
hybrid processing.

As a future work, the proposed algorithms in this paper
may be implemented as a customised integrated circuit (IC)
using the FPGA technology. Such an IC will be expected to
improve significantly the runtime performance of the pricing
algorithms.
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