
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 749256, 11 pages
http://dx.doi.org/10.1155/2013/749256

Research Article
Predatory Search Strategy Based on Swarm Intelligence for
Continuous Optimization Problems

J. W. Wang,1,2,3 H. F. Wang,4 W. H. Ip,5 K. Furuta,3 T. Kanno,3 and W. J. Zhang2

1 Complex Systems Research Center, East China University of Science and Technology, Shanghai 200237, China
2Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada S7N 5A9
3Department of Systems Innovation, the University of Tokyo, Tokyo 113-8656, Japan
4 Institute of Systems Engineering, Northeastern University, Shenyang 110114, China
5 Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong

Correspondence should be addressed to W. J. Zhang; chris.zhang@usask.ca

Received 12 February 2013; Accepted 10 March 2013

Academic Editor: Zhuming Bi

Copyright © 2013 J. W. Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose an approach to solve continuous variable optimization problems.The approach is based on the integration of predatory
search strategy (PSS) and swarm intelligence technique. The integration is further based on two newly defined concepts proposed
for the PSS, namely, “restriction” and “neighborhood,” and takes the particle swarm optimization (PSO) algorithm as the local opti-
mizer.The PSS is for the switch of exploitation and exploration (in particular by the adjustment of neighborhood), while the swarm
intelligence technique is for searching the neighborhood. The proposed approach is thus named PSS-PSO. Five benchmarks are
taken as test functions (including both unimodal andmultimodal ones) to examine the effectiveness of the PSS-PSOwith the seven
well-known algorithms. The result of the test shows that the proposed approach PSS-PSO is superior to all the seven algorithms.

1. Introduction

As one of the key foundations of intelligent systems, compu-
tational intelligence is a strong tool to deal with challenging
optimization problems. Most intelligent optimization meth-
ods are inspired from the biological system, such as Genetic
algorithm [1], artificial immune systems [2], artificial neural
network [3], ant colony optimization [4], particle swarm
optimization [5, 6], culture algorithm [7], and colony location
algorithm [8]. There are also methods learned from the arti-
ficial or man-made system, for example, simulated annealing
[9] and fractal geometry [10]. Compared with the traditional
optimization algorithms, the intelligent optimization algo-
rithms have fewer restrictions to the objective function and
are of computational efficiency and thus are widely used in
industrial and social problems [11, 12].

However, to many real-world applications, the intelligent
algorithms as mentioned earlier all encounter a common
problem; that is, it is difficult to deal with the balance between
exploitation and exploration. Exploration is the ability to test
various regions in the problem space in order to locate a good

optimum, hopefully the global one, and exploitation is the
ability to concentrate on the search around a promising can-
didate solution in order to locate the optimum precisely [13].
Fast convergence velocity tends to result in the premature
solution as opposed to the best solution.

Inspired by the predatory behavior of animals, Linhares
[14, 15] proposed the predatory search strategy (PSS) to solve
the previous problem; in particular, he used PSS to solve
discrete variable optimization problems. This strategy is an
individual-based searching strategy and has a good balance
between exploitation and exploration.

On a general note, the balance of exploitation and explo-
ration is not only a key problem for discrete variable opti-
mization problems but also for the continuous variable opti-
mization problems. A natural idea extending Linhares’s work
is to apply the PSS to the continuous variable optimization
problem. However, the feature of individual-based searching
does not allow the PSS to be straightforwardly applied to the
continuous variable optimization problem. The basic moti-
vation of this paper is to address this issue.



2 Mathematical Problems in Engineering

In this paper, we attempt to integrate the PSS with swarm
intelligence techniques to solve continuous variable optimi-
zation problems.There are two major models in swarm intel-
ligence, particle swarm optimization (PSO) and ant colony
optimization (ACO). ACO is used for discrete problems,
while the PSO is used for continuous problems. Therefore,
in this paper, PSO is adopted to be incorporated with the
PSS. The proposed approach may be called PSS-PSO. The
PSS-PSO approach is tested by five benchmark examples of
complex nonlinear functions. Compared with well-known
PSO algorithms, the PSS-PSO is found to achieve a superior
performance to the existing algorithms for continuous vari-
able optimization problems.

In the following, we will first present the related works
of PSS and PSO algorithms. Then, we will propose the basic
idea of PSS-PSO and discuss the implementation of the
PSS-PSO approach in Section 3, followed by the experiment
and analysis in Section 4. Finally, there is a conclusion with
discussion of future work.

2. Related Studies

2.1. Predatory Search Strategy for Discrete Problems. Biolo-
gists have discovered that despite their various body con-
structions, the predatory search strategies of many search-
intensive animals are amazingly similar [16–20]. When they
seek food, they first search in a certain direction at a fast pace
until they find a prey or sufficient evidence of it. Then, they
slow down and intensify their search in the neighboring area
in order to findmore preys. After some time without success,
they give up the intensified “area-restricted” search and go on
to scan other areas [15]. As shown in Figure 1, this predatory
search strategy of animals can be summarized by two search
processes [21]: Search 1 (general search)—extensive search in
the whole predatory space, and if prey or its proof is found,
turn to search 2; Search 2 (area-restricted search)—intensive
search in its neighboring area, and after a long time without
success, turn to search 1.

