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Abstract

In this paper we study the combined optimal dividend, capital injection and reinsurance problems in a dynamic setting. The
reinsurance premium is assumed to be calculated via the variance principle instead of the expected value principle. The proportional
and fixed transaction costs and the salvage value at bankruptcy are included in the model. In both cases of unrestricted dividend
rate and restricted dividend rate, we obtain the closed-form solutions of the value function and the optimal joint strategies, which
depend on the transaction costs and the profitability in future.
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1. Introduction

The classical optimal dividend problem for an insurance company consists in finding a dividend payment
strategy that maximizes the total expected discounted dividends until the bankruptcy time. Much research on
this issue has been carried out for various surplus process models. See, Asmussen and Taksar (1997), Gerber
and Shiu (2006), Avram et al. (2007), Belhaj (2010), Azcue and Muler (2012). Capital injection is one possible
way to help the manager to run the business. The company sometimes needs to raise new capitals from the
market in order to continue the business. Some papers assume that the company can survive forever with
forced capital injections. The expected cumulative discounted dividends minus the expected discounted costs
of capital injections can be regarded as the company’s value, the management seeks to find the join optimal
dividend payment and capital injection strategies that maximize this value. There are many papers on this
topic. For instance, Sethi and Taksar (2002), Avram et al. (2007), Kulenko and Schmidli (2008) and Yao et al.
(2011). However, capital injection is not always profitable when the company is facing the financial difficulty.
Lφkka and Zervos (2008) study the combined optimal dividend and capital injection problem by taking into
account the possibility of bankruptcy. The optimal strategy happens to be either a dividend barrier strategy
without capital injections, or another dividend barrier strategy with forced injections when surplus is null to
prevent bankruptcy, which depends on the parameters of risk model. By adopting their technique, some ex-
tended results are obtained in other risk models. See, He and Liang (2008), Dai et al. (2010) and Yao et al.
(2010).

Reinsurance is an effective tool for insurance companies to control the risk exposure. Due to its practical
importance and theoretical value, some researchers begin to pay attention to the combined dividend and rein-
surance problem. Some literature on this issue includes Asmussen and Taksar (1997), Choulli et al. (2003),
Hφgaard and Taksar (2004), Cadenillas et al. (2006), Meng and Siu (2011) and Peng et al. (2012). As we can
see, in these literature, the expected value principle is commonly used as the reinsurance premium principle
due to its simplicity and popularity in practice. Although the variance principle is another important premium
principle, very few papers consider using it for risk control in a dynamic setting. Zhou and Yuen (2012) first
study the optimal dividend and capital injection problem with reinsurance under the variance premium princi-
ple. Depending on whether there exist restrictions on dividend rates, they provide the optimal joint strategies
in two different cases, the proportional costs for capital injections are also considered. In this paper, we continue
studying the optimal dividend, capital injection and reinsurance problem with variance premium principle in a
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dynamic setting. Comparing with the work Zhou and Yuen (2012), we add the fixed costs for capital injections
and a salvage value at the time of bankruptcy in our model. In real financial market, transaction cost is an un-
avoidable issue, especially, the fixed cost (for example, advisory and consulting fees) can generate some difficult
impulse control problems. See, for example, Paulsen (2008), Bai et al. (2010), Meng and Siu (2011) and Yao et
al. (2011). The salvage value of the insurer can be explained as an insurer’s brand name or agency network. As
we know, very little work considers optimal dividend strategies under a salvage (or penalty) for bankruptcy. A
few examples are Taksar (2000), Gerber et al. (2006), Thonhauser and Albrecher (2007), Loeffen and Renaud
(2010) and Liang and Young (2012). By including the fixed costs and salvage value, our model is more realistic.
Under some new objective functions, we present the associated optimal joint dividend, capital injection and
reinsurance strategies. We show, under our model, that the decision to declare bankruptcy or to collect new
capitals depends on the model parameters, which is consistent with the results and idea in Lφkka and Zervos
(2008).

The outline of this paper is as follows. In Section 2, we introduce the framework of this paper and formulate
two general optimization problems concerning with dividend payments, capital injections and reinsurance under
the variance premium principle. In Section 3, we consider two suboptimal problems in the cases of unrestricted
and restricted rates of dividend payments with forced capital injections. In Section 4, a similar study is carried
out for two suboptimal problems without considering capital injections. Finally, by comparing the solutions of
suboptimal problems, we identify the closed-form solutions to the general optimal problems in Section 5, which
depend on the relationships among the parameters of risk model.

2. Model formulation and the optimal control problem

We first introduce the framework of this paper. Let (Ω,F , P) be a probability space with the filtration {Ft}
satisfying the usual conditions. We first present the classical insurance risk model of an insurance company,
which means the surplus of an insurance company can be modeled by

Ut = x + ct −
Nt
∑

n=1

Yn,

where x is the initial surplus, c is the premium rate, Nt is a Poisson process with constant intensity λ, random
variables Yn’s are positive i.i.d. claims with finite mean µ1 and finite second moment µ2

2. A reinsurance
contract can be represented by a measurable functional R(·) defined on the space composed of all positive
random variables such that 0 ≤ R(Y ) ≤ Y . Under reinsurance R, a positive risk Y is decomposed into two
parts, namely R(Y ) and Y − R(Y ), where R(Y ) is retained by the insurer and Y − R(Y ) is ceded to the
reinsurer. Suppose that reinsurance R is taken for each claim. Then the total ceded risk up to time t is given
by

∑Nt

n=1(Yn − R(Yn)), and the aggregate reinsurance premium under the variance principle takes the form

E

(

Nt
∑

n=1

(Yn − R(Yn))
)

+ θD
(

Nt
∑

n=1

(Yn − R(Yn))
)

= λ
[

(µ1 − E(R(Y1)) + θE((Y1 − R(Y1))
2
]

t,

where E and D stand for expectation and variance, respectively, and θ > 0 is a loading associated with the
variance of ceded risk. Then the premium process in the presence of reinsurance R can be written as

UR
t = x + (c − cR)t −

Nt
∑

n=1

R(Yn), (2.1)

where cR = λ[(µ1 − E(R(Y )) + θE((Y − R(Y ))2] represents the reinsurance premium rate associated with R.
Here we assume that the reinsurance market is frictionless. This means that the reinsurance premium rate is
equal to the premium rate c = λ(µ1 + θµ2

2) if the whole risk is ceded to the reinsurer. We approximate the
model (2.1) by a pure diffusion model {XR

t , t ≥ 0} with the same drift and volatility. Specifically, XR
t satisfies

the following stochastic differential equation

XR
t = x +

∫ t

0

θλ(µ2
2 − E(Y1 − R(Y1))

2)ds +

∫ t

0

√

λE((R(Y1))2)dBs, (2.2)

with XR
0 = x, where {Bt, t ≥ 0} is a standard Brownian motion, adapted to the filtration FB

t := σ{Bs; 0 ≤ s ≤ t}.
From now on, R is assumed to be a proportional reinsurance policy with R(y) = (1 − a)y. Then we represent
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(2.2) as

Xa
t = x +

∫ t

0

(1 − a2)θλµ2
2ds +

∫ t

0

(1 − a)
√

λµ2dBs, (2.3)

with Xa
0 = x.

Suppose that the proportion a can be adjusted dynamically to control the risk exposure. Denote Lt as the cu-
mulative amount of dividends paid from time 0 to time t. The capital injection process {Gt =

∑∞
n=1 I{τn≤t}ηn}

is described by a sequence of increasing stopping times {τn, n = 1, 2, · · · } and a sequence of random variables
{ηn, n = 1, 2, · · · }, which represent the times and the sizes of capital injections, respectively. A control strategy
π is described by π = (aπ ; Lπ; Gπ) = (aπ ; Lπ; τπ

1 , · · · τπ
n , · · · ; ηπ

1 , · · · , ηπ
n , · · · ). The controlled surplus process

associated with π is given by

Xπ
t = x +

∫ t

0

(1 − (aπ
s )2)θλµ2

2ds +

∫ t

0

(1 − aπ
s )
√

λµ2dBs − Lπ
t +

∞
∑

n=1

I{τπ
n≤t}η

π
n . (2.4)

Definition 2.1. A strategy π = (aπ; Lπ; Gπ) is said to be admissible if
(i) The ceded proportion aπ = aπ

t is an FB
t -adapted process with 0 ≤ aπ

t ≤ 1 for all t ≥ 0.
(ii) {Lπ

t } is an increasing, FB
t -adapted càdlàg process with Lπ

0− = 0, and satisfies that ∆Lπ
t = Lπ

t −Lπ
t− ≤ Xπ

t−

for all t ≥ 0.
(iii) {τπ

n } is a sequence of stopping times w.r.t. FB
t , and 0 ≤ τπ

1 < · · · < τπ
n < · · · , a.s..

(iv) ηπ
n ≥ 0, n = 1, 2, · · · is measurable w.r.t. FB

τπ
n

.
(v) P( lim

n→∞
τπ
n < T ) = 0, ∀ T > 0.

The class of admissible strategies is denoted by Π.

For each strategy π ∈ Π, the bankruptcy time of the controlled process Xπ
t is defined as τπ = inf{t : Xπ

t < 0},
which is an FB

t -stopping time. Note that the bankruptcy time could be infinite.