This strategy is effective formany species because (besides
being simple and general) it is able to strike a good balance
between the exploitation (intensive search in a defined area)
and the exploration (extensive search throughmany areas) of
the search space. Linhares [14, 15] introduced the predatory
search strategy as a new evolutionary computing technique to
solve discrete optimization problems, such as TSP and VLSI
layout.When this technique searches for the optimum, it first
seeks solutions in the whole solution space until finding a
“good” solution. Then, it intensifies the search in the vicinity
of the “good” solution. After some time without further
improvement, it gives up the area-restricted search and turns
to the original extensive search. In this technique, a concept
called restriction was defined as the solution cost to represent
the neighborhood of a solution, which is used to adjust the
neighboring area and implement the balance of exploitation
and exploration.

The previous approach, in essence, can be viewed as a
strategy to balance exploitation and exploration; however,
it does not give any detail of the general search and area-
restricted search. Hence, in this paper, we call it predatory

General search
(In the whole predatory space)

No

No

Yes

Yes

Find new preys?

Find new preys?

Area-restricted search
(In neighboring areas)

Figure 1: The predatory search strategy.

search strategy (PSS), instead of predatory search algorithm.
As mentioned in Section 1, the balance between local search
and global search or exploration and exploitation is a key to
all the intelligent algorithms. PSS is an example strategy to
address this key. Liu and Wang [21] proposed another way
to implement the PSS by adopting the solution distance as
the restriction. All these studies focus on the discrete variable
optimization problem.

On a general note, the general search enables the
approach with a high search quality to avoid falling into the
local optimum, while the area-restricted search enables the
approach to have a fast convergence velocity. It is interesting
to note that such search strategy was taken three decades ago
in the M. S. degree thesis of Zhang [22]. In his approach,
a random search technique and a gradient-based technique
were combined to solve a specific continuous variable opti-
mization problem for design of special mechanisms [22].
In his combined approach, the switch criterion for the two
search algorithms was specifically related to the particular
application problem; in particular, in the general search, the
stop criterion is the feasible solutions in a highly constrained
region [22]. The very motivation of the Zhang’s combined
approach was to overcome the difficulty in obtaining a
feasible solution, because the constrained area was extremely
“narrow.” Zhang’s work was at times prior to the development
of intelligent optimization ideas, concepts, and techniques
such as PSO. His work is inspiring but not a generalized one.

2.2. Particle Swarm Optimization and Its Developments. The
PSO algorithm was first developed by Kennedy and Eberhart
based on the simulation of a simplified social model [5, 6, 23].
The standard PSO algorithm can be explained as follows.

A swarm being made up by 𝑚 particles searches a
𝐷-dimensional problem space. Each particle is assigned a
randomized velocity and a stochastic position. The position
represents the solution of the problem. When “flying” each
particle is attracted by a good location achieved so far by itself



Mathematical Problems in Engineering 3

and by a good location achieved by themembers in the whole
swarm (or the members in the neighborhood). The position
of the 𝑖th particle is represented as 𝑥

𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑖𝑑
. . . , 𝑥
𝑖𝐷
),

and its velocity is represented as V
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑑
, . . . , V

𝑖𝐷
),

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑑 ≤ 𝐷. The best previous position of the
𝑖th particle, namely, the position with the best fitness value,
is represented as 𝑝

𝑖
= (𝑝
𝑖1
, . . . , 𝑝

𝑖𝑑
, . . . , 𝑝

𝑖𝐷
), and the index of

the best particle among all the particles in the neighborhood
is represented by the symbol 𝑔. Each particle updates its
velocity and position according to the following equations:

V
𝑘+1

𝑖𝑑
= 𝜔V
𝑘

𝑖𝑑
+ 𝑐
1
𝜉 (𝑝
𝑘

𝑖𝑑
− 𝑥
𝑘

𝑖𝑑
) + 𝑐
2
𝜂 (𝑝
𝑘

𝑔𝑑
− 𝑥
𝑘

𝑖𝑑
) ,

𝑥
𝑘+1

𝑖𝑑
= 𝑥
𝑘

𝑖𝑑
+ V
𝑘+1

𝑖𝑑
,

(1)

where 𝜔 is the inertia weight that determines how much a
particle holds its current velocity in the next iteration. 𝑐

1
and

𝑐
2
are learning factors, also named acceleration constants,

which are two positive constants. Learning factors are usually
equal to 2, while other settings can also be seen in the litera-
ture [13]. 𝜉 and 𝜂 are pseudorandom numbers and they obey
the same homogeneous distribution in the range [0, 1]. The
velocity of a particle is limited in the range of 𝑉max. 𝑉max is
set to be the range of each dimension variable and used
to initialize the velocity of particles without selecting and
tuning in detail. The running of the PSO is much similar to
evolutionary algorithms such as GA, including initialization,
fitness evaluation, update of velocity and position, and testing
of the stop criterion. When the neighborhood of a particle
is the whole population, it is called the global version of
PSO (GPSO) [24]; otherwise, it is called local version of PSO
(LPSO) [25].

The PSO algorithm has increasingly attracted attention
now [13, 24, 26, 27] with many successful applications in
real-world optimization problems [28–33]. The most salient
advantage of PSO is its fast convergence to the optimum;
however, this feature also tends to lead the whole swarm into
the local optimum, especially for solving multimodal pro-
blems [34].

Different strategies have been developed in the literature
to solve the problem with PSO. Liang et al. [34] proposed a
comprehensive-learning PSO (CLPSO) which uses a novel
learning strategy where the historical best information of
all other particles is used to update a particle’s velocity for
multimodal applications. Shubham et al. [35] proposed a
fuzzy clustering-based particle swarm (FCPSO) algorithm
by using an external repository to preserve nondominated
particles found along the search process to solve multiob-
jective optimization problems. Zhan et al. [36] proposed an
adaptive PSO (APSO) by developing a systematic parameter
adaptation scheme and an elitist learning strategy. Clerc [37]
proposed an adaptive PSO, called TRIBES, in which the
parameters change according to the swarm behavior. TRIBES
is a totally parameter free algorithm and the users only
modify the adaptive rules [37, 38]. In the work of [39], the
flight mechanism of wild goose team, including goose role
division, parallel principle, aggregate principle, and separate
principle, was proposed to address the problem with PSO
[39]. Silva et al. [40] proposed a variant of PSO, called

predatory prey optimizer (PPO), by introducing another
swarm; in particular, original swarm is called prey swarm and
the new swarm is called predator swarm. These two swarms
have different dynamic behaviors which will balance the
exploration and exploitation in PSO. They further proposed
a simple adaptable PPO by introducing a symbiosis adaptive
scheme into PPO [41].The difference between their work and
ours will be discussed in the next section after some detail of
our approach is introduced.

3. The Proposed PSS-PSO Approach

3.1. Basic Idea. To make the PSS be capable of solving con-
tinuous variable optimization problems, we need to address
three issues: (1) how to search the continuous space, including
the general search and the area-restricted search, (2) how to
define restrictions, and (3) how to define the neighborhood.
The first issue can be addressed by the PSO; so we will not
discuss it here. In the following, we will address the last
two issues. We start with proposing two concepts, namely
Restriction and Neighborhood.

Restriction. It is the distance between two points in a multidi-
mensional space. Here, we use the Euclid norm to define the
distance.

Neighborhood. The neighborhood of a point, or a particle,
under some restriction, is defined as a hyperspherical space
which takes the particle as the center and the restriction as
the radius.

Further, there are 𝐿restrictions in the initial solu-
tion space, which are represented as 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(0), . . . ,

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑙), . . . , 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝐿 − 1), where 𝑙 ∈ {0, 1, . . . , 𝐿}

is called the level of the restriction. Therefore, the neighbor-
hood of a point, say 𝑥, under the restriction, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑙),
can be represented as𝑁(𝑥, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑙)).

The list of the restriction levels needs to be recomputed
when a new best overall solution, 𝑏, is found, because a
restricted search area should be defined around this new
improving point. To build such a restriction list, the following
scheme is used: initialize 𝐿 particles in the initialization
space and compute each distance between one particle and 𝑏.
Rank the 𝐿distances. It is noted that 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(0) carries the
smallest distance, and 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(1) carries the second small-
est distance, and so on.

The overall procedure of PSS is given as follows.
Choose one random point 𝑥 in the initial space 𝜓.

A swarm consisting of 𝑚 particles is initialized in 𝑁(𝑥,

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(0)), and then the search is carried out with the
standard PSO update equations. The number of iterations is
controlled by variable 𝑛. If no better solution can be found, the
swarm will be initialized in 𝑁(𝑥, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(1)), and repeat
the search; if a better solution, 𝑏, is found, then the best solu-
tion will be updated by this new solution, and all the restric-
tions will be set up again. The neighborhood is enlarged or
reduced through the adjustment of restrictions, which makes
sense for the concept of balancing exploration and exploita-
tion.



4 Mathematical Problems in Engineering

Begin
Choose 𝑥 randomly from 𝜓

while 𝑙 < 𝐿

initialize𝑚 particles in𝑁 (𝑥, restriction(𝑙))
for (𝑖 = 0; 𝑖 < 𝐼; 𝑖 + +)

for (𝑐 = 0; 𝑐 < 𝑛; 𝑐 + +)
update swarm based on standard PSO equations
if 𝑔 < 𝑝 then 𝑝 = 𝑔

end for
𝑥 = 𝑝

if 𝑓(𝑥) < 𝑓(𝑏) then
𝑏 = 𝑥, 𝑙 = 0, 𝑖 = 0, re-compute 𝐿 restrictions

end for
𝑙 = 𝑙 + 1

if 𝑙 = [𝐿/5] then
𝑙 = 𝐿 − [𝐿/𝑆]

End while

Algorithm 1: Pseudocode of the PSS-PSO algorithm.

As mentioned in Section 2.2, Silva et al. [40, 41] proposed
algorithms with similar names of ours. However, our idea
is totally different from theirs. In their work, they used two
swarms in PSO and each swarm has different behavior. The
particles in the prey swarm have the same behavior with
the standard PSO; the particles in the predatory swarm are
attracted to the best individuals in the swarm, while the other
particles are repelled by their presence [40, 41].The essence of
such a mechanism with their approach is a multipopulation
strategy to keep the diversity of the whole swarm. Our idea
only considers the behavior of the predator and the balance of
exploration and exploitation is achieved by the movement of
predatory individuals not a predatory swarm. Furthermore,
there is only one swarm performing the local search in our
algorithm PSS-PSO, while there are two swarms in their
algorithm PPO.

3.2. Implementation. The pseudocode of the PSS-PSO algo-
rithm is presented in Algorithm 1.

Let

𝜓: The initial space;
𝐿: The number of restrictions;
𝑙: The level of the restriction, 𝑙 ∈ {0, 1, . . . , 𝐿};
𝑛: The maximum number of iterations of PSO;
𝑐: The iteration number of PSO;
𝐼: The maximum running times of PSO;
𝑖: The running number of PSO;
𝑔: Best solution of PSO in each iteration;
𝑚: Number of particles in a swarm;
𝑁(𝑥, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑙)): The neighborhood of x, under
the restriction restriction(l), 𝑙 ∈ {0, 1, . . . , 𝐿};
𝑏: A new best overall solution in 𝜓;
𝑝: The best solution in𝑁(𝑥, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛(𝑙)).