Problem 2.1. We define the company’s value by the performance function V (x, π), which is the expected
sum of discounted salvage and the discounted dividends less the expected discounted costs of capital injections
until bankruptcy

V (x, π) = E
x
(

β1

∫ τπ

0

e−δsdLπ
s −

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤τπ} + Pe−δτπ
)

. (2.5)

E
x denotes the expectation conditional on Xπ

0 = x, and δ > 0 is the discount rate. We regard P ≥ 0 as the
salvage value of the insurer; for example, an insurer’s brand name or agency network which might be of value
to a potential buyer of the insurer. We assume that the shareholders need to pay β2η + K to meet the capital
injection of η. β2 > 1 measures the proportional costs, K > 0 is the fixed costs. Proportional costs on dividends
transaction are taken into account through the value of β1, with 0 < β1 ≤ 1 representing the net proportion of
leakages from the surplus received by shareholders after transaction costs have been paid. We are interested in
finding the value function

V (x) = max
π∈Π

V (x, π) (2.6)

and the associated optimal strategy π∗ such that V (x) = V (x, π∗).

Remark 2.1. The case of P < 0 is out of consideration in this paper. Since the surplus can keep non-
negative by ceding the whole risk to the reinsurer, so V (0) ≥ 0 follows from the optimality of V (x) and the case
of V (0) = P < 0 is impossible .

Furthermore, if we suppose that the dividend rate lt at time t is bounded by some dividend ceiling M > 0,
then the cumulated dividend process {Lt, t ≥ 0} satisfies Lt =

∫ t

0 lsds with 0 ≤ ls ≤ M.

Definition 2.2. A strategy π̄ = (aπ̄; Lπ̄; Gπ̄) is said to be admissible if
(i) The ceded proportion aπ̄ = aπ̄

t is an FB
t -adapted process with 0 ≤ aπ̄

t ≤ 1 for all t ≥ 0.
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(ii) {Lπ̄
t , t ≥ 0} is an increasing, FB

t -adapted càdlàg process satisfying that Lπ̄
0− = 0 and Lπ̄

t =
∫ t

0 lπ̄s ds with
0 ≤ lπ̄s ≤ M .
(iiii) {τ π̄

n } is a sequence of stopping times w.r.t. FB
t , and 0 ≤ τ π̄

1 < · · · < τ π̄
n < · · · , a.s..

(iv) ηπ̄
n ≥ 0, n = 1, 2, · · · is measurable w.r.t. FB

τ π̄
n

.

(v) P( lim
n→∞

τ π̄
n < T ) = 0, ∀ T > 0.

The class of admissible strategies is denoted by Π.

For each strategy π̄ ∈ Π, the bankruptcy time of the controlled process X π̄
t is defined as τ π̄ = inf{t : X π̄

t < 0},
which is an FB

t -stopping time.

Problem 2.2. Parallel to Problem 2.1, when a ceiling M > 0 is imposed on the dividend rate, we define
the following performance function

V (x, π̄) = E
x
(

β1

∫ τ π̄

0

e−δslπ̄s ds −
∞
∑

n=1

e−δτ π̄
n (β2η

π̄
n + K)I{τ π̄

n≤τ π̄} + Pe−δτ π̄
)

. (2.7)

Correspondingly, we want to find the value function

V (x) = max
π̄∈Π

V (x, π̄), (2.8)

and the associated optimal strategy π̄∗ ∈ Π such that V (x) = V (x, π̄∗). Apparently, the function V (x) is
bounded above by β1M/δ + P .

To develop our result, for any function ω(x) ∈ C2, we define the capital injection operator M by

Mω(x) = max
y≥0

{ω(x + y) − β2y − K}, (2.9)

and the operator A a with 0 ≤ a ≤ 1 by

A
aω(x) =

1

2
(1 − a)2λµ2

2ω
′′(x) + (1 − a2)θλµ2

2ω
′(x) − δω(x). (2.10)

For future use, we cite the following lemma from Zhou and Yuen (2012), which can be proved by straight-
forward calculations.

Lemma 2.1. Let a(x) = (ξ + a(0))e−2θx − ξ, x ≥ 0 such that 0 ≤ a(0) ≤ 1. Suppose that H(x) satisfies

H ′(x) = exp
(

∫ y

x

2θa(z)

1 − a(z)
dz

)

,

with (1 − a(0))H ′(0) = 2θξH(0) for some ξ and y > x ≥ 0. Then, we have

H(x) =
A(y)

2θξ

( ξ + 1

ξ + a(0)
e2θx − 1

)

ξ
ξ+1

where

A(y) = (ξ + a(y))
ξ

ξ+1 (1 − a(y))
ξ

ξ+1 .

3. The solution to the problem that does not allow for bankruptcy

In this section we require that the company survives forever by forced capital injections. This optimization
problem is studied in two cases depending on whether there exist restrictions on dividend rates.
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3.1. Unrestricted dividends

In this subsection, we derive closed-form solutions for the value function and the optimal strategy in the
case that no restriction is imposed on the dividend rate. Denote πr = (aπr ; Lπr ; Gπr ) ∈ Π as the controlled
process such that the company never goes bankrupt. For each admissible strategy πr, the performance function
becomes

V (x, πr) = E
x
(

β1

∫ ∞

0

e−δsdLπr
s −

∞
∑

n=1

e−δτπr
n (β2η

πr
n + K)I{τ

πr
n <∞}

)

. (3.1)

The objective is to find the value function

Vr(x) = max
πr∈Π

V (x, πr), (3.2)

and the associated optimal strategy π∗
r = (aπ∗

r ; Lπ∗

r ; Gπ∗

r ) ∈ Π such that Vr(x) = V (x, π∗
r ).

We assume that all value functions appearing in this paper are sufficiently smooth and regular. With
reference to the theory of optimal control, Vr(x) should satisfy the HJB equation and the boundary condition
as follows

max
{

max
0≤a≤1

{A aVr(x)}, β1 − V ′
r (x), MVr(x) − Vr(x)

}

= 0, (3.3)

max{MVr(0) − Vr(0),−Vr(0)} = 0. (3.4)

Then, we suppose the function Vr is concave. Because the time value of money, we conjecture that the
optimal timing of capital injection should only come at the moments when the surplus process hits the barrier 0,
mathematically, the equation MVr(x) = Vr(x) has at most one solution at x = 0, the inequality MVr(x) < Vr(x)
holds strictly for x > 0. Actually, when the surplus reaches 0, we have two ways to avoid bankruptcy: One
way is to inject new capitals, the surplus jumps to some appropriate level η∗ > 0 immediately, if this choice is
optimal, then corresponding boundary condition is MVr(0) = Vr(0) = Vr(η

∗) − β2η
∗ − K and Vr(0) ≥ 0. By

the definition of operator M , it follows that η∗ = inf{x : V ′
r (x) = β2}. We can construct an injection strategy

Gπ∗

r by letting

τ
π∗

r

1 = inf{t ≥ 0 : X
π∗

r

t− = 0}, (3.5)

τ
π∗

r
n = inf{t > τ

π∗

r

n−1 : X
π∗

r

t− = 0}, n = 2, 3, · · · , (3.6)

η
π∗

r
n ≡ η∗, n = 1, 2, 3, · · · . (3.7)

The other way of preventing bankruptcy is to cede the whole risk to the reinsurer and keep the surplus stay
at the point 0 forever, the capital injection never occurs. If this choice is optimal, the corresponding boundary
condition is Vr(0) = 0 and MVr(0) < Vr(0). Correspondingly,

Gπ∗

r ≡ 0. (3.8)

In addition, if we further assume that Vr(x) is concave and there exists some number b∗r = inf{x : V ′
r (x) =

β1} ≥ 0, then the optimal dividend strategy should be a barrier strategy with the barrier b∗r . Mathematically,

L
π∗

r

t satisfies

L
π∗

r

t = (x − b∗r)
+ +

∫ t

0

I
{X

π∗

r
s =b∗r}

dL
π∗

r
s . (3.9)

In the region (0, b∗r), the optimal ceded proportion aπ∗

r should satisfy

max
0≤a≤1

{A aVr(x)} = A
aπ∗

r
Vr(x) = 0. (3.10)

The optimality of strategy π∗
r = (aπ∗

r ; Lπ∗

r ; Gπ∗

r ) will be confirmed later.

Theorem 3.1. Let g(x) be a twice continuously differentiable, increasing and concave solution of equations
(3.3) and (3.4), then we have the following statements:
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(i) For each πr ∈ Π, it follows thatg(x) ≥ V (x, πr). So g(x) ≥ Vr(x) for all x ≥ 0.
(ii) If there exists some strategy π∗

r = (aπ∗

r ; Lπ∗

r ; Gπ∗

r ) such that g(x) = V (x, π∗
r ), then g(x) = Vr(x) and π∗

r is
optimal.

Proof. The proof of (i) is similar to Appendix A, it is omitted here. The result of (ii) automatically holds due
to the optimality of Vr(x).

Next, we present the following lemma, which plays a key role in finding the value function and associ-
ated optimal strategies.