It is noted that we used the integer division of 𝐿 as
the number of restriction levels for each search mode. The
algorithm was made to stop when [𝐿/5] levels in general
search are tried without finding a new better solution.

4. Experiments

4.1. Experimental Setting. Five benchmarks [13, 24, 42] which
are commonly used in the evolutionary computation are
selected as examples in this paper to test the proposed
approach. The detail of the functions, including the formu-
lations, the numbers of dimensions, and the search range of
the variables, are summarized in Table 1. It is noted that in the
experiment, the initial range of algorithm is set to be the same
with the search range. The Sphere function and the Rosen-
brock function are two unimodal functions and have only one
global minimum in the initial search space. The Rosenbrock
function changes very slightly in the long and narrow area
close to the global minimum. The Schaffer’s 𝑓

6
function, the

Rastrigrin functions, and the Griewank function are three
multimodal functions, which have very complicated land-
forms. The global optimums of the five functions are all zero.
The five functions are quite fit for the evaluation of algorithm
performance [42].

Seven existing PSO algorithms, as listed in Table 2, are
compared with PSS-PSO. First three PSO algorithms, includ-
ing GPSO, LPSO with ring neighborhood, and VPSO with
von Neumann neighborhood, are well known and have
widely been used in computation comparisons and real-
world applications.Theother three PSO algorithms are recent
versions as mentioned in Section 2.2. CLPSO adopts a novel
learning strategy and aims at better performance for multi-
modal functions. GTO refers to the goose team flight mech-
anism and the gradient information of functions and obtains
fast convergence for the unimodal functions and somemulti-
modal functions. APSOoffers a systematic parameter adapta-
tion scheme which can speed up other PSO variants. TRIBES



Mathematical Problems in Engineering 5

Table 1: Benchmarks.

Function Formula Dim Search range

Sphere 𝑓
1
(𝑥⃗) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100]

𝑛

Rosenbrock 𝑓
2
(𝑥⃗) =

𝑛−1

∑

𝑖=1

(100(𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

+ (𝑥
𝑖
− 1)
2

) 30 [−30, 30]
𝑛

Schaffer’s 𝑓
6

𝑓
3
(𝑥⃗) = 0.5 +

(sin√𝑥
2

1
+ 𝑥
2

2
)

2

− 0.5

(1 + 0.001 (𝑥
2

1
+ 𝑥
2

2
))
2

2 [−100, 100]
2

Rastrigrin 𝑓
4
(𝑥⃗) =

𝑛

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) 30 [−5.12, 5.12]

𝑛

Griewank 𝑓
5
(𝑥⃗) =

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1 30 [−600, 600]
𝑛

Table 2: PSO algorithms used in the comparison.

Algorithm Reference
GPSO Shi and Eberhart, 1998 [24]
LPSO Kennedy and Mendes, 2002 [25]
VPSO Kennedy and Mendes, 2002 [25]
CLPSO Liang et al., 2006 [34]
GTO J. Wang and D. Wang, 2008 [39]
APSO Zhan et al., 2009 [36]
TRIBES Cooren et al., 2009 [38]

is an adaptive algorithm which enables the users to be free in
the parameter selection.

First, we will compare the PSS-PSO with the first six PSO
algorithms on the ability of exploitation and exploration with
the five benchmarks listed in Table 1. Then, we will compare
the PSS-PSO with TRIBES on the four shifted benchmarks.
GPSO, GTO, and PSS are programmed by Java run on a PC
with P4-2.66GHz CPU and 512MB memory. Results of the
other algorithms are from the literature, respectively. To get
rid of the randomicity, the results are the average of 30 trial
runs [42]. To test exploitation and exploration, we use differ-
ent swarm sizes and stop criterions, which are given in the
following discussion.

4.2. Comparisons on the Exploitation

4.2.1. Comparisons with Different Algorithms. For a fair com-
parison, the PSS and the first six PSO algorithms are tested
with the same population size (𝑚) of 20. The stop criterion
is set according to reference [42] as number of function
evaluations (FEs) = 200000. With consideration of the pop-
ulation size, this stop criterion also means that the number
of iteration is 10000. In the following discussion, we will
use the iteration number as the stop criterion. Here, we
define the global optimum zero as “less than 10

−45.” If the
algorithm reaches the global optimum, it also ends. It is
noted that, similar to the PSS for discrete problem, the PSS-
PSO for continuous problems uses the restriction level as the
stop criterion (see Algorithm 1). To compare with other PSO
algorithms,we also record the iteration number and stopPSS-
PSO when the iteration number reaches 10000.

The average optimums obtained by the seven algorithms
are listed in Table 3. The data of PSS and GTO, are obtained
by our experiments. Other data are from the references listed
in Table 2. Symbol “—” in Table 3means the data unavailable.
It is noted that the results of CLPSO and APSO on the Rosen-
brock function are with symbol “∗”.The reason is that the two
algorithms are not good at dealing with unimodal functions,
particularly with the Rosenbrock functions.The initial ranges
of the Rosenbrock functions for CLPSO and APSO are listed
in Table 4 [34, 36], and therefore, the common idea is to
narrow the search space of this function.

On the simple unimodal function Sphere, PSS-PSO,
GPSO, GTO and APSO can all find the global optimum.
Actually, GTO is the fastest one, which will be shown from
the comparison on the exploration in the next section. On the
complicated unimodal function Rosenbrock, PSS-PSO is the
best one. Although GTO references the gradient information
in the optimization process, the complicated search space
still prevents it from obtaining the satisfactory result. On the
simple multimodal function Schaffer’s 𝑓

6
, PSS-PSO, GPSO,

and GTO can all reach the global optimum. On the compli-
cated multimodal functions, Rastrigrin and Griewank, PSS-
PSO, CLSPO and APSO are all good optimizers. PSS-PSO
and CLPSO have better performance on Griewank; CLSPO
andAPSO have better performance on Rastrigrin.The results
prove the theorem of “no free lunch” that no algorithm can
outperform all the others on every aspects or every kind of
problems [43]. However, the PSS-PSO outperforms the six
PSO algorithms on most of the benchmark functions except
the Rastrigrin function.

4.2.2. Analysis of the Search Behaviors. To further observe the
search behaviors of the PSS-PSO, we try other two population
sizes, 10 and 30, respectively, and extend the maximum itera-
tion numbers to 50000 in the experiments and give the aver-
age convergence curves of PSS-PSO and GPSO on the five
functions in Figure 2. In this figure, the x coordinate is the
iteration number. The 𝑦 coordinate is lg𝑓(𝑥), the common
logarithm of the fitness value, because the fitness value
changes too much in the optimization process.

(1) Exploitation for Unimodal Functions. From the conver-
gence curves on the Sphere function, we can see that GPSO
has a faster convergence speed. The reason is that Sphere



6 Mathematical Problems in Engineering

Iterations

10

0

−10

−20

−30

−40

−50
0 40000

Sphere𝑚 = 10

Fi
tn

es
s (

lo
g)

GPSO
PSS-PSO

(a)

GPSO
PSS-PSO

15000
Iterations

0

10

0

−10

−20

−30

−40

−50

Fi
tn

es
s (

lo
g)

Sphere𝑚 = 30

(b)

GPSO
PSS-PSO

Iterations

Fi
tn

es
s (

lo
g)

4

3.5

3

2.5

2

1.5

1

0.5

0
0 50000

Rosenbrock𝑚 = 10

(c)

GPSO
PSS-PSO

Fi
tn

es
s (

lo
g)

2

1.5

1

0.5

0

Iterations
0 50000

Rosenbrock𝑚 = 30

(d)

GPSO
PSS-PSO

0

−5

−10

−15

−20
0 12000

Iterations

Fi
tn

es
s (

lo
g)

Schaffer’s 𝑓6 𝑚 = 10

(e)

GPSO
PSS-PSO

Schaffer’s 𝑓6 𝑚 = 30

0

−5

−10

−15

−20
0

Iterations

Fi
tn

es
s (

lo
g)

5000

(f)

Figure 2: Continued.



Mathematical Problems in Engineering 7

GPSO
PSS-PSO

Fi
tn

es
s (

lo
g)

Iterations
0 50000

Rastrigrin𝑚 = 10

2

1.9

1.8

1.7

1.6

1.5

1.4

(g)

GPSO
PSS-PSO

Rastrigrin𝑚 = 30

Fi
tn

es
s (

lo
g)

Iterations
0 50000

2

1.9

1.8

1.7

1.6

1.5

1.4

(h)

Iterations
0 50000

Fi
tn

es
s (

lo
g)

5

0

−5

−10

−15

−20

GPSO
PSS-PSO

Griewank𝑚 = 10

(i)

GPSO
PSS-PSO

Griewank𝑚 = 30

Fi
tn

es
s (

lo
g)

Iterations
0 50000

5

0

−5

−10

−15

−20

(j)

Figure 2: Average convergence curves of GPSO and PSS-PSO over 30 trials.

Table 3: Average optimums of seven algorithms.

Algorithm Sphere Rosenbrock Schaffer’s 𝑓
6

Rastrigrin Griewank
PSS-PSO 0 0.0813065 0 13.2057 1.0214𝐸 − 16

GPSO 0 24.486 0 29.6099 2.37𝐸 − 2

LPSO 6.33𝐸 − 29 18.9472 — 35.0819 1.1𝐸 − 2

VPSO 8.49𝐸 − 39 35.9005 — 27.7394 1.31𝐸 − 2

CLPSO 1.06𝐸019 11∗ — 7.4𝐸 − 11 6.45𝐸 − 13

GTO 0 5.1711316 0 215.24 5.7518𝐸 − 4

APSO 0 2.84∗ — 5.8𝐸 − 15 1.67𝐸 − 2



8 Mathematical Problems in Engineering

Table 4: Search ranges of Rosenbrock for CLPSO and APSO.

Algorithm Search range
CLPSO [−2.048, 2.048]

𝑛

APSO [−10, 10]
𝑛

Table 5: Goal for exploration.

Function Sphere Rosenbrock Schaffer’s
𝑓
6

Rastrigrin Griewank

Goal 0.01 100 10
−5 100 0.1

is a simple unimodal function and the particles easily find
the global optimum. On the optimization of the Rosenbrock
functions, the problem of GPSO appears (i.e., not having
a sustaining search ability during long iterations); in parti-
cular, GPSO cannot find better solutions after about 10000
iterations. On the contrary, PSS-PSO can obtain better
solutions during the whole optimization process. The reason
is that, as mentioned in Section 4.1, the Rosenbrock function
changes very slightly in the long and narrow area close to
the global minimum.This featuremakes GPSO lose its ability
of dynamic adjustment of particle’s velocity, which leads the
whole swarm to lose the energy of reaching better solutions.
However, the switch of different restriction levels enables the
swarm in the PSS-PSO with its ability of dynamic adjustment
of particle’s velocity continuously.