Lemma 3.1. Let â0 ∈ [0, 1] be the unique solution of the following equation,

β1ξ
ξ

ξ+1
1

ξ + â0

( ξ + 1

ξ + â0
− 1

)− 1
ξ+1

= β2, (3.11)

where ξ is a positive number. For each a0 ∈ [â0, 1] and br = 1
2θ

ln(1 + a0

ξ
), define a function

Φa0
(x) := β1ξ

ξ
ξ+1 e2θx

ξ+a0

(

ξ+1
ξ+a0

e2θx − 1
)− 1

ξ+1

> 0, 0 < x ≤ br. (3.12)

Then there is a unique η ∈ (0, br) such that Φa0
(η) = β2. Furthermore,

I(a0) :=

∫ η(a0)

0

(Φa0
(x) − β2)dx ≥ 0, a0 ∈ [â0, 1], (3.13)

is an increasing function in a0 with the range [0, I(1)].

Proof. Observing that the function Φa0
(x) has some useful properties:

(i) The function Φa0
(x) is decreasing in x since

Φ′
a0

(x) = 2θβ1ξ
1

ξ+1
e2θx

ξ + a0

( ξ + 1

ξ + a0
e2θx − 1

)− 1
ξ+1 ξe2θx − (ξ + a0)

(ξ + 1)e2θx − (ξ + a0)
< 0. (3.14)

(ii) Φa0
(br) = β1 and

Φa0
(0) = β1ξ

ξ
ξ+1

1

ξ + a0

( ξ + 1

ξ + a0
− 1

)− 1
ξ+1

. (3.15)

(iii) For each fixed 0 ≤ x ≤ br, Φa0
(x) can be viewed as an increasing function of a0. Especially,

lim
a0→1−

Φa0
(0) = +∞. (3.16)

(iv) Obviously, (3.11) can be written as Φâ0
(0) = β2.

Based on above analysis, we conclude that there exists a unique solution η(a0) ∈ [0, br) to equation Φa0
(η) =

β2 if a0 ∈ [â0, 1]. More importantly, η(a0) is an increasing function of a0. The minimum ηmin = η(â0) = 0 and
the maximum ηmax = η(1) < br is uniquely determined by

Φ1(η(1)) = β1ξ
ξ

ξ+1
e2θη(1)

ξ + 1

(

e2θη(1) − 1
)− 1

ξ+1

= β2. (3.17)

Thereby, together with (iii), I(a0) is non-negative and increasing on (â0, 1]. It is easy to verify that

I(â0) = 0 and I(1) =

∫ η(1)

0

(Φ1(x) − β2)dx ≤ β1

2θξ
. (3.18)

Thereby, I(a0) ∈ [0, I(1)] for a0 ∈ [â0, 1].

Theorem 3.2. The value function Vr(x) coincides with

g(x) =







β1(x − b∗r) + β1

2θξ
, x ≥ b∗r ,

β1

2θ
ξ−

1
ξ+1

(

ξ+1

ξ+aπ∗

r (0)
e2θx − 1

)

ξ
ξ+1

, 0 ≤ x ≤ b∗r ,
(3.19)
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where b∗r = 1
2θ

ln
(

1 + aπ∗

r (0)
ξ

)

. Correspondingly, the optimal dividend strategy Lπ∗

r satisfies

L
π∗

r

t = (x − b∗r)
+ +

∫ t

0

I
{X

π∗

r
s =b∗r}

dL
π∗

r
s . (3.20)

The optimal ceded proportion aπ∗

r coincides with

aπ∗

r (x) =

{

0, x > b∗r,

(ξ + aπ∗

r (0))e−2θx − ξ, 0 ≤ x ≤ b∗r,
(3.21)

which solves (3.10). The value of aπ∗

r (0) and the injection strategy Gπ∗

r can be determined as follows:
(i) In the case of 0 < K ≤ I(1), aπ∗

r (0) = a0 ∈ (â0, 1] is the unique solution of I(a0) = K. The optimal
injection strategy Gπ∗

r is described by (3.5)-(3.7), the value of η∗ can be obtained by (3.32) and (3.33). It
means the surplus immediately jumps to η∗ once it reaches 0 by injecting capitals. In this case, it follows that
M g(0) = g(0) and g(0) ≥ 0.

(ii) In the case of K ≥ I(1), the initial value is aπ∗

r (0) = 1, and the injection strategy G
π∗

r

t in (3.8) is optimal.
Namely, the capital injection never occurs. When the surplus reaches 0, the company cedes the whole business
to the reinsurer and keeps the surplus stay at the point 0 forever. In this case, M g(0) ≤ g(0) and g(0) = 0.

Proof. We try to find a concave solution of (3.3) and (3.4) with a switch point b∗r such that g′(b∗r) = β1.
We conjecture that g′(x) ≡ β1 holds for all x ≥ b∗r , which yields

g(x) = β1(x − b∗r) + g(b∗r). (3.22)

Moreover the concavity implies that g′(x) ≥ β1 for x ≤ b∗r , to satisfy (3.3), it must have

max
0≤a≤1

{A ag(x)} = 0, 0 ≤ x ≤ b∗r , (3.23)

specifically,

max
0≤a≤1

{1

2
(1 − a)2λµ2

2g
′′(x) + (1 − a2)θλµ2

2g
′(x) − δg(x)

}

= 0. (3.24)

Taking derivative with respect to a and setting the derivative equal to zero yield

g′′(x)

g′(x)
= −2θ

aπ∗

r (x)

1 − aπ∗

r (x)
, (3.25)

where aπ∗

r (x) is the maximizer in (3.24). Plugging (3.25) in (3.24) yields

(1 − aπ∗

r (x))g′(x) = 2θξg(x), (3.26)

with ξ = δ/(2λ(θµ2)
2) > 0. Taking derivative with respect to x on both sides of (3.26) and using (3.25), we

obtain

aπ∗

r (x) = (ξ + aπ∗

r (0))e−2θx − ξ. (3.27)

Note that we have aπ∗

r (x0) = 0 with

x0 =
1

2θ
ln

(

1 +
aπ∗

r (0)

ξ

)

. (3.28)

For 0 ≤ x ≤ x0, it follows that from (3.26) that

g′(x) = k exp
(

∫ x0

x

2θaπ∗

r (z)

1 − aπ∗

r (z)
dz

)

(3.29)

with g′(x0) = k and

g′′(x0) = −2θk
aπ∗

r (x0)

1 − aπ∗

r (x0)
g′(x0) = 0, (3.30)
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the constant k needs to be determined. Applying Lemma 2.1 to (3.26) and (3.29) yields

g(x) =
1

2θ
kξ−

1
ξ+1

( ξ + 1

ξ + aπ∗

r (0)
e2θx − 1

)

ξ
1+ξ

, 0 ≤ x ≤ x0, (3.31)

with g(x0) = k/(2θξ). We conjecture that there is only one common switch level for the optimal reinsurance
and dividend strategies, i.e., x0 = b∗r . Then it follows that k = g′(x0) = g′(b∗r) = β1. By the way, we can deduce
that g(b∗r) = β1

2θξ
. The unknown value of aπ∗

r (0) and the optimal injection process Gπ∗

r can be determined in
different cases:

(i) In the case of 0 < K ≤ I(1), we conjecture that M g(0) = g(0) holds. It requires that there exist some
aπ∗

r (0) ∈ [0, 1] and η∗(aπ∗

r (0)) > 0 such that

g′(η∗) = β2, (3.32)

g(0) = g(η∗) − β2η
∗ − K = M g(0). (3.33)

(3.33) can be rewritten as

K =

∫ η∗

0

(g′(x) − β2)dx =

∫ η∗(aπ∗

r (0))

0

(Φaπ∗

r (0)(x) − β2)dx = I(aπ∗

r (0)). (3.34)

Recalling Lemma 3.1, we know that aπ∗

r (0) ∈ (â0, 1] and η∗ exist if 0 < K ≤ I(1).
A straightforward calculation can verify that g(x) is indeed a twice continuously differentiable, increasing

and concave function. Now, according to Theorem 3.1, we are in the position to verify that g(x) in (3.19) satisfies
(3.3) and (3.4). From the construction of g(x), we know that g′(x) = β1 for x ≥ b∗r and max

0≤a≤1
{A ag(x)} = 0 for

0 ≤ x ≤ b∗r . In addition, from the expression of g(x) for x ≥ b∗r we have

max
0≤a≤1

{A ag(x)} = max
0≤a≤1

{

(1 − a2)θλµ2
2β1 − δ[β1(x − b∗r) +

β1

2θξ
]
}

= θλµ2
2β1 − δ[β1(x − b∗r) +

β1

2θξ
]

= −δβ1(x − b∗r) ≤ 0 (3.35)

and, for 0 ≤ x ≤ b∗r , the property g′(x) ≤ β1 follows from the conditions g′(b∗r) = β1 and g′′(x) ≤ 0. Moreover,
g(0) = M g(0) and g(0) ≥ 0 are obvious. Hence, g(x) in (3.19) satisfies HJB equation (3.3) and (3.4). Finally,
the optimality of π∗

r can be verified by Appendix B. According to Theorem 3.1, the statements are proved.

(ii) In the case of K ≥ I(1), (3.19)-(3.21) can also be obtained. However, the number η∗ satisfying (3.32)
and (3.33) does not exist and M g(0) < g(0), which suggests that Gπ∗

r ≡ 0. To satisfy (3.4), it must be true
that g(0) = 0 and aπ∗

r (0) = 1. By repeating the same verification process as that in (i), we can prove that
g(x) = Vr(x) = V (x, π∗

r ).

Remark 3.1. Theorem 3.2 suggests that the company should give up to raise new capitals from market if
the fixed cost K is larger than I(1). It can be viewed as the maximal fixed cost for injections that the company
would pay. Observe from (3.12) and (3.18), I(1) becomes larger when the cost factor for injections β2 decreases
or the cost factor for dividends β1 increases. These results agree with our intuition.

3.2. Restricted dividends

In this subsection, we derive explicit solutions for the value function and the optimal strategy when a ceiling
M > 0 is imposed on the dividend rate. Denote πr ∈ Π as the control strategy such that the company never
goes bankrupt. The performance function associated with πr takes the form of

V (x, π̄r) = E
x
(

β1

∫ ∞

0

e−δslπ̄r
s ds −

∞
∑

n=1

e−δτ π̄r
n (β2η

π̄r
n + K)I{τ

π̄r
n <∞}

)

. (3.36)

We are interesting in the value function as

V r(x) = max
π̄r∈Π

V (x, π̄r), (3.37)
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and the optimal strategy π̄∗
r = (aπ̄∗

r ; Lπ̄∗

r ; Gπ̄∗

r ) ∈ Π, where V r(x) = V (x, π̄∗
r ).

With reference to the theory of optimal control, V r(x) should satisfy the HJB equation and the bound-
ary condition as follows

max
{

max
0≤ā≤1,0≤l≤M

{A āV r(x) + l(β1 − V
′

r(x))}, MV r(x) − V r(x)
}

= 0, (3.38)

max{MV r(0) − V r(0),−V r(0)} = 0. (3.39)

Similar to the analysis in Subsection 3.1, we assume that V̄r(x) is concave and the equation MV r(x) = V r(x)
has at most one solution at x = 0 , the inequality MV r(x) < V r(x) holds strictly for x > 0. When the surplus
reaches 0, we have two ways to avoid bankruptcy: One way is to inject new capitals, the surplus jumps to
some appropriate level η̄∗ > 0 immediately, if this choice is optimal, then the corresponding boundary condition
is MV r(0) = V r(0) = V r(η̄

∗) − β2η̄
∗ − K and V r(0) ≥ 0. By the definition of operator M , it follows that

η̄∗ = inf{x : V
′

r(x) = β2}. We can construct an injection strategy Gπ̄∗

r by letting

τ
π̄∗

r

1 = inf{t ≥ 0 : X
π̄∗

r

t− = 0}, (3.40)

τ
π̄∗

r
n = inf{t > τ

π̄∗

r

n−1 : X
π̄∗

r

t− = 0}, n = 2, 3, · · · , (3.41)

η
π̄∗

r
n ≡ η̄∗, n = 1, 2, 3, · · · . (3.42)

The other way of preventing bankruptcy is to cede the whole business to the reinsurer and keep the surplus
stay at the point 0 forever, the capital injection never occurs. If this choice is optimal, the boundary condition
becomes V r(0) = 0 and MV r(0) < V r(0). Correspondingly,

G
π̄∗

r

t ≡ 0. (3.43)

If we further assume that V r(x) is concave and there exists some number b̄∗r = inf{x : V
′

r(x) = β1} ≥ 0, then
the threshold dividend strategy Lπ̄∗

r with the following dividend rate

lπ̄
∗

r = l̄∗r(x) =

{

M, x > b̄∗r ,

0, 0 ≤ x ≤ b̄∗r ,
(3.44)

is optimal. The optimal ceded proportion strategy aπ̄∗

r should satisfy

max
0≤ā≤1

A
āV r(x) = A

aπ̄∗

r
V r(x) = 0, 0 ≤ x ≤ b̄∗r . (3.45)

However, in the region [b̄∗r ,∞), the optimal ceded proportion is expected to be some constant ā∗ ∈ [0, aπ̄∗

r (0)].
The optimality of strategy π̄∗

r = (aπ̄∗

r ; Lπ̄∗

r ; Gπ̄∗

r ) will be established later.

Theorem 3.3. Let w(x) be a twice continuously differentiable, increasing and concave solution to (3.38)
and (3.39). Then, we have the following statements:
(i) For each π̄r ∈ Π, it follows that w(x) ≥ V (x, π̄r). So w(x) ≥ V r(x) for all x ≥ 0.
(ii) If there exists some strategy π̄∗

r = (aπ̄∗

r ; Lπ̄∗

r ; Gπ̄∗

r ) such that w(x) = V (x, π̄∗
r ), then w(x) = V r(x) and π̄∗

r is
optimal.

Proof. The proof of (i) is similar to Appendix A, it is omitted here. The result of (ii) comes from the
optimality of V r(x).

Analogous to Lemma 3.1, we state the following lemma for future reference, its proof is omitted because it
is quite similar to the proof of Lemma 3.1.

Lemma 3.2. Let ã0 ∈ [0, 1] be the unique solution of the following equation,

A

ξ + ã0

( ξ + 1

ξ + ã0
− 1

)− 1
ξ+1

= β2, (3.46)
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with some A = β1(ξ + ā∗)
ξ

ξ+1 (1 − ā∗)
1

ξ+1 and ā∗ ≥ 0. For any number ā0 ∈ [ã0, 1] and b̄r = 1
2θ

ln( ξ+ā0

ξ+ā∗
), define

a function

Ψā0
(x) := A

e2θx

ξ + ā0

( ξ + 1

ξ + ā0
e2θx − 1

)− 1
ξ+1

> 0, 0 ≤ x ≤ b̄r. (3.47)

Then there is a unique η̄ ∈ [0, b̄r) such that Ψā0
(η̄) = β2. Furthermore,

Ī(ā0) =

∫ η̄(ā0)

0

(Ψā0
(x) − β2)dx ≥ 0, ā0 ∈ [ã0, 1], (3.48)

is an increasing function in ā0 with the range [0, Ī(1)]. In addition, it is not difficult to show that

Ī(ã0) = 0 and Ī(1) ≤ β1(1 − ā∗)

2θξ
. (3.49)

Theorem 3.4. If the dividend rate is bounded by 0 < M < ∞, then the value function V r(x) coincides with

w(x) =







β1M
δ

+ β1

γ
eγ(x−b̄∗r), x > b̄∗r ,

A
2θξ

(

ξ+1

ξ+aπ̄∗

r (0)
e2θx − 1

)

ξ
ξ+1

, 0 ≤ x ≤ b̄∗r ,
(3.50)

where A = β1(ξ + ā∗)
ξ

ξ+1 (1 − ā∗)
1

ξ+1 , b̄∗r = 1
2θ

ln
(

ξ+aπ̄∗

r (0)
ξ+ā∗

)

, γ < 0 and ā∗ ∈ [0, 1] are unique roots of (3.59)

and (3.60), respectively. The threshold dividend strategy Lπ̄∗

r defined by l̄π
∗

r in (3.44) is optimal. The optimal
ceded proportion aπ̄∗

r takes the form as

aπ̄∗

r (x) =

{

ā∗, x > b̄∗r ,

(ξ + aπ̄∗

r (0))e−2θx − ξ, 0 < x ≤ b̄∗r.
(3.51)

The value of aπ̄∗

r (0) and injection strategy Gπ̄∗

r is given according to two different cases:

(i) In the case of 0 < K ≤ Ī(1), the initial value aπ̄∗

r (0) = ā0 ∈ [0, 1] is the unique solution of Ī(ā0) = K. The
injection strategy Gπ̄∗

r is described by (3.40)-(3.42), in which the value of η̄∗ will be given in (3.62) and (3.63).
It means the surplus immediately jumps to η̄∗ once it reaches 0 by injecting capital. In this case, it follows that
Mw(0) = w(0) and w(0) ≥ 0.

(ii) In the case of K ≥ Ī(1), the ceded proportion described by (3.51) with the initial value aπ̄∗

r (0) = 1 is
optimal. However, the optimal strategy of capital injection is (3.43), namely, the capital injection never occurs.
Whenever the surplus reaches 0, one lets the ceded proportion of risk be aπ̄∗

r (0) = 1 and keeps the surplus stay
at the point 0 forever. In this case, Mw(0) ≤ w(0) and w(0) = 0.