(2) Exploitation for Multimodal Functions. On the simple
multimodal function Schaffer’s 𝑓

6
, GPSO and PSS-PSO can

both perform well. However, on the two complicated func-
tions, Rastrigrin and Griewank, GPSO exposed its deficiency
again. After very early iterations, the curve of GPSO stays
horizontal, which means that the whole swarm has been
trapped into a local optimum. However, PSS-PSO does not
have this problem, and the curves of PSS-PSO go down
continuously.

4.3. Comparisons on the Exploration. To test the exploration
of PSS-PSO, we use the following criterion in the experiment:
whether the algorithm can find the goal set for each function
in 4000 iterations. Using this criterion, we can get success
rate, average iteration number, and average running time.
Here, average iteration number is the iteration number for
the successful runs; success rate is defined as number of suc-
cessful runs/total number of runs. The predefined accuracy
levels, namely, the goals of the different functions, are listed in
Table 5. Since exploration is the ability to test various regions
in the problem space in order to locate a good optimum,
what we care about in this experiments is the convergence
speed. Therefore, the goal value here is different from the
global optimum, and in particular, the goal is an accept-
able good solution. We compare PSS-PSO with GPSO and
GTO in the experiments. We try two population sizes, 10 and
30, respectively, and run the algorithms 100 times for each
case. The results are listed in Table 6.

The results show that even with a very small population
size 10, PSS can still achieve 100% success rates for all the

functions. As the standard version of PSO, GPSO has the
worst performance, which is not beyond our expectation. On
the three functions, Sphere, Schaffer’s𝑓

6
, andGriewank,GTO

can reach the goals very fast in even 1 or 3 iterations.This fast
convergence speed of GTO benefits from the gradient infor-
mation. However, on the two complicated functions, Rosen-
brock and Rastrigrin, GTO does not have such good per-
formance. It even fails to reach the goal of the Rastrigrin
function at any trial.The comparison shows that PSS-PSOhas
an overall good performance on the exploration.

4.4. Comparisons on the Shifted Benchmarks. In the previous
experiments, all the benchmarks are traditional functions
with the global optimum at the origin of the search space,
which may be more easily for some algorithms to find the
global optimum [44]. Therefore, we use the shifted versions
of benchmarks in Table 1 to perform a further test; in parti-
cular, the results are compared with that of TRIBES from the
literature [38].The shifted benchmarks are defined by Sugan-
than et al. [42] and labeled as F1 (shifted Sphere), F6 (shifted
Rosenbrock), F7 (shifted rotated Griewank without bound),
F10 (shifted rotated Rastrigrin), and F14 (shifted rotated
expanded Schaffer’s 𝑓

6
). Because TIBES can not give satisfy-

ing result of F14 [38], we did not consider F14 in this exper-
iment. Two tests are performed to examine the exploitation
and exploration of two algorithms. To examine the exploita-
tion, the algorithm stops if the number of evaluations of the
objective functions exceeds 10000∗𝐷. The dimension 𝐷 is
set as 10. Each algorithm runs 25 times for one case. Then,
we recorded the mean error for each benchmark. To test the
exploration, we examine the number of function evaluations
the algorithms needs to achieve a goal. The algorithm stops if
it reachs the goal or if the number of evaluations of the objec-
tive functions exceeds 10000∗𝐷.The dimension𝐷 is also set
as 10. Each algorithm runs 25 times for one case. The goals
of functions, the mean of the number of functions evalua-
tions (mean iterations for short), the success rates, and the
performance rates are recorded. The performance rate is
defined as mean iterations/success rate. All the results are
listed in Table 7.

From the results in Table 7, we can see that the PSS-PSO
has similar performance with TRIBES in F1, F6, and F7. PSS-
PSO and TRIBES can both find global optimum in F1, which
is a unimodel function, and PSS-PSO is a little slower than
TRIBES. PSS-PSO and TRIBES both have very low ability to
reach the goals for F6 and F7. In the runs that find the goals,
PSS-PSO needs fewer number of iterations.

However, PSS-PSO has a much better result than TRIBES
in F10. TRIBES cannot reach the goal of F10; on contrary, PSS-
PSO has a success rate of 0.12. Furthermore, PSS-PSO can
achieve a much less mean error in F10.

5. Conclusions

In this paper, we proposed an approach to integrate PSS
with PSO, and the approach was named PSS-PSO. This
integration is achieved by proposing two concepts with the
PSS, namely restriction and neighborhood. Five benchmarks
are taken as test functions to examine the exploration and



Mathematical Problems in Engineering 9

Table 6: Exploration performance of the different algorithms.