Proof. We try to find a concave solution w(x) of (3.38) with a switch level b̄∗r > 0 such that w′(b̄∗r) = β1. Then
we have w′(x) ≥ β1 for 0 ≤ x ≤ b̄∗r , so

max
0≤ā≤1,0≤l≤M

{A āw(x) + l(β1 − w′(x))} = max
0≤ā≤1

{A āw(x)} = 0, 0 ≤ x ≤ b̄∗r , (3.52)

specifically,

max
0≤ā≤1

{1

2
(1 − ā)2λµ2

2w
′′(x) + (1 − ā2)θλµ2

2w
′(x) − δw(x)

}

= 0, 0 ≤ x ≤ b̄∗r . (3.53)

Following the same method as that in Theorem 3.2, we provide the candidate solution to (3.53)

w(x) =
A

2θξ

( ξ + 1

ξ + aπ̄∗

r (0)
e2θx − 1

)

ξ
1+ξ

, 0 ≤ x ≤ b̄∗r , (3.54)

with optimal ceded proportion aπ̄∗

r (x) as

aπ̄∗

r (x) = (ξ + aπ̄∗

r (0))e−2θx − ξ, 0 ≤ x ≤ b̄∗r. (3.55)
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Applying the condition w(b̄∗r−) = β1 to (3.54) yields A = (ξ + ā∗)
ξ

ξ+1 (1− ā∗)
1

ξ+1 . For x > b̄∗r , it has w′(x) < β1,
we conjecture the following equation holds with some constant 0 ≤ ā∗ ≤ 1,

max
0≤ā≤1,0≤l≤M

{A āw(x) + l(β1 − w′(x))} = A
ā∗

w(x) + M(β1 − w′(x)) = 0,

or equivalently,

1

2
(1 − ā∗)2λµ2

2w
′′(x) + [(1 − ā∗2)θλµ2

2 − M ]w′(x) − δw(x) + β1M = 0. (3.56)

Recalling that w(x) should be bounded and w′(b̄∗r) = β1, then

w(x) =
β1M

δ
+

β1

γ
eγ(x−b̄∗r), (3.57)

where γ is the negative root of the equation

1

2
(1 − ā∗)2λµ2

2γ
2 + [(1 − ā∗2)θλµ2

2 − M ]γ − δ = 0. (3.58)

To match the continuous condition

w′′(b̄∗r−)

w′(b̄∗r−)
=

w′′(b̄∗r+)

w′(b̄∗r+)
,

it requires that

− 2θā∗

1 − ā∗
= γ. (3.59)

Then, by substituting (3.59) into (3.58), we see that 0 < ā∗ < 1 is the unique positive root of following equation
in a

a2 + (ξ − 1 +
2Mθξ

δ
)a − ξ = 0. (3.60)

In addition, the continuity of aπ̄∗

r (x) at point b̄∗r shows

(ξ + aπ̄∗

r (0))e−2θb̄∗r − ξ = ā∗ (3.61)

which yields b̄∗r = 1
2θ

ln
(

ξ+aπ̄∗

r (0)
ξ+ā∗

)

. The unknown value of aπ̄∗

r (0) and the optimal injection strategy Gπ̄∗

r can

be determined as follows:

(i) Relying on Lemma 3.2 and the fact that w′(x) = Ψaπ̄∗

r (0)(x), when 0 < K ≤ Ī(1) there exists a unique
value η̄∗ such that

w′(η̄∗) = β2, (3.62)

w(0) = w(η̄∗) − β2η̄
∗ − K = Mw(0). (3.63)

aπ̄∗

r (0) = ā0 is the unique solution of Ī(ā0) = K.
Finally, a straightforward calculation can verify that w(x) is indeed a twice continuously differentiable, in-

creasing and concave solution of (3.38) and (3.39), moreover, w(x) = V (x, π̄∗
r ) can be proved as that in Appendix

B. According to Theorem 3.3, the results are proved.

(ii) In the case of K ≥ Ī(1), by repeating the same discussion as above, V r(x), aπ̄∗

r and Lπ̄∗

r can also be
given by (3.50), (3.51) and (3.44) respectively, apart from different initial value of aπ̄∗

r (0). In this case, η̄∗

satisfying (3.62) and (3.63) does not exist, i.e., Mw(0) < w(0). Thus the optimal capital injection process is

G
π̄∗

r

t ≡ 0. The capital injection never occurs. To satisfy (3.39), the condition w(0) = 0 is required, which yields
aπ̄∗

r (0) = 1. Whenever the surplus reaches 0, let the ceded proportion of risk be aπ̄∗

r (0) = 1 and keep the surplus
stay at the point 0 forever.

Finally, w(x) is indeed a twice continuously differentiable, increasing and concave solution of (3.38) and
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(3.39). Similar to Appendix B, w(x) = V r(x) = V (x, π̄∗
r ) can also be proved.

Remark 3.2. Parallel to Remark 3.1, Theorem 3.4 suggests that the company should give up to raise new
capitals from market if the fixed cost K is larger than Ī(1). It can be viewed as the maximal fixed cost for
injections that the company would afford. Notice, from (3.47) and (3.48), that Ī(1) becomes larger as the cost
factor for injection β2 decreases or the cost factor for dividend β1 increases. These results are consistent with
our intuition.

4. The solution to the problem without capital injection

4.1. Unrestricted dividends

In this subsection, we consider the classical optimal dividend problem of maximizing the expected to-
tal discounted dividends under a salvage for bankruptcy and the dividend rate is not restricted. Let πp =
(aπp ; Lπp ; 0) ∈ Π stand for the control process in which capital injection is not allowed. Then the performance
function associated with πp is defined by

V (x, πp) = E
x
(

β1

∫ τπp

0

e−δsdLπp
s + Pe−δτπp

)

. (4.1)

Correspondingly, the value function is defined by

Vp(x) = max
πp∈Π

V (x, πp). (4.2)

The associated optimal strategy is π∗
p = (aπ∗

p ; Lπ∗

p ; 0) such that Vp(x) = V (x, π∗
p) needs to be determined. From

the optimal control theory, Vp(x) should satisfy the following HJB equation

max
{

max
0≤a≤1

A
aVp(x), β1 − V ′

p(x)
}

= 0 (4.3)

with the boundary condition

Vp(0) = P. (4.4)

Theorem 4.1. Let f(x) be a twice continuously differentiable, increasing and concave solution of equations
(4.3) and (4.4), then we have the following statements:
(i) For each πp ∈ Π, we have g(x) ≥ V (x, πp). So f(x) ≥ Vp(x) for all x ≥ 0.

(ii) If there exists some strategy π∗
p = (aπ∗

p ; Lπ∗

p ; 0) such that f(x) = V (x, π∗
p), then f(x) = Vp(x) and π∗

p is
optimal.

Proof. The proof of (i) is similar to Appendix A, it is omitted here. The result of (ii) comes from the
optimality of Vp(x).

Theorem 4.2. The value function Vp(x) and the associated optimal strategy π∗
p = (aπ∗

p ; Lπ∗

p ; 0) are given
according to different cases:
(i) In the case where P ∈ [0, β1

2θξ
], then Vp(x) coincides with

f(x) =







β1(x − b∗p) + β1

2θξ
, x ≥ b∗p,

β1

2θ
ξ−

1
ξ+1

(

ξ+1

ξ+a
π∗

p (0)
e2θx − 1

)

ξ
ξ+1

, 0 ≤ x ≤ b∗p,
(4.5)

with aπ∗

p (0) given by (4.8) and b∗p = 1
2θ

ln(1 + a
π∗

p (0)
ξ

). Correspondingly, Lπ∗

p is a barrier dividend strategy with
level b∗p satisfying

L
π∗

p

t = (x − b∗p)
+ +

∫ t

0

I
{X

π∗

p
s =b∗p}

dL
π∗

p
s . (4.6)

The optimal ceded proportion aπ∗

p is given by

aπ∗

p (x) =

{

0, x ≥ b∗p,

(ξ + aπ∗

p (0))e−2θx − ξ, 0 ≤ x ≤ b∗p,
(4.7)
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where aπ∗

p(0) ∈ [0, 1] is the unique root of the following equation

β1

2θ
ξ−

1
ξ+1

( ξ + 1

ξ + aπ∗

p (0)
− 1

)

ξ
ξ+1

= P. (4.8)

(ii) In the case where P ∈ [ β1

2θξ
,∞), then Vp(x) equals to

f(x) = β1x + P. (4.9)

The associated optimal strategy is to distribute all surplus as dividends (by letting b∗p = 0 in (4.6)) and declare

bankruptcy at once (by letting 0 ≤ aπ∗

p (0) < 1).

Proof. (i) Note that Vp(x) and Vr(x) satisfy the same HJB equation but with different boundary conditions.

With the same argument, we can obtain the expressions of f(x), aπ∗

p (x) and L
π∗

p

t . The boundary condition
f(0) = P (which is the same as equation (4.8)) gives the value of aπ∗

p (0) ∈ [ã0, 1]. In the case where P ∈ [0, β1

2θξ
],

we know that aπ∗

p (0) exists. Obviously, it is not difficult to verify that f(x) is indeed a twice continuously dif-
ferentiable, increasing and concave solution of (4.3) and (4.4), and the optimality of π∗

p can also be established
as that in Appendix B. All conditions in Theorem 4.1 are satisfied.
(ii) In the case where P ∈ [ β1

2θξ
,∞), (4.8) has no solution for aπ∗

p (0). We conclude that f(x) = β1x + P, x ≥ 0

solves (4.3) and (4.4) now, because

max
0≤a≤1

{A af(x)} = max
0≤a≤1

{(1 − a2)θλµ2
2β1 − δ(β1x + P )}

= θλµ2
2β1 − δ(β1x + P )

= −δ(P − β1

2θξ
) − δβ1x ≤ 0 (4.10)

and f ′(x) ≡ β1 on [0,∞). Furthermore, we define a control strategy π∗
p by letting the b∗p = 0 in (4.6) and

0 ≤ aπ∗

p (0) < 1, then f(x) = V (x, π∗
p) follows. The statement of (ii) is true according to Theorem 4.1.

Remark 4.1. It is interesting to see Vp(x) = f(x) behaves differently depending on the relationship be-

tween P and β1

2θξ
. In fact, β1

2θξ
= β1λθµ2

2/δ is the present value of a perpetuity with discount rate δ and rate

of income β1λθµ2
2, which is the expected rate of profit under the strategy of full retention. Therefore, when

salvage value is greater than the present value of this perpetuity, then it is optimal for the insurer to declare
bankruptcy and claim the salvage value. This strategy is called take-the-money-and-run by Loeffen and Renaud
(2010, Theorem 1.1) and Liang and Young (2012, Remark 3.1).

4.2. Restricted dividends

In this subsection, we consider the optimal classical dividend problem where a ceiling M > 0 is imposed
on the dividend rate. Let π̄p = (aπ̄p ; Lπ̄p ; 0) ∈ Π stand for the control process in which capital injection is not
allowed. The performance function associated with π̄p is defined by

V (x, π̄p) = E
x
(

β1

∫ τ π̄p

0

e−δslπ̄p
s ds + Pe−δτ π̄p

)

. (4.11)

We focus on finding the value function

V p(x) = max
π̄p∈Π

V (x, π̄p) (4.12)

and the optimal strategy π̄∗
p = (aπ̄∗

p ; Lπ̄∗

p ; 0) ∈ Π such that V p(x) = V (x, π̄∗
p). From the stochastic control

theory, V p(x) should satisfy the following HJB equation

max
0≤ā≤1,0≤l≤M

{A āV p(x) + l(β1 − V
′

p(x))} = 0 (4.13)

and the boundary condition

V p(0) = P. (4.14)
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Theorem 4.3. Let h(x) be a twice continuously differentiable, increasing and concave solution of (4.13) and
(4.14), then we have the following statements:
(i) For each π̄p ∈ Π, we have h(x) ≥ V (x, π̄p). So h(x) ≥ V p(x) for all x ≥ 0.

(ii) If there exists some strategy π̄∗
p = (aπ̄∗

p ; Lπ̄∗

p ; 0) such that h(x) = V (x, π̄∗
p), then h(x) = V p(x) and π̄∗

p is
optimal.
Proof. The proof of (i) is similar to Appendix A, it is omitted here. The result of (ii) is obvious.

Theorem 4.4. The value function V p(x) and the associated optimal strategy π̄∗
p = (aπ̄∗

p ; Lπ̄∗

p ; 0) are given
according to different cases:

(i) In the case where P ∈ [0, β1(1−ā∗)
2θξ

], then V p(x) coincides with

h(x) =







β1M
δ

+ β1

γ
eγ(x−b̄∗p), x > b̄∗p,

A
2θξ

(

ξ+1

ξ+a
π̄∗

p (0)
e2θx − 1

)

ξ
ξ+1

, 0 ≤ x ≤ b̄∗p,
(4.15)

where A = β1(ξ + ā∗)
ξ

ξ+1 (1 − ā∗)
1

ξ+1 , b̄∗p = 1
2θ

ln
(

ξ+a
π̄∗

p (0)
ξ+ā∗

)

and aπ̄∗

p (0), ā∗, γ are roots of (4.18), (4.19) and

(4.25), respectively. The optimal dividend strategy Lπ̄∗

p is defined by the following dividend rate

lπ̄
∗

p = l̄∗p(x) =

{

M, x > b̄∗p,

0, 0 ≤ x ≤ b̄∗p.
(4.16)

The optimal ceded proportion aπ̄∗

p is given by

aπ̄∗

p(x) =

{

ā∗, x > b̄∗p,

(ξ + aπ̄∗

p(0))e−2θx − ξ, 0 < x ≤ b̄∗p.
(4.17)

Here aπ̄∗

p (0) ∈ (0, 1) is the unique solution of the following equation

A

2θξ

( ξ + 1

ξ + aπ̄∗

p (0)
− 1

)

ξ
ξ+1

= P, (4.18)

ā∗ ∈ (0, 1) is the positive root of the equation

a2 +
(

ξ − 1 +
2Mθξ

δ

)

a − ξ = 0. (4.19)

(ii) In the case where P ∈ [β1(1−ā∗)
2θξ

,∞), then

h(x) =
β1M

δ
+ (P − β1M

δ
)eγx. (4.20)

The associated optimal strategy Lπ̄∗

p and aπ̄∗

p can also be described by (4.16) and (4.17) but with b̄∗p = 0.

Proof. (i) The value functions V p(x) and Vp(x) satisfy the same HJB equation but with different bound-

ary conditions at x = 0. So (4.15)-(4.17) can be obtained similarly. The value of aπ̄∗

p (0) is determined by
h(0) = P , which is the same as equation (4.18). Note that aπ̄∗

p (0) must be larger than the fixed number ā∗, the

value of the left hand side of (4.18) varies in the region [0, β1(1−ā∗)
2θξ

], the solution for aπ̄∗

p (0) exists in this case.

Finally, we can establish that h(x) is indeed a twice continuously differentiable, increasing and concave solution
of (4.13) and (4.14), and h(x) = V p(x) = V (x, π̄∗

p), the verification process is omitted.

(ii) Let us consider the opposite case with P ∈ [β1(1−ā∗)
2θξ

,∞). We conjecture that h′(x) ≤ β1 for all x ≥ 0.
Then

max
0≤ā≤1,0≤l≤M

{

A
āh(x) + l(β1 − h′(x))

}

= max
0≤ā≤1

{

A
āh(x) + M(β1 − h′(x))

}

, (4.21)

specifically,

max
0≤ā≤1

{1

2
(1 − ā)2λµ2

2h
′′(x) + ((1 − ā2)θλµ2

2 − M)h′(x) − δh(x) + β1M
}

= 0. (4.22)
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Taking derivative with respect to ā on the left hand side of (4.22) yields

h′′(x)

h′(x)
= − 2θaπ̄∗

p (x)

1 − aπ̄∗

p (x)
, (4.23)

where aπ̄∗

p (x) is the maximizer in (4.22). However, we guess that aπ̄∗

p (x) ≡ ā∗ is a constant, then the value
function takes the form

h(x) = C + Deγx (4.24)

with

γ = − 2θā∗

1 − ā∗
. (4.25)

By plugging (4.24) into (4.22), we deduce that C = β1M
δ

, and 0 < ā∗ < 1 is given by (4.19). Then D = P − β1M
δ

can also be obtained by the boundary condition h(0) = P . We still need to verify the condition h′(x) ≤ β1 for
all x ≥ 0, equivalently,

h′(0) = Dγ ≤ β1 ⇔ P ≥ β1

γ
+

β1M

δ
= −β1(1 − ā∗)

2θā∗
+

β1M

δ
=

β1(1 − ā∗)

2θξ
(4.26)

where the last step follows from (4.19). It is easy to verify that h(x) is indeed a twice continuously differentiable,
increasing and concave solution of (4.13) and (4.14), the optimality of π̄∗

p can be established by the same way
as that in Appendix B.

Remark 4.2. All results obtained in Subsections 3.2 and 4.2 are compatible with those in Subsection 3.1
and Subsection 4.1, respectively, when the dividend ceiling M goes to infinity. That is, the optimal control
problem without dividend restrictions can be seen as the limiting optimal control problem with bounded divi-
dend rate.

5. The solution to the general optimal problems

Now, based on the analysis in sections above, we can address the problem of maximizing the performance
function over all admissible strategies. The two general optimal control problems raised in Section 2 can be
solved completely.

5.1. Unrestricted dividends

In this subsection, we would deal with Problem 2.1 in general case. According to the stochastic control
theory, V (x) should satisfy the following HJB equation

max
{

max
0≤a≤1

A
aV (x), β1 − V ′(x), MV (x) − V (x)

}

= 0, (5.1)

with boundary condition

max{MV (0) − V (0), P − V (0)} = 0. (5.2)

Theorem 5.1. Let v(x) be a twice continuously differentiable, increasing and concave solution of equations
(5.1) and (5.2), then we have the following statements:
(i) For each π ∈ Π we have v(x) ≥ V (x, π). So v(x) ≥ V (x) for all x ≥ 0.
(ii) If there exists some strategy π∗ = (aπ∗

; Lπ∗

; Gπ∗

) such that v(x) = V (x, π∗), then v(x) = V (x) and π∗ is
optimal.

Proof. See the proof process in Appendix A.

Next, let us give two lemmas, which show the relationships between parameters and signs of some important
quantities. For convenience, denote

P̂ :=
β1

2θ
ξ−

1
ξ+1

( ξ + 1

ξ + â0
− 1

)

ξ
ξ+1

(5.3)
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which proves to be a critical level later. By the way, P̂ takes value on [0, β1

2θξ
] since â0 ∈ [0, 1].

Lemma 5.1. The signs of M g(0) − g(0) and P − g(0) can be determined as follows:
(i) In the case where 0 < K ≤ I(1), P ≤ P̂ and aπ∗

r (0) ≤ aπ∗

p (0), it follows that M g(0) − g(0) = 0 and
P − g(0) ≤ 0.
(ii) In the case where 0 < K ≤ I(1), P ≤ P̂ and aπ∗

r (0) > aπ∗

p (0), it follows that M g(0) − g(0) = 0 and
P − g(0) > 0.
(iii) In the case where 0 < K ≤ I(1), P > P̂ , it follows that M g(0) − g(0) = 0 and P − g(0) > 0.
(iv) In the case where K > I(1), it follows that M g(0) − g(0) < 0.