𝑚 Algorithm Index Sphere Rosenbrock Schaffer’s 𝑓
6

Rastrigrin Griewank

10

Suc. rate 1 0.82 0.75 0.97 0.96
GPSO Iterations 1379.95 1847.4512 1808.3334 605.8866 1149.5938

Ave. time (s) 0.216 0.360 0.059 0.154 0.264
Suc. rate 1 0.98 1 0 1

GTO Iterations 1.04 164.79 3.2333333 — 1.01
Ave. time (s) 0.009 0.038 0.011 — 0.009
Suc. rate 1 1 1 1 1

PSS-PSO Iterations 832.66 1879.39 1570.9 690.5 998.34
Ave. time (s) 0.140 0.317 0.040 0.144 0.200

30

Suc. rate 1 0.93 1 1 0.99
GPSO Iterations 320.59 780.17896 959.46 226.89 433.21213

Ave. time (s) 0.159 0.464 0.058 0.144 0.292
Suc. rate 1 1 1 0 1

GTO Iterations 1.06 111.31 3.2666 — 1
Ave. time (s) 0.01 0.038 0.011 — 0.01
Suc. rate 1 1 1 1 1

PSS-PSO Iterations 332.81 648.07 434.0 243.94 319.57
Ave. time (s) 0.163 0.311 0.030 0.151 0.192

Table 7: Performance on shifted benchmarks.

Index Algorithm F1 F6 F7 F10
Accuracy 1𝑒 − 06 1𝑒 − 02 1𝑒 − 02 1𝑒 − 02

Mean iterations PSS-PSO 4366 77290 62600 61600

TRIBES 1364.72 98309.28 96568.44 1𝐸 + 05

Success. rate PSS-PSO 1 0.04 0.04 0.12
TRIBES 1 0..04 0.04 0

Performance rate. PSS-PSO 4366 1932250 1565000 513333.33
TRIBES 1364.74 2457725 2414211 —

Mean error PSS-PSO 0 9.692547 0.05717346 1.8716955
TRIBES 0 0.85882 0.077474 12.118002

exploitation of the proposed approach. Experiments show
that the ability of balancing exploration and exploitation
makes the proposed approach be applicable for both the uni-
modal and multimodal functions. Compared with six exist-
ing PSO algorithms, PSS-PSO has achieved a better perfor-
mance overall.

Some future research needs to be carried out on the
proposed approach. First, we will test the PSS-PSO for more
benchmarks, especially for more rotated functions. Second,
we will test the PSS-PSO in complex environments; in partic-
ular, wewill use it to solve the dynamic problems andmultiple
objective optimization problems. Third, we will use the PSS-
PSO to solve the complex real-world applications such as the
mixed topology and geometry optimization design problems
in robotics [45].

Acknowledgments

The authors want to thank the financial support to this work
by NSERC through a strategic project grant, and a grant of

ECUST through a program of the Fundamental Research
Funds for the Central Universities to W. J. Zhang, and by
NSFC (Grant No. 71001018, 61273031) of China to H. FWang.
Our gratitude is also extended to the Department of Indus-
trial and Systems Engineering of the Hong Kong Polytechnic
University (G-YK04).

References

[1] J. H. Holland, Adaptation in Nature and Artificial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

[2] J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune
system, adaptation, and machine learning,” Physica D, vol. 22,
no. 1–3, pp. 187–204, 1986.

[3] J. J. Hopfield and D. W. Tank, “Neural computation of decisons
in optimization problems,” Biological Cybernetics, vol. 52, no. 3,
pp. 141–152, 1985.

[4] M.Dorigo, V.Maniezzo, andA. Colorni, “Ant system: optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 26, no. 1, pp. 29–41, 1996.



10 Mathematical Problems in Engineering

[5] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sym-
posium on Micro Machine and Human Science, pp. 39–43,
Indianapolis, Ind, USA, October 1995.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Net-
works, pp. 1942–1948, Perth, Australia, December 1995.

[7] R. G. Reynolds and S. R. Rolnick, “Learning the parameters
for a gradient-based approach to image segmentation from the
results of a region growing approach using cultural algorithms,”
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation, pp. 819–824, Detroit, Mich, USA, Decem-
ber 1995.

[8] D.Wang, “Colony location algorithm for assignment problems,”
Journal of Control Theory and Applications, vol. 2, no. 2, pp. 111–
116, 2004.

[9] S. Kirkpatrick, C. D. Gelatt, Jr., andM. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[10] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H.
Freeman and Co., San Francisco, Calif, USA, 1982.

[11] H. Liu, “A fuzzy qualitative framework for connecting robot
qualitative and quantitative representations,” IEEE Transactions
on Fuzzy Systems, vol. 16, no. 6, pp. 1522–1530, 2008.

[12] R. E. Hiromoto andM.Manic, “Information-based algorithmic
design of a neural network classifier,” International Scientific
Journal of Computing, vol. 5, no. 3, pp. 87–98, 2006.

[13] I. C. Trelea, “The particle swarm optimization algorithm: con-
vergence analysis and parameter selection,” Information Pro-
cessing Letters, vol. 85, no. 6, pp. 317–325, 2003.

[14] A. Linhares, “State-space search strategies gleaned from animal
behavior: a traveling salesman experiment,”Biological Cybernet-
ics, vol. 78, no. 3, pp. 167–173, 1998.

[15] A. Linhares, “Synthesizing a predatory search strategy for VLSI
layouts,” IEEE Transactions on Evolutionary Computation, vol.
3, no. 2, pp. 147–152, 1999.

[16] J. N. M. Smith, “The food searching behaviour of two European
thrushes. II. The adaptiveness of the search patterns,” Behavior,
vol. 49, no. 1-2, pp. 1–61, 1974.

[17] K. Nakamuta, “Mechanism of the switchover from extensive
to area-concentrated search behaviour of the ladybird beetle,
Coccinella septempunctata bruckii,” Journal of Insect Physiol-
ogy, vol. 31, no. 11, pp. 849–856, 1985.

[18] W. J. Bell, “Searching behavior patterns in insects,” Annual
Review of Entomology, vol. 35, pp. 447–467, 1990.