Proof. (i) Theorem 3.2 shows that M g(0)−g(0) = 0 holds with some aπ∗

r (0) ∈ (â0, 1] when 0 < K ≤ I(1). Fur-
thermore, by observing the structures of (4.8) and (5.3), we know that the condition P ≤ P̂ leads to aπ∗

p(0) ≥ â0,
which makes the inequality aπ∗

r (0) ≤ aπ∗

p (0) possible. So P − g(0) ≤ 0 holds if aπ∗

r (0) ≤ aπ∗

p (0).
(ii) In this case, the equality M g(0) − g(0) = 0 still holds. Similar to the analysis in (i), the condition
aπ∗

r (0) > aπ∗

p (0) leads to P − g(0) > 0.
(iii) In this case, the equality M g(0) − g(0) = 0 still holds. In addition, for the case of P̂ < P ≤ β1

2θξ
, it

follows that 0 ≤ aπ∗

p (0) < â0 < aπ∗

r (0), which leads to P − g(0) > 0. For the case of P ≥ β1

2θξ
, we have

g(0) < g(b∗r) = β1

2θξ
≤ P since the function g(x) is increasing.

(iv) Obviously, (iv) is a direct result of Theorem 3.2.

Lemma 5.2. The property of P − f(0) = 0 is known. Moreover, we can derive the sign of M f(0) − f(0)
according to the following cases:
(i) In the case where 0 < K ≤ I(1), P ≤ P̂ and aπ∗

p(0) ≥ aπ∗

r (0), it follows that M f(0) − f(0) ≥ 0.
(ii) In the case where 0 < K ≤ I(1), P ≤ P̂ and aπ∗

p (0) < aπ∗

r (0), it follows that M f(0) − f(0) < 0.
(iii) In the case where 0 < K ≤ I(1), P > P̂ , it follows that M f(0) − f(0) < 0.
(iv) In the case where K > I(1), it follows that M f(0) − f(0) < 0.

Proof. (i) Observing the structures of (4.8) and (5.3), the condition P ≤ P̂ implies that aπ∗

p (0) ≥ â0.
Lemma 3.1 suggests that there exists some number ζ < b∗p with f ′(ζ) = Φ

a
π∗

p (0)
(ζ) = β2. Then, it follows that

f ′(x) − β2 ≥ 0 on (0, ζ] and f ′(x) − β2 < 0 on (ζ,∞) since f(x) is concave. Consequently,

M f(0) − f(0) = max
y≥0

{f(y) − β2y − K − f(0)}

= max
y≥0

{

∫ y

0

(f ′(x) − β2)dx
}

− K

=

∫ ζ

0

(f ′(x) − β2)dx − K

= I(aπ∗

p (0)) − K

≥ I(aπ∗

r (0)) − K = 0. (5.4)

The above inequality follows from aπ∗

p(0) ≥ aπ∗

r (0).
(ii) Similar to the analysis in (i), the condition aπ∗

p (0) < aπ∗

r (0) leads to

M f(0) − f(0) = I(aπ∗

p(0)) − K < I(aπ∗

r (0)) − K = 0. (5.5)

(iii) In the case of P > P̂ , the number aπ∗

p(0) ∈ [â0, 1] does not exist, we can not find the number ζ > 0 such
that f ′(ζ) = Φ

a
π∗

p (0)
(ζ) = β2. It implies that f ′(x) < β2 holds for all x ≥ 0 since f(x) is concave. Thereby,

M f(0) − f(0) = max
y≥0

{f(y) − β2y − K − f(0)}

= max
y≥0

{

∫ y

0

(f ′(x) − β2)dx
}

− K < 0. (5.6)

(iv) From the above analysis we know the value of M f(0)−f(0) can not exceed I(1)−K, no matter the number
ζ > 0 with f ′(ζ) = β2 exists or not. So M f(0) − f(0) < 0 follows.

Consequently, by comparing two different suboptimal models in Subsection 3.1 and Subsection 4.1, we
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can address the problem of maximizing the performance function V (x, π) over all admissible strategies.

Theorem 5.2. Let g(x) be the solution appearing in Theorem 3.2, and let f(x) be the solution appearing
in Theorem 4.2. Then we can solve Problem 2.1 as follows:
Case 1. In the case where M g(0) − g(0) = 0 and P − g(0) ≤ 0, or equivalently, the following condition holds,
(i) 0 < K ≤ I(1), P ≤ P̂ and aπ∗

r (0) ≤ aπ∗

p(0),
then V (x) = Vr(x) = g(x) and π∗ coincides with π∗

r = (aπ∗

r ; Lπ∗

r ; Gπ∗

r ) appearing in Theorem 3.2.
Case 2. In the case where M f(0)− f(0) ≤ 0 and P − f(0) = 0, or equivalently, one of the following conditions
holds,
(ii) 0 < K ≤ I(1), P ≤ P̂ and aπ∗

r (0) > aπ∗

p(0);
(iii) 0 < K ≤ I(1) and P > P̂ ;
(iv) K ≥ I(1),
then V (x) = Vp(x) = f(x) and π∗ coincides with π∗

p = (aπ∗

p ; Lπ∗

p ; Gπ∗

p ) appearing in Theorem 4.2.

Proof. See the proof process in Appendix B.

5.2. Restricted dividends

In this subsection, we would solve Problem 2.2 in general case. According to the stochastic control theory,
V (x) should satisfy the following HJB equation

max
{

max
0≤ā≤1,0≤l≤M

{A āV (x) + l(β1 − V
′
(x))}, MV (x) − V (x)

}

= 0 (5.7)

with boundary condition

max{MV (0) − V (0), P − V (0)} = 0. (5.8)

Theorem 5.3. Let u(x) be a twice continuously differentiable, increasing and concave solution of equations
(5.7) and (5.8), then we have the following statements:
(i) For each π̄ ∈ Π, it follows that u(x) ≥ V (x, π̄). So u(x) ≥ V (x) for all x ≥ 0.
(ii) If there exists some strategy π̄∗ = (aπ̄∗

; Lπ̄∗

; Gπ̄∗

) such that u(x) = V (x, π̄∗), then u(x) = V (x) and π̄∗ is
optimal.

Proof. Repeating a similar proof procedure as that in Appendix A, the results can be proved.

Similar to the discussion in Subsection 5.1, let us give following two lemmas, but the proofs are omitted. To
facilitate the expression, we denote that

P̃ :=
A

2θξ

( ξ + 1

ξ + ã0
− 1

)

ξ
ξ+1

(5.9)

which is also a critical level. By the way, P̃ takes value on [0, β1(1−ā∗)
2θξ

] since ã0 ∈ [0, 1].

Lemma 5.3. The signs of Mw(0) − w(0) and P − w(0) can be determined as follows.
(i) In the case where 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

r (0) ≤ aπ̄∗

p (0), it has Mw(0) − w(0) = 0 and P − w(0) ≤ 0.
(ii) In the case where 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

r (0) > aπ̄∗

p (0), it has Mw(0) − w(0) = 0 and P − w(0) > 0.
(iii) In the case where 0 < K ≤ Ī(1), P > P̃ , it has Mw(0) − w(0) = 0 and P − w(0) > 0.
(iv) In the case where K > Ī(1), it has Mw(0) − w(0) < 0.

Lemma 5.4. The signs of Mh(0) − h(0) and P − h(0) can be determined as follows.
(i) In the case where 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

p(0) ≥ aπ̄∗

r (0), it has Mh(0) − h(0) ≥ 0 and P − h(0) = 0.
(ii) In the case where 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

p (0) < aπ̄∗

r (0), it has Mh(0) − h(0) < 0 and P − h(0) = 0.
(iii) In the case where 0 < K ≤ Ī(1), P > P̃ , it has Mh(0) − h(0) < 0 and P − h(0) = 0.
(iv) In the case where K > Ī(1), it has Mh(0) − h(0) < 0 and P − h(0) = 0.

Next, by comparing results in Subsection 3.2 and Subsection 4.2, we will identify Problem 2.2 of maxi-
mizing the performance function V (x, π̄) over all admissible strategies.
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Theorem 5.4. Let w(x) be the solution appearing in Theorem 3.4, and let h(x) be the solution appear-
ing in Theorem 4.4. Then the Problem 2.2 can be solved according to different cases:
Case 1. In the case where Mw(0) − w(0) = 0 and P − w(0) ≤ 0, i.e., the following condition holds,
(i) 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

r (0) ≤ aπ̄∗

p(0),
then V (x) = V r(x) = w(x) and π̄∗ coincides with π̄∗

r = (aπ̄∗

r ; Lπ̄∗

r ; Gπ̄∗

r ) appearing in Theorem 3.4.
Case 2. In the case where Mh(0) − h(0) < 0 and P − h(0) = 0, i.e., one of the following conditions holds,
(ii) 0 < K ≤ Ī(1), P ≤ P̃ and aπ̄∗

p(0) < aπ̄∗

r (0);
(iii) 0 < K ≤ Ī(1), P > P̃ ;
(iv) K > Ī(1),
then V (x) = V p(x) = h(x) and π̄∗ coincides with π̄∗

p = (aπ̄∗

p ; Lπ̄∗

p ; Gπ̄∗

p ) appearing in Theorem 4.4.

Proof. Repeating a similar proof procedure as that in Appendix B, the results can be verified.

Remark 5.1. Zhou and Yuen (2012) have explored the optimal dividend, capital injection and reinsurance
problem in the special case with P = K = 0. All results there can be viewed as limiting forms of ours as P → 0
and K → 0. Due to the existence of the fixed cost and the salvage value, to inject capital is not always optimal
when K > 0 or P > 0 in our model. The decision to inject new capitals or to declare bankruptcy depends on
the costs of injections and the profitability in future.

Appendix

A. Proofs of Theorem 5.1

For each given strategy π = (aπ; Lπ; Gπ) ∈ Π, define Λπ
L = {s : Lπ

s− 6= Lπ
s }, Λπ

G = {s : Gπ
s− 6= Gπ

s } =

{τπ
1 , τπ

2 , · · · , τπ
n , · · · }. Let L̂π

t =
∑

s∈Λπ
L

,s≤t

(Lπ
s − Lπ

s−) be the discontinuous part of Lπ
t and L̃π

t = Lπ
t − L̂π

t be

the continuous part of Lπ
t . Similarly, Ĝπ

t and G̃π
t stand for the discontinuous and continuous parts of Gπ

t

respectively. Then, applying the generalized Itô formula, we derive that

e−δ(t∧τπ)v(Xπ
t∧τπ) − v(x)

=

∫ t∧τπ

0

e−δs
L

aπ

v(Xπ
s )ds +

∫ t∧τπ

0

(1 − aπ)
√

λµ2e
−δsv′(Xπ

s )dBs −
∫ t∧τπ

0

e−δsv′(Xπ
s )dL̃π

s

+

∫ t∧τ

0

e−δsv′(Xπ
s )dG̃π

s +
∑

s∈Λπ
G
∪Λπ

L
,s≤t∧τπ

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

. (A.1)

The last term on the right hand side can be written as

∑

s∈Λπ
G
∪Λπ

L
,s≤t∧τπ

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

=
∑

s∈Λπ
L

,s≤t∧τπ

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

+
∑

s∈Λπ
G

,s≤t∧τπ

e−δs
(

v(Xπ
s ) − v(Xπ

s−)
)

≤ −
∑

s∈Λπ
L

,s≤t∧τπ

e−δsβ1(L
π
s − Lπ

s−) +
∞
∑

n=1

e−δτπ
n (β2ξ

π
n + K)I{τπ

n≤t∧τπ} (A.2)

where the inequality is due to that v(x) satisfies the HJB equation (5.1) with v′(x) ≥ β1 and M v(x) ≤ v(x).
Moreover, in view of (5.1), the first term on the right hand side of (A.1) is non-positive. So substituting (A.2)
into (A.1), we obtain

e−δ(t∧τπ)v(Xπ
t∧τπ) ≤ v(x) +

∫ t∧τπ

0

(1 − aπ)
√

λµ2e
−δsv′(Xπ

s )dBs − β1

∫ t∧τπ

0

e−δsdLπ
s

+

∞
∑

n=1

e−δτπ
n (β2ξ

π
n + K)I{τπ

n≤t∧τπ}. (A.3)
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Since v(x) is an increasing function and v(0) ≥ P , we have

e−δ(t∧τπ)P ≤ v(x) +

∫ t∧τπ

0

(1 − aπ)
√

λµ2e
−δsv′(Xπ

s )dBs − β1

∫ t∧τπ

0

e−δsdLπ
s

+

∞
∑

n=1

e−δτπ
n (β2ξ

π
n + K)I{τπ

n≤t∧τπ}. (A.4)

The stochastic integral with respect to the Brownian motion in (A.4) is a uniformly integrable martingale, if
v′(x) is bounded. Taking expectation and limit on both sides of (A.4) yields

v(x) ≥ E
x
(

β1

∫ τπ

0

e−δsdLπ
s −

∞
∑

n=1

e−δτπ
n (β2η

π
n + K)I{τπ

n≤τπ} + Pe−δτπ
)

= V (x, π). (A.5)

Consequently, v(x) ≥ V (x) by (2.6). Applying the method in Cadenillas et al. (2006), we can also prove above
results when v′(x) is unbounded by modifying above proof process, it is omitted here.

B. Proofs of Theorem 5.2

(1) If P − g(0) ≤ 0 and M g(0) = g(0), then g(x) satisfies conditions of Theorem 5.1, g(x) ≥ V (x). Since

L aπ∗

r g(X
π∗

r

t ) = 0 for 0 ≤ X
π∗

r

t ≤ b∗r , one has

∫ t∧τπ∗

r

0

e−δs
L

aπ∗

r
g(X

π∗

r
s )ds =

∫ t∧τπ∗

r

0

e−δs
L

aπ∗

r
g(X

π∗

r
s )I

{0≤X
π∗

r
s ≤b∗r}

ds = 0. (B.1)

Furthermore, (3.5)-(3.7) and (3.9) indicate that

∑

s∈Λ
π∗

r
G

∪Λ
π∗

r
L

,s≤t∧τπ∗

r

e−δs
(

g(X
π∗

r
s ) − g(X

π∗

r

s−)
)

=
∑

s∈Λ
π∗

r
L

,s≤t∧τπ∗

r

e−δs
(

g(X
π∗

r
s ) − g(X

π∗

r

s−)
)

I
{X

π∗

r
s =b∗r}

+
∑

s∈Λ
π∗

r
G

,s≤t∧τπ∗

r

e−δs
(

g(X
π∗

r
s ) − g(X

π∗

r

s−)
)

I
{X

π∗

r
s−

=0}

= −
∑

s∈Λ
π∗

r
L

,s≤t∧τπ∗

r

e−δsβ1(L
π∗

r
s − L

π∗

r

s−) +

∞
∑

n=1

e−δτ
π∗

r
n (β2ξ

π∗

r
n + K)I

{τ
π∗

r
n ≤t∧τπ∗

r }
. (B.2)

Replacing π, τπ , v by π∗
r , τπ∗

r = ∞, g in Itô formula (A.1) and taking expectations, we have

g(x) = E
x[e−δtg(X

π∗

r

t )] + E
x
(

β1

∫ t

0

e−δsdL
π∗

r
s −

∞
∑

n=1

e−δτ
π∗

r
n (β2ξ

π∗

r
n + K)I

{τ
π∗

r
n ≤t}

)

. (B.3)

Letting t → ∞, the first term on the right hand side vanishes, then we obtain

g(x) = E
x
(

β1

∫ ∞

0

e−δsdL
π∗

r
s −

∞
∑

n=1

e−δτ
π∗

r
n (β2ξ

π∗

r
n + K)I

{τ
π∗

r
n <∞}

)

= V (x, π∗
r ), (B.4)

which, together with g(x) ≥ V (x), establishes that g(x) = V (x) = V (x, π∗
r ), and π∗

r is the associated optimal
strategy.

(2) If P − f(0) = 0 and M f(0) ≤ f(0), then f(x) satisfies conditions of Theorem 5.1, so f(x) ≥ V (x).

Since L a
π∗

p
f(X

π∗

p

t ) = 0 for 0 ≤ X
π∗

p

t ≤ b∗p, one has

∫ t∧τ∗

p

0

e−δs
L

a
π∗

p

f(X
π∗

p
s )ds =

∫ t∧τ∗

p

0

e−δs
L

a
π∗

p

f(X
π∗

p
s )I

{0≤X
π∗

p
s ≤b∗p}

ds = 0. (B.5)
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Moreover, under the strategy π∗
p = (aπ∗

p ; Lπ∗

p ; 0) ∈ Π, the capital injection never occurs, Λ
π∗

p

G is a null set.
Thereby, together with (4.6), it follows that

∑

s∈Λ
π∗

p

G
∪Λ

π∗

p

L
,s≤t∧τ

π∗

p

e−δs
(

f(X
π∗

p
s ) − f(X

π∗

p

s−)
)

=
∑

s∈Λ
π∗

p

L
,s≤t∧τ

π∗

p

e−δs
(

f(X
π∗

p
s ) − f(X

π∗

p

s−)
)

I
{X

π∗

p
s =b∗p}

=
∑

s∈Λ
π∗

p

L
,s≤t∧τ

π∗

p

β1e
−δs

(

L
π∗

p
s − L

π∗

p

s−

)

. (B.6)

Replacing π, τ, v by π∗
p, τπ∗

p , f , respectively, in Itô formula (A.1) and taking expectations, we have

f(x) = E
x
(

β1

∫ t∧τ
π∗

p

0

e−δsdL
π∗

p
s + f(X

π∗

p

t∧τ
π∗

p
)e−δ(t∧τ

π∗

p )
)

. (B.7)

Letting t → ∞ yields

f(x) = E
x
(

β1

∫ τ
π∗

p

0

e−δsdL
π∗

p
s + Pe−δτ

π∗

p
)

= V (x, π∗
p), (B.8)

which, together with f(x) ≥ V (x), confirms that f(x) = V (x) = V (x, π∗
p), and π∗

p is the associated optimal
strategy.
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