[19] P. Kareiva and G. Odell, “Swarms of predators exhibit “prey-
taxis” if individual predators use area-restricted search,” Amer-
ican Naturalist, vol. 130, no. 2, pp. 233–270, 1987.

[20] E. Curio,The Ethology of Predation, Springer, Berlin, Germany,
1976.

[21] C. Liu and D. Wang, “Predatory search algorithm with restric-
tion of solution distance,” Biological Cybernetics, vol. 92, no. 5,
pp. 293–302, 2005.

[22] W. J. Zhang, Studies on design of spatial crank-rockermechanisms
based on the pressure angle [M.S. thesis], Dong Hua University,
Shanghai, China, 1984.

[23] J. Kennedy, “Particle swarm: social adaptation of knowledge,”
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation (ICEC ’97), pp. 303–308,Washington, DC,
USA, April 1997.

[24] Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in
Proceedings of the IEEE International Conference on Evolution-
ary Computation (ICEC ’98), pp. 69–73, Indianapolis, Ind, USA,
May 1998.

[25] J. Kennedy and R. Mendes, “Population structure and particle
swarm performancein,” in Proceedings of IEEE Congress on Evo-
lutionary Computation, pp. 1671–1676, Honolulu, Hawaii, USA,
2002.

[26] S.-Z. Zhao and P. N. Suganthan, “Two-lbests based multi-
objective particle swarm optimizer,” Engineering Optimization,
vol. 43, no. 1, pp. 1–17, 2011.

[27] C. L. Sun, J. C. Zeng, and J. S. Pan, “An improved vector particle
swarm optimization for constrained optimization problems,”
Information Sciences, vol. 181, no. 6, pp. 1153–1163, 2011.

[28] R. D. Araújo, “Swarm-based translation-invariant morpholog-
ical prediction method for financial time series forecasting,”
Information Sciences, vol. 180, no. 24, pp. 4784–4805, 2010.

[29] S.-K. Oh, W.-D. Kim, W. Pedrycz, and B.-J. Park, “Polynomial-
based radial basis function neural networks (P-RBF NNs)
realized with the aid of particle swarm optimization,” Fuzzy Sets
and Systems, vol. 163, pp. 54–77, 2011.

[30] W. Pedrycz and K. Hirota, “Fuzzy vector quantization with
the particle swarm optimization: a study in fuzzy granulation-
degranulation information processing,” Signal Processing, vol.
87, no. 9, pp. 2061–2074, 2007.

[31] W. Pedrycz, B. J. Park, and N. J. Pizzi, “Identifying core sets
of discriminatory features using particle swarm optimization,”
Expert Systems with Applications, vol. 36, no. 3, pp. 4610–4616,
2009.

[32] J. W. Wang, W. H. Ip, and W. J. Zhang, “An integrated road
construction and resource planning approach to the evacuation
of victims from single source to multiple destinations,” IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 2,
pp. 277–289, 2010.

[33] J. W. Wang, H. F. Wang, W. J. Zhang, W. H. Ip, and K. Furuta,
“Evacuation planning based on the contraflow technique with
consideration of evacuation priorities and traffic setup time,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14,
no. 1, pp. 480–485, 2013.

[34] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Com-
prehensive learning particle swarm optimizer for global opti-
mization of multimodal functions,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 3, pp. 281–295, 2006.

[35] S. Agrawal, B. K. Panigrahi, and M. K. Tiwari, “Multiobjective
particle swarm algorithm with fuzzy clustering for electrical
power dispatch,” IEEE Transactions on Evolutionary Computa-
tion, vol. 12, no. 5, pp. 529–541, 2008.

[36] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive part-
icle swarm optimization,” IEEE Transactions on Systems, Man,
and Cybernetics B, vol. 39, no. 6, pp. 1362–1381, 2009.

[37] M. Clerc, “Particle swarm optimization,” in International Sci-
entific and Technical Encyclopaedia, Wiley, Hoboken, NJ, USA,
2006.

[38] Y. Cooren, M. Clerc, and P. Siarry, “Performance evaluation of
TRIBES, an adaptive particle swarm optimization algorithm,”
Swarm Intelligence, vol. 3, no. 2, pp. 149–178, 2009.

[39] J. Wang and D. Wang, “Particle swarm optimization with a
leader and followers,” Progress in Natural Science, vol. 18, no. 11,
pp. 1437–1443, 2008.

[40] A. Silva, A. Neves, and E. Costa, An Empirical Comparison of
Particle Swarm and Predator Prey Optimisation, vol. 2464 of



Mathematical Problems in Engineering 11

Lecture Notes in Computer Science, Springer, Berlin, Germany,
2002.

[41] R. Silva, A. Neves, and E. Costa, SAPPO: A Simple, Adaptable,
Predator Prey Optimiser, vol. 2902 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, 2003.

[42] P. N. Suganthan, N. Hansen, J. J. Liang et al., “Problem defin-
itions and evaluation criteria for the CEC 2005 special session
on real-parameter optimizationin,” in Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 1–50, 2005.

[43] D. H.Wolpert andW.G.Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[44] W. Zhong, J. Liu,M. Xue, and L. Jiao, “Amultiagent genetic algo-
rithm for global numerical optimization,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 34, no. 2, pp. 1128–1141,
2004.

[45] Z. M. Bi, Adaptive robotic manufacturing systems [Ph.D. the-
sis], Department of Mechanical Engineering, University of
Saskatchewan, Saskatchewan, Canada, 2002.